茂金属催化剂的研究进展及发展趋势

茂金属催化剂的研究进展及发展趋势
茂金属催化剂的研究进展及发展趋势

茂金属催化剂的研究进展及发展趋势

近几年出现了一种新型聚合催化剂,称为茂金属催化剂,应用此催化剂可以生产出具有新物理性能的塑料。茂金属聚烯烃就是以茂金属配位化合物为催化剂,进行烯烃聚合反应所制的的聚合物。茂金属聚合物加工性能好、强度高、刚性和透明性好,耐温,耐化学药品等方面的性能得到了显著的改善,许多用传统催化剂难以合成的材料,在采用茂金属催化技术后变得容易进行。在烯烃聚合物合成中茂金属催化剂正在替代传统催化剂。茂金属催化剂在全球增长非常迅速,具有广阔的应用和市场前景。

一、茂金属催化剂简介

茂金属催化剂是由过渡金属锆(Zr)(也可是钛等)与两个环戊二烯基或环戊二烯取代基及两个氯原子(也可是甲基等)形成的有机金属络合物和助催化剂甲基铝氧烷(MAO,Methylalummoxane)组成的。其中具有环戊二烯基的有机金属络合物亦称茂金属化合物(Metallocene),中文称环戊二烯。

金属催化剂一般由有机金属络合物、助催化剂、载体三个组分组成。在溶液聚合中不需要载体,有机金属络合物是由过渡金属与各种有机物取代基相结合构成的,其占催化剂的质量分数为1%-2%。助催化剂通常为铝氧化物和氟化有机硼酸盐混合物,具有强化过渡金属系统的作用,与有机金属络合物相比,常常被过量应用。茂金属催化剂的活性是齐格勒一纳塔型催化剂的2-5倍。

现在很多茂金属催化剂被深人研究和充分利用。具有一个以金属为中心的催化剂不同于具有多个中心的传统催化剂(如齐格勒一纳塔催化剂、铬催化剂、钒催化剂),茂金属催化剂的金属催化活性中心处于闭合的空间中,到达其单体的同结构的聚合物。所形成的聚合物提高了强度、硬度、透明度和轻便性。除此之外,可以在更廉价的生产工艺中获得具有指定性能的专用塑料,包括结构塑料。

二、茂金属催化剂的性能特点

茂金属催化剂的性能特点有:

(1)超高活性。以过渡金属计,其活性大约相当于氯化镁载体类催化剂的10倍以上。

(2)相对分子质量及组成分布极窄,其Mw[ TX- ] /Mn [ TX-]一般都可低于2(理

论值为1),而用钛基齐格勒一纳塔催化剂时,则为3-8;用铬催化剂时则为8-30组成分布也很均匀,如共聚单体宏观质量分数为10%的极低密度聚乙烯,每个分子链中,其共聚单体的质量分数从0-40%不等,而茂金属催化剂生产的聚合物链长及侧链间隔都是一致的,因而每个链都有其基本相同的共聚单位质量分数。

(3)茂金属催化剂体系中的每个过渡金属都具有催化活性,活性中心可达100%,且每个活性中心都产生相应的链长,并与相同含量的共聚单位发生反应,而齐格勒一纳塔催化剂中仅有1%-3%的活性中心具有活性。

(4)催化剂选用灵活,既可使用单组分茂金属催化剂,又可使用混合的茂金属催化剂,还可以根据需要与Z-N催化剂接枝,生产各种结构及性能的均聚物。

(5)聚合活性寿命长,性能稳定。

三、茂金属催化剂在烯烃聚合中的研究

3.1茂金属催化剂在乙烯聚合中的研究

1987年美国埃克森公司和日本三井石化公司开始研究开发乙烯气相法工艺及锆系茂金属催化剂技术并获得成功,在烯烃聚合技术领域实现了革命性的变化,因为采用茂金属催化剂,根据市场的需求可在同一生产装置中,只改变催化剂配位体的结构,就可生产出LDPE, HDPE,LLDPE等全密度聚乙烯,并在日本岩国的4000t/a 中试装置上进行工业化试验。目前,在宇部兴产正进行产品的应用试验。此外,埃克森公司于1991年6月,在美国路易斯安纳州的Ba-tonkouge,采用茂金属催化剂建成一套能力为1.5万t/a的聚乙烯装置;1995年在美国又建了一套能力为10万t/a的聚乙烯装置;三井石化公司准备在日本建一套能力为10万t/a的聚乙烯装置,于1995--1996年投产。到优异的齐聚物产率高的聚合物。该公司于1993年建成能力为5.7万t/a的聚乙烯装置,并打算采用这种茂金属催化剂再建一套能力为18万t/a的聚乙烯装置。此外,日本三菱公司及联碳公司也采用茂金属催化剂分别在日本和美国建设能力为10万t/a及30万t/a的聚乙烯装置。莫比尔公司,在流化床气相反应器中,使用茂金属催化剂,成功地生产出超强聚乙烯产品。

3.2茂金属催化剂在丙烯聚合中的研究

3.2.1等规立构聚丙烯

采用茂金属催化剂的丙烯聚合,根据所用茂金属催化剂和聚合条件,可能生成从近似无规的低立规性到高立规性的聚合物。

研究结果表明,采用茂金属催化剂合成的立规性低的聚丙烯,其物性近似无规

共聚物,而且几乎不含无规聚丙烯,而合成的高立规性的聚合物和等规聚丙烯几乎有同样的物性,其特点是分子量分布窄,一般为1.5~3 (传统的为4~12),茂金属催化剂与传统的固体催化剂得到的等规聚丙烯GPC分子量分布测定结果如图所示:

由此可见,使用茂金属催化剂也能够制得和目前一般等规聚丙烯大体相同的聚合物。

3.2.2间规立构聚丙烯

与等规优异性茂金属催化剂同样,对间规优异性茂金属催化剂的高性能化,也开展了充分的研究。结果表明,间规聚丙烯拉伸屈服点应力、曲挠刚性等的强度比等规聚丙烯低、比重小、冲击强度高。

3.3 茂金属催化剂在其它烯烃聚合中的研究

3.3.1乙烯-丙烯共聚物

自从采用茂金属催化剂合成聚乙烯、聚丙烯以来,研究工作者也进行了用于乙烯-丙烯共聚合的探索性研究,典型的聚合结果如下:

研究结果表明,在乙烯-丙烯共聚合中,锆(Zr)系催化剂的单体反应性能较近似

钒系化合物催化剂,可获得橡胶状聚合物,同时也是一种嵌段性高的催化剂,可能生产出与钒化合物系催化剂不同性质的工程塑料。

4.2 环烯烃的聚合物

采用等规优异性茂金属催化剂和MAO组成的催化剂体系进行环戊烯的聚合,能选择性地得到1,3加成体(和乙烯等烯烃共聚合形成1,2加成体)。该系列环状烯烃系聚合物,呈现出非常高的熔点,很有希望成为新一代工程塑料,如下图。

采用Et(Ind)

2ZrCl

2

-MAO催化剂环烯烃的聚合

四、茂金属催化剂对聚合物性能以及共聚单体的影响

4.1对加工性能和力学性能的影响

Z/N催化剂所得聚合物一般有较宽的MWD值,这是因为Z/N催化剂具有多种不同活性中心之故。而茂金属催化剂所得聚合物具有窄的MWD值,这是因为茂金属催化剂具有单一活性中心之故。而MWD主要影响树脂的加工性能和力学性能。一般而言,当产物平均分子量相同时,分子量分布宽的树脂的力学性能和加工性能均要比窄分布的更好些,这是因为宽分布树脂中的分子量较小的那部分树脂在加工时能起增塑剂作用,同时其分子量大的那部分树脂就贡献了高的力学性能,如好的抗拉强度,而这部分高分子量树脂在窄分子量分布树脂中是缺少的。

从上述分析可见,宽分子量分布树脂有较好的加工性能和力学性能。但这也并不总是需要的,如纺织用聚合物和吹膜用聚合物就要用分子量分布窄的树脂,以获得平均较高的强度或可降低薄膜厚度。这表明,当最终制品不是本体制品,而是如单丝或薄膜这些更依靠单一分子链的力学性能的细薄制品时,窄分子量分布树脂较合适。

4.2 对物理性能的影响

关于抗溶剂抽出性和透明性,由于茂金属催化剂所得树脂的分子量分布窄和结晶度较低,从而改善了透明性和抗溶剂抽出性。而传统LLDPE树脂因分子量分布宽带来了透明性差和抗溶剂抽出性差等弱点,这是因为低分子量部分当然易于被溶剂抽出,而高分子量部分,易导致均聚物比重增加,从而提高了结晶度而减少了树脂的透明性,增加了树脂的雾度。

4.3 对共聚单体用量的影响

茂金属催化剂单一活性中心聚合所得共聚树脂如LLDPE,不管分子链长或短,其共聚单体均匀分布在全部高分子链上。所以共聚单体浓度与分子量分布呈直线关系,这表明不存在共聚单体本身聚合所造成的均聚嵌段,而这种共聚单体分布不均的缺陷在传统催化剂所得的LLDPE中是普遍存在的,尤其是用气相法工艺时。这样由茂金属催化剂催化乙烯与共聚单体共聚时可使共聚单体利用率提高,故在反应中保持较低共聚单体浓度时,茂金属基树脂仍能达到原有性能,故可节省较贵的共聚单体。

五、茂金属催化剂的负载化

均相可溶性茂金属催化剂用在淤浆法,本体法和气相法聚烯烃工艺中,聚合中反应热比较集中,聚合物颗粒形态不好,表观密度小,粘釜现象严重,MAO的用量大,这些都是均相催化剂走向工业化的巨大障碍。要消除上述障碍,最好的办法是将均相茂金属催化剂负载化。茂金属催化剂负载化后更能适应于目前采用Z/N催化剂的工业化聚合反应器,尤其是气相流化床反应器,但是负载化后要损失一些催化活性。茂金属催化剂的负载化可采用以下两种方法。

5.1负载化催化剂的主要制备途径

茂金属载体催化剂体系一般由下列组分组成:主催化剂、助催化剂、载体、处理剂,载体的性质和负载的方式对载体催化剂的性能有着十分关键的影响。载体一般是具有大比表面积的惰性物质,常用的多是一些无机载体如硅、铝、镁的化合物。

还有一些不常见的物质如环糊精(Cyclodextrin)、聚苯乙烯(Polystyrene)、沸石(Zeolites)、蒙脱土(Montmorillon)以及聚硅氧烷的衍生物(Polysiloxane derivatives)等也可用作载体。载体在使用前常进行表面处理来提高载体催化剂的

催化性能。这包括载体的热处理和用处理剂(如SiCl

4,SiMe

2

Cl

2

等)进行化学处理。

双组分催化剂的制备方法可以分为以下三类:(1)将茂金属配合物直接负载到载体上;(2)载体先用MAO或烷基铝预处理,然后负载茂金属配合物;(3)在载体上就地合成茂金属配合物,茂金属的制备和负载同时进行。

5.2负载化的形式

负载化的形式可分为三类:

(1)助催化剂负载,主催化剂不负载;

(2)催化剂体系各组分按一定的顺序或同时负载在载体上(单组分催化剂);

(3)主催化剂负载在载体上,助催化剂不负载,以液相形式参加反应(双组分催化剂)。这是茂金属催化剂负载化最常用的一种形式。

5.3 载体对茂金属催化剂催化性能的影响

茂金属催化剂负载化后催化烯烃聚合具有以下特点:

(1)达到高活性所需的Al/Mt摩尔比明显降低了(从均相时的103~104降至50~400);

(2)载体催化剂的活性通常要比均相催化剂的低一些,但是基本保持在同一个数量级上;

(3)聚合物的分子量分布变宽(从均相时的1~2增至2~5);

(4)聚合物的形态明显改善,堆密度大大提高,并且可以通过预聚来控制聚合物的粒度分布。

(5)茂金属催化剂的动力学性能有所改善。

高性能聚烯烃材料研究一直是烯烃聚合的热点。负载化是对烯烃聚合催化剂进行修饰可望得到寿命更长的催化剂、颗粒形态和堆密度理想的聚合物等的重要手段之一,改变优化载体,拓宽了催化剂的适用范围。研究载体性能为负载型催化剂更好地应用于淤浆法和气相法生产装置提供了理论指导,对加速工业化进程有着非常重要的意义。

六、茂金属催化剂的应用

虽然茂金属催化剂已发现多年,但其应用开发一直停滞不前,到80年代中期才

出现突破性进展,发现某些锆基和钛基茂金属可催化丙烯聚合,制成等规聚合物。此外也发现了它们在乙烯聚合中的价值。茂金属催化剂由于容易对配位体结构进行

修饰而开发出具有各种立体结构的络合物,使用这些络合物合成了间规聚丙烯(SPP)、等规聚丙烯(IPP)、立体嵌段聚丙烯、间规聚苯乙烯(SPS)、间规聚乙烯(SPE)等独特而具有均匀微观结构的多种聚合物。

利用茂金属催化剂可开发新的高性能材料。可实现过去固体催化剂不能聚合或催化效率极低的环烯烃、共轭二烯烃、极性单体等特种烯烃的聚合或共聚合,因为是单活性中心,即使是在共聚反应中也能得到分子量分布窄、组成分布均匀的共聚物。可提高线性低密度聚乙烯、乙丙橡胶等共聚物的性能,与极性单体共聚合成功能高分子。

七、我国茂金属催化剂的发展现状及发展前景

我国茂金属催化剂起步很晚,80年代末我国才开始茂金属催化剂的研究与开发工作,而国外已拥有相当多的专利和技术。1993年国家科技部组织了北京石油科学院、北京化工研究院、上海石化研究院、中科院化学所、长春应化所、浙江大学、中山大学等一大批研究机构进行了茂金属技术的开发。1996年国家科委又将茂金属聚烯烃的开发列入了“九五”攻关项目。1997年,国家自然科学基金委与原中石化总公司联合资助,将茂金属催化剂的研究又列为重点基金项目分别与中科院化学所、浙江大学、南开大学、吉林大学和华东理工大学等五家单位鉴定了合同。

业内专家指出,可以用新、快、奇、广 4 个字描述当前茂金属聚合物的进展。新,是指茂金属聚合物诞生只有20年,1991 年 Exxon 公司首次合成出了mLLDPE。快,是指经过短短几年,目前全球已有几十套新建和改建的茂金属聚合物生产装置投入生产,至1996年全球茂金属聚烯烃(mPO)树脂生产量已达到86.7万t/a。据催化集团预测,2005年用各种单活性点催化剂制造的PE 年需求量约1180万t,其中60% 使用茂金属催化剂。2015单活性点催化 PE 的需求量将达5亿t。奇和广,则是指茂金属聚合物不仅较传统PO产品性能有大幅度提高,而且部分茂金属聚合物的性能已延伸到传统工程塑料,甚至特种工程塑料性能领域。目前全球对茂金属催化剂、产品及工艺研究的投资大约为6亿美元/a,相当于对聚烯烃工艺催化剂、产品和工艺总投资的 70%~80%。全球茂金属催化剂的累计投资已超过50亿美元。这是因为投资商相信茂金属催化剂,作为继 Z-N 催化剂和高负载型催化剂之后的新一代烯烃聚合催化剂,今后将逐步在现有聚合装置上部分取代传统催化剂。

可以预见,聚烯烃催化剂将进入一个茂金属催化剂与 Z-N 催化剂相互补充共同发展的新时期。另外在茂金属催化烯烃聚合中,MAO是必备的助催化剂。兰州石化公司已建成 MAO中试生产装置。

全世界对茂金属催化剂技术十分重视,茂金属催化剂领域已变得非常拥挤,竞争非常激烈,并组成了战略联合体,以寻求具有更高活性和高选择性,成本较低的催化剂,且获得高性能聚合物。目前已从基础研究向实用化,工业化发展,因此,茂金属催化剂将会得到越来越广泛的应用。

参考文献:

[1] 孙春燕,刘伟,景振华,等.茂金属催化剂载体的应用研究-间规选择性茂金属催化剂的负载化[J].石油炼制与化工,2003, 34(9): 28-31.

[2] 封麟先,葛从新,王立,等.负载型烯烃聚合催化剂载体修饰新方法[J].分子催化, 1998, 12(3): 231-233.

[3] 朱银邦.负载化茂金属催化剂及催化丙烯聚合的研究[J].分子催化, 2002, 6(2): 101-105.

[4] 焦书科,郑莹,烷基铝对球形MgCl2负载的茂金属催化剂催化乙烯聚合的影响[J].高分子学报, 2001, 6: 799-802.

[5] 徐善生,杨柳,范可,等.茂金属催化剂对苯乙烯-丁二烯嵌段共聚物SBS催化加氢的研究[J].高等学校化学学报,2001,22(12):2022-2025.

[6] 孙玉琴.生产IIR的新型催化剂进展[J].橡胶工业,2000,47(2):85-89.

[7] 戴长华,李平凡,秦丽.SBS加氢茂金属催化剂开发动向[J].石油化工动态,1998,6(2):59-63.

[8] 王熙,段晓芳,邱波,等.载体茂金属催化剂的乙烯和丙烯共聚合[J].石油化工,2002,31(2):95-98.

[9] 童建颍,王伟倩.茂金属烯烃的进展[J].化工生产与技术,2004,11(3):29-31.

[10] 向明,张博中,蔡燎原,等. 茂金属催化剂及其烯烃聚合研究进展[J].塑料工业,2003,31(4):1-5.

茂金属催化剂的发展及工业化

专论 综述 弹性体,2003 06 25,13(3):48~52 CHINA EL AST OM ERICS 收稿日期:2002 11 20 作者简介:艾娇艳(1974-),女,湖南,中山大学化学化工学院高分子研究所在读博士。 茂金属催化剂的发展及工业化 艾娇艳1,刘朋生2 (1.中山大学化学与化学工程学院高分子研究所,广东广州 510275;2.湘潭大学化学化工学院,湖南湘潭 411105) 摘 要:讨论了茂金属的发展及其特性,介绍和总结了茂金属聚烯烃的工业化及其最新进展。并从中国茂金属聚烯烃技术发展的实情提出了一些建议。 关键词:茂金属;催化剂;聚烯烃 中图分类号:T Q 314.24 文献标识码:A 文章编号:1005 3174(2003)03 0048 05 茂金属催化剂因其催化活性高、生成的聚合 物相对分子量分布窄、聚合物结构可控、聚合物分子可剪裁等优点,成为继高效载体型催化剂之后的新一代聚烯烃催化剂。茂金属催化剂是90年代初实现工业化的开创性新型催化剂,是90年代聚烯烃技术开发最集中的领域,并正在引起一场聚烯烃工业技术的革命。因此也将直接影响21世纪聚烯烃的基本面貌。目前,世界主要聚烯烃制造商都投入了相当大的人力、物力和财力,加速茂金属催化剂的研究开发及工业化应用速度,并以其生产出新的高附加值、高性能的茂金属聚烯烃。由于茂金属催化剂可以适应现代工业化聚烯烃生产的主要工艺,随着茂金属催化剂成本的降低,其生产的聚烯烃所占的份额会日益增加。1 茂金属的发展史 国外对茂金属的研究可追溯到50年代。1951年Miller 和Pauson 等人首次发现茂金属 二茂铁[1],自此茂金属化合物得到蓬勃发展。随后其他茂金属(茂铬、茂钛、茂锆和茂铪)也制备出来。 1957年,Natta [2] 和Breslow [3]等分别首次引用可溶性的二氯二茂钛(Cp 2T iCl 2)代替TiCl 2与Et 2AlCl 组成的均相催化体系催化乙烯聚合,可以生成聚乙烯,但催化活性不高。 直至1973年,Reichert 和M eyer [4] 首先发现,向CpT i(Et)Cl/AlEtCl 2催化体系加入少量的水, 不但没有使催化剂!中毒?失去活性,反而大大增加了该体系催化乙烯聚合的活性。随后Bres low [5]研究了水对活性不高的催化体系Cp 2T iCl 2/Me 2AlCl 的影响,认为少量的水可以部分水解为Me 2AlCl,形成二聚铝氧烷ClMeAl O AlMeCl,它是较强的lew is 酸,有利于形成对催化乙烯具有高活性的甲基取代产物Cp 2T i(M e)Cl 。 直到80年代初期,茂金属催化剂才真正得到人们的足够重视。1980年W.Kaminsky 和Sinn [6]等人用甲基铝氧烷(MAO)齐聚物与Cp 2ZrMe 2组成催化体系用于乙烯聚合,结果表明催化体系有很高的催化活性(9#106g PE/mol Zr h)。这一划时代的发现,震动了高分子学术界,因为这比当时活性最高的以Mg Cl 2负载的载体催化剂高出几十倍,而且这种均相Zr 催化剂的活性中心的浓度高达100%,而乙烯高效载体催化剂的活性中心的浓度一般只有50%~70%。 另一方面,由于MAO 的发现和新的茂金属催化剂的合成,一批具有新型结构的聚合物应运而生。1984年Brintzinger [7]合成了立体刚性的桥联茂金属催化剂rac Et (Ind)2ZrCl 2和rac (H 4Ind )2ZrCl 2,以及Et (Ind )2T iCl 2和Et (H 4Ind)2T iCl 2,其中Zr 催化剂用MAO 活化后催化丙烯聚合具有很高的立体选择性和催化活性,首次用茂金属催化剂催化丙烯聚合获得了等规聚烯烃。这一发现导致人们用刚性茂金属催化剂对 烯烃的等规聚合进行了更加广泛的研究。此后,大量的桥联茂金属化合物不断涌现,它们都有单一的活性中心和立体选择性。

精细化工的发展

精细化工的发展 班级2015制药工程(兴)学号:2015961019 姓名:陈诗豪 [摘要]精细化工具有高技术含量、高附加值等特点,在国民经济中起着重要作用,对促进经济发展和提高人民生产生活质量具有重要的意义,是当今世界化学工业激烈竞争的焦点。本文主要描述了国内外的精细化工行业的发展现状,简单分析了精细化工发展过程中要优先发展的关键技术及精细化工的发展趋势。 [关键词]精细化工;发展现状;关键技术;趋势 前言 精细化工是当今化学工业中最具活力的新兴领域之一。精细化工产品种类多、用途广,直接服务于国民经济的诸多行业和高新技术产业的各个领域。相对基础原料化学品,精细化工产品资源消耗较少、能耗较小、产品附加值高、抗风险能力较强。大力发展精细化工已成为世界各国调整化学工业结构、提升化学工业产业能级和扩大经济效益的战略重点。精细化工率(即精细化工产值占化工总产值的比例)的高低已经成为衡量一个国家或地区化学工业发达程度和化工科技水平高低的重要标志 一,国内外精细化工发展现状 精细化工的发展起源于上世纪70年代,当时由于传统的煤化工和石油化工的工艺路线和效益不佳,导致德国、美国和日本等国的化工企业开始走精细化的路线。他们致力于专用化工产品的生产,如仿生医疗品、抗癌药物、高效除菌剂和杀菌剂等的生产。 近年来,随着能源危机的出现,环境问题的日益严重,各国纷纷加大了精细化工产业的开发和利用。世界范围内都在试图依靠科技使精细化工生产出更多的能源替代品,以满足经济发展的需求。尤其是发达国家,化工产品的精细化比例不断上升,科技投入的比例不断上升,不断研发新产品,发达国家在发展精细化工方面的另外一个特点是:十分注重科学技术的保护,严格控制技术外流,形成一定的技术垄断,保持精细化工领域的国际发展优势。一些发达国家在发展精细化工的同时,也注意减少三废排放、加强污物处理,环保意识渗透其中,这一点也是值得推崇和学习的,毕竟保护环境是发展一切的前提,而发展精细化工也是为了更好地保护环境[2]。 我国的精细化工发展起步较晚,从上世纪80年代开始起步。从“六五”开始,直至“七五”、“八五”、“九五”、“十五”国民经济发展计划中,我国都把精细化工,特别是新领域精细化工作为发展的战略重点之一,精细化工的地位已在我国得到确立。 在看到成绩的同时,我们也要意识到其中的不足,从总体来看,我国在精细化工产品的质量、产品种类及生产经验、高新技术和设备先进程度方面都与国外存在着非常明显的差距。 二,精细化工发展中要优先发展的关键技术

茂金属聚丙烯_mPP_催化剂的研究开发

茂金属聚丙烯(mPP)催化剂的研究开发 GaUmZ3S$- ?7t11.文章摘要:关键词:茂金属,聚丙烯,催化剂,负载化,工业化 背景14_TC-`Fq聚烯烃是目前世界上最重要的商品聚合物材料之一。在聚烯烃中,聚丙烯(PP)尤为引人注目。PP的性能价格比决定了它具有很强的市场竞争力,它的密度低,成本低,加工性能好,且有利于环境保护,使得PP树脂近年来一直是增长最快的通用塑料。2004年,全球PP的总生产能力比2003年增长约6.0%,预计到...... 1. 背景 聚烯烃是目前世界上最重要的商品聚合物材料之一。在聚烯烃中,聚丙烯(PP)尤为引人注目。PP的性能价格比决定了它具有很强的市场竞争力,它的密度低,成本低,加工性能好,且有利于环境保护,使得PP树脂近年来一直是增长最快的通用塑料。2004年,全球PP 的总生产能力比2003年增长约6.0%,预计到2010年,世界PP的总生产能力将达到约54Mt/a,其中亚洲(不包括日本)将是增长速度最快的地区,年均增长率将达到9.5%。中国是PP需求增长最快的国家,年均增长率将达到10%,需求量将从2004年的7.10Mt增加到2010年的10.80Mt,而产量将从4.70Mt增加到7.50Mt。中国仍将是世界最主要的PP消费国家之一。[1] PP树脂的高速增长主要分布于以下几个方面:(1)经济的一般性增长和开辟新的应用领域;(2)替代其它热塑性塑料;(3)替代其它材料(如玻璃、纸、金属材料)。 2. 均相茂金属催化剂概述 催化剂是推动PP技术发展的主要动力。以往生产聚丙烯的催化体系为Ziegler - Natta催化体系,近二十多年来出现了高活性茂金属催化丙烯聚合体系。在助催化剂MAO存在下,几乎所有IV族的茂金属催化剂都对丙烯聚合有活性,催化剂结构不同,聚合行为和产物聚丙烯的结构也不相同。 具有C2v对称结构的非桥联茂金属(如Cp2ZrCl2)产生无规聚丙烯,聚合活性和聚丙烯的分子量很低;[5] 而桥联C2v对称茂金属催化剂(如Me2Si(9-Flu)2ZrCl2)可以产生高分子量的无规聚丙烯,这种聚合物可用作弹性体。[6] 桥联rac-C2对称茂金属(即为外消旋催化剂,如rac-Me2Si(2-Me-4-Ph-Ind)2ZrCl2)可产生等规聚丙烯,通过对配体的修饰,可以提高聚合活性、聚丙烯的等规度和分子量。[7-10] 桥联meso-Cs对称茂金属(即为内消旋催化剂,如meso-Me2SiInd2ZrCl2)产生无规聚丙烯,聚合产物高度无规,并具有高度的方向规整性。 [11] 桥联Cs对称茂金属(如Me2Si(Cp)(9-Flu)ZrCl2)在苛刻条件下可得到间规聚丙烯。[12] 桥联C1对称茂金属(如Me2Si(RCp)(9-Flu)ZrCl2)则可得到半等规的聚丙烯。[13] 一种非桥联茂金属被报道可以用来生产全同-无规立体嵌段聚丙烯(如(PhInd)2ZrCl2)。[14,15]

精细化工论文

精细化工论文 国内外精细化工现状及发展趋势 摘要: 概述了国内外精细化工的发展趋势及技术创新,并提出了我国精细化工需要解决的主 要问题和今后的发展。 关键词:精细化工,发展创新,趋势。 Fine chemicalindustry at home and abroad currentsituation and development trend Kong ling wei Abstract: Overview of the fine chemical industry at home and abroad and the development trend of the technology innovation, and put forward China's fine chemical industry need to solve problems and future development. Key words: Fine chemical ,Development and innovation ,Trend. 引言: 化学工业的发展过程是人类利用自然资源逐步深人的过程,即由初级加工逐步向 深度加工发展,即由初级加工逐步向深度加工发展,由一般加工逐步向精细加工发展,由主要生产大批量通用的基础材料逐步向既生产基础材料又生产小批量多品种的专用产品发展的过程。精细化工是以高新技术为基础,以市场需求为导向,以产品具有特定功附加价值高、小批量、多品种、系列化为特点的化学工业。我国的精细化工行业已有较好的基础和一定的生产规模,大部分产品已基本能满足国内市场的需求,有的还有相当数量的出口。但是我国精细化工行业与国外同行业相比,还有很大的差距,还需要不断的开创新的工业技术。 1 世界精细化工总体发展态势 世界精细化工总体发展态势综观近20多年来世界化工发展历程,各国、尤其是美国、欧洲、日本等化学工业发达国家及其著名的跨国化工公司,都十分重视发展精细化工,把精细化工作为调整化工产业结构、提高产品附加值、增强国际竞争力的有效举措,世界精细化工呈现快速发展态势,产业集中度进一步提高[1]。进入21世纪,世界精细化工发展的显著特征是:产业集群化,工艺清洁化、节能化,产品多样化、专用化、高性能化。受损细菌恢复的缺陷,故适用于实验室、生产现场和野外环境工作使用。 1.1 生产现状 国际石化工业以处于技术相对成熟的阶段,生产经营竞争激烈,导致利润明显下降。 国外大型炼化企业从两方面努力追求投资回报。一是致力于生产如千万吨的炼油装置、百万吨级装置规模大型化,乙烯装置、数十万吨级的基本原料装置,以追求规模效益,力求降低成本;二是利用其技术优势,集中力量,加快产品结构调整的步伐在石油化工高度发展的基础上,积极开展石油化工的。1深度加工及裂解产物(C4、C5、 C9、C10等)的综合利用,致力于中小吨位有机原料和精细化学品的生产,依靠技术保持效益。1997年全球化学工业的销售额约15000亿美元,1986年为300亿美元,年均增长率为6﹪。精细化学品产值为 450-500亿美元,比1986年的140亿美元增长近3倍,年均增长率为12%。专业化学品的发展也很快,已由1986年的900亿美元上升到1996年的约2400亿美元,年均增长率约10%。由此可见,精细和专用化学品的生产是国际化学工业发展的重点[2] 。 1.2 发展趋势 以大型石化装置为龙头发展精细化工,在精化工生产成本中,原料所占比例极低。大型石化企业可以对产品进行深加工,生产出下游产品,直接投向市场,另外,对副产品进行综合利

国内外精细化工发展现状趋势

国内外精细化工发展现状趋势精细化工是当今化学工业中最具活力的新兴领域之一,是新材料的重要组成部分。 精细化工产品种类多、附加值高、用途广、产业关联度大,直接服务于国民经济的诸多行业和高新技术产业的各个领域。 大力发展精细化工已成为世界各国调整化学工业结构、提升化学工业产业能级和扩大经济效益的战略重点。 精细化工率(精细化工产值占化工总产值的比例)的高低已经成为衡量一个国家或地区化学工业发达程度和化工科技水平高低的重要标志。 一、世界精细化工总体发展态势综观近20多年来世界化工发展历程,各国、尤其是美国、欧洲、日本等化学工业发达国家及其着名的跨国化工公司,都十分重视发展精细化工,把精细化工作为调整化工产业结构、提高产品附加值、增强国际竞争力的有效举措,世界精细化工呈现快速发展态势,产业集中度进一步提高。 进入21世纪,世界精细化工发展的显着特征是:产业集群化,工艺清洁化、节能化,产品多样化,专用化、高性能化。 1精细化学品销售收入快速增长,精细化率不断提高上世纪九十年代以来,基于世界高度发达的石油化工向深加工发展和高新技术的蓬勃兴起,世界精细化工得到前所未有的快速发展,其增长速度明显高于整个化学工业的发展。

近几年,全世界化工产品年总销售额约为万亿美元,其中精细化学品和专用化学品约为3800亿美元,年均增长率在5~6%,高于化学工业2~3个百分点。 预计至2017年,全球精细化学品市场仍将以6%的年均速度增长。 2017年,世界精细化学品市场规模将达到4500亿美元。 目前,世界精细化学品品种已超过10万种。 精细化率是衡量一个国家和地区化学工业技术水平的重要标志。 美国,西欧和日本等化学工业发达国家,其精细化工也最为发达,代表了当今世界精细化工的发展水平。 目前,这些国家的精细化率已达到60~70%。 近几年,美国精细化学品年销售额约为1250亿美元,居世界首位,欧洲约为1000亿美元,日本约为600亿美元,名列第三。 三者合计约占世界总销售额的75%以上。 2加强技术创新,调整和优化精细化工产品结构加强技术创新,调整和优化精细化工产品结构,重点开发高性能化、专用化、绿色化产品,已成为当前世界精细化工发展的重要特征,也是今后世界精细化工发展的重点方向。 以精细化工发达的日本为例,技术创新对精细化学品的发展起到至关重要的作用。

-----中国精细化工的现状和发展前景

-----中国精细化工的现状和发展前景

中国精细化工的现状和发展前景摘要:阐述了中国传统精细化工和新领域精细化工的现状,对今后的发展进行了预测。 关键词:精细化工;现状;发展;预测 Abstract:Expounding the present condition of the traditional and new field fine chemical industry as well as prospect of the development of the fine chemical industry from now on in China. Key words:fine chemical industry;present condintion;development; forecast 一、中国精细化工的定义 中国和日本把产量小、组成明确,可按规格说明书进行小批量生产和小包装销售的化学品,以及产量小,经过加工配制,具有专门功能,既按其规格说明书,又根据其使用效果进行小批量生产和小包装销售的化学品,统称为精细化学品。而欧美一些国家把前者称为精细化学品,把后者称为专用化学品。精细化学品起到“工业味精”、“工业催化剂”、和其他特殊功能的作用。 中国把生产精细化学品的工业称为精细化学工业,简称精细化工。精细化工生产过程与一般化工(通用化工)生产不同,它是由化学合成(或从天然物质中分离、提取)、精制加工和商品化等三个部分组成,大多以灵活性较大的多功能装置和间歇方式进行小批量生产,化学合成多数采用液相反应、流程长、精制复杂、需要精密的工程技术;从制剂到商品化需要一个复杂的加工过程,主要是迎合市场要求而进行复配,外加的复配物愈多,产品的性能也愈复杂。因此,精细化工技术密集程度高、保密性和商品性强、市场竞争激烈。必须要根据市场变化的需要及时更新产品,做到多品种生产,使产品质量稳定,还要符合各种法规,做好应用和技术服务,才能培育和争取市场、扩大销路,才能体现出投资省、利润率和附加价值率高的特点。 1987年,原化学工业部对中国的精细化品颁布了一个暂行规定,将中国的精细化学品分为农药、染料、涂料(包括油漆和油墨)、颜料、试剂和高纯物、信息用化学品(包括感光材料和磁性记录材料)、食品和饲料添加剂、粘合剂、

茂金属催化剂的合成资料

本科课程论文 《茂金属催化剂的合成简述》 课程名称高等有机化学 姓名梁腾辉 学号 1014122020 专业高分子材料科学与工程 任课教师程琳 开课时间 教师评阅意见: 论文成绩评阅日期 课程论文提交时间:年月日

茂金属催化剂的合成简述 摘要简要介绍了几种茂金属催化剂的有机合成以及其催化机理。 关键词茂金属催化剂合成催化 1 前言 烯烃聚合用茂金属催化剂通常指由茂金属化合物作为主催化剂和一个路易斯酸作为助催化剂所组成的催化体系,其催化聚合机理现已基本认同为茂金属与助催化剂相互作用形成阳离子型催化活性中心。茂金属催化剂一般指由过渡金属元素(如IV B 族元素钛、锆、铪)或稀土金属元素和至少一个环戊二烯或环戊二烯衍生物作为配体组成的一类有机金属配合物。茂金属催化剂具有极高的活性特别是茂锆催化剂含一克锆的均相茂金属催化剂可以催化100t的乙烯聚合但同时助催化剂的用量也是相当大的甚至Al/Zr>2000这在生产中意义不大。因此必须想法设法得倒活性高助催化剂用量少的茂金属催化剂[1]错误!未找到引用源。。 2 茂金属催化机理 均相茂金属催化剂主要分为非桥联单茂金属催化剂、非桥联双茂金属催化剂、桥联型茂金属催化剂、限制几何构型茂金属催化剂以及双核茂金属催化剂等。若茂金属催化剂以烷基铝氧烷为助催化剂,其催化机理是一个形成单一阳离子活性中心的机理。在茂金属催化体系中,一般要求助催化剂MAO必须达到一定的浓

度,以便能够引发催化反应的进行[2]错误!未找到引用源。。其机理如下图所示:3 茂金属的合成 金属有机化合物的制备和处理操作都采用Schlenk 技术,在氮气氛围条件下进行无水无氧操作,所用玻璃反应容器都进行真空烘烤干燥。四氢呋喃、乙醚、甲苯,在氮气氛围下以钠、钾合金/二苯甲酮回流至溶液变成紫色,并在氮气保护下蒸出,封口备用。二氯甲烷、正已烷、石油醚(60 ~ 90°C),在氮气保护下与CaH粉末混合,搅拌回流两天后,在氮气氛围下蒸入安瓶中封口备用[3]错误!未找到引用源。。 3.1 非桥联五甲基环戊二烯水杨醛亚胺铬化合物的合成(非桥联单茂) 此类催化剂结构特征是有一个茂环作为配体:Cp.MR3(CP.=取代环戊二烯基等;M=Zr,Ti,Hf,Cr等;R=卤素、烷基、Oar、RNAr等)这类催化剂具有较大的配位空间,有利于具有较大位阻的烯烃单体的配位插入,但对于构型的控制一般较差[3]。 3.2二甲基二茂锆化合物(1,2-Phz-4-MeCp)2 ZrMe2的合成 两个茂环与中心金属原子配位,从而形成夹心结构,即所谓的非桥联双茂金属催化剂。该系列催化剂用于催化乙烯聚合,由于乙烯配位插入时不存在潜手性α

我国精细化工发展现状与趋势

我国精细化工发展现状与趋势 1 、精细化工的特点 中国把生产精细化学品的工业称为精细化学工业, 简称精细化工。近来有些国家专家们对精细化学产品的定义又有了一些新的见解, 如欧、美等国家把产量小, 按不同化学结构进行生产和销售的化学品称作精细化学品精细化工生产过程与一般化工(通用化工)生产不同,它是由化学合成(或从天然物质中分离、提取)、精制加工和商品化等三个部分组成, 大多以灵活性较大的多功能装置和间歇方式进行小批量生产,化学合成多数采用液相反应、流程长、精制复杂、需要精密的工程技术;从制剂到商品化需要一个复杂的加工过程,主要是迎合市场要求而进行复配,外加的复配物愈多,产品的性能也愈复杂。因此,精细化工技术密集程度高、保密性和商品性强、市场竞争激烈。必要根据市变化的需要及时更新产品,做到多品种生产,使产品质量稳定,还要符合各种法规,做好应用和技术服务,才能培育和争取市场、扩大销路,才能体现出投资省、利润率和附加价值率高的特点。 20 世纪 80 年代,中国又把那些还未形成产业的精细化工门类称为新领域精细化工。它们是饲料添加剂、食品添加剂、表面活性剂、水处理化学品、造纸化学品、皮革化学品、胶粘剂、生物化工、电子化学品纤维素衍生物、聚丙烯酰胺、现烯酸及其酯、气雾剂等。并把精细化工行业的产值怀化工行业总产值的比率称为精细化工率,以此表征中国精细化工发展的程度。这与世界精细化工率的含义相同。目前,世界发达国家精细化工率已达 50%以上, 日本的精细化工率最高,现已超过 60%。 2、我国精细化工的发展现状及存在的问题 就总量而论,我国已成为世界上主要的精细化工产品生产国之一:染料产量已稳居世界第一位,农药居第二位,涂料居第四位;总体精细化工率已达 40% 左右。各类精细化工产品不仅能基本满足国民经济发展的需要,而且许多产品在国际市场上已占有相当份额,有的甚至占有举足轻重的地位。 特别值得提出的是,我国精细化工已经初步走上了按照国情进行技术开发和创新的道路。我国产学研技术开发和产业化一体化有了迅速的发展,许多企业不断强化了自己的开发机构。随着社会主义市场经济体制的发展,民间科研机构也得到了蓬勃的发展。 在此期间,我国精细化工取得了许多重大成果。譬如:上海农药研究所采用气升式发酵培养易沉降的产酶细胞和游离细胞水合催化工艺,使我国现有的生物法丙烯酞胺生产获得了重大突破,具有产酶率高、转化率高。产品质量好,单耗低等优点,已明显居于世界领先地位,预期将迅速推广,对我国石油三次开采以及污水处理等领域产生巨大影响,再如我国生物法长链二元酸生产技术也获得了重大进展,其生产量居世界第一位,生产技术远比国外先进。继十二碳、十三碳二元酸产业化成功之后,十五、十六碳二元酸也已开发成功,这是极有前途的精细化工产品,在加大下游产品开发力度的基础上,将发展成为重要的精细化工领域。在稀土深加工利用方面,新的成果不断涌现。其中长余晖业的

茂金属催化剂专利技术综述

茂金属催化剂专利技术综述 文章主要围绕茂金属催化剂展开讨论,针对茂金属催化剂的性能及结构特点进行了简要分析,并对茂金属催化剂的技术发展过程进行了系统化梳理,除此之外对茂金属催化剂的相关专利申请也进行了简要分析。 标签:茂金属;聚烯烃;催化剂;技术 烯烃聚合用茂金属催化剂通常指由茂金属化合物作为主催化剂和一个路易斯酸作为助催化剂所组成的催化体系。茂金属化合物一般指由过渡金属元素(如IVB族元素钛、锆、铪)或稀土金属元素和至少一个环戊二烯或环戊二烯衍生物作为配体组成的一类有机金属配合物,常用的配体有环戊二烯基、茚基、芴基等。助催化剂是茂金属催化剂的重要组成部分,主要是指能协助茂金属化合物形成催化活性体的化合物,如烷基铝氧烷或有机硼化合物[1-3]。 茂金属催化剂与一般传统的Ziegler-Natta催化剂比较具有如下特点: (1)活性中心较为单一 活性中心相对单一是茂金属催化剂的主要特性,聚合物单体一般只能进入其受限的金属原子催化剂活性点,由于活性一致,分子量、共聚单体含量以及分子量分布、主链分布、晶体结构等控制相对精密,从而得到的茂金属聚合物的立构规整性相对较高,分子量分布相对较窄。 (2)催化共聚合能力较高 该催化剂的催化共聚合能力相对较高,可以令乙烯同大多数共聚单体发生聚合反应,从而获得新型材料。 (3)可控性较高 在该催化物作用下可以使α-烯烃单体发生聚合反应,得到聚合物立构规整度极高,并且可以对聚合过程进行精确控制,可以进行结构性能均匀聚合物的连续生产,并且由于可控性高,因此可以根据用户要求对产品性能进行精确设计。 由于该催化剂的性能优势,伴随着茂金属催化剂的工业化和石油化工行业的发展,该催化剂对聚合物生产开发的影响力越来越大,逐步成为行业技术研发的主要方向。 经过对茂金属催化剂有关的专利申请进行统计,其随年份的变化趋势如图1所示。从图1中可以看出,茂金属催化剂的发现始于20世纪50年代初期,早期,虽然有关茂金属催化剂的研究一直在进行,但发展缓慢,一直未得到足够重视。而在上世纪八十年代中期,该技术的开发应用才有了突破进展,并得到了一定的

精细化工论文

精细化工论文 学 院 化学化工学院 专 业 化学类 年 级 2005级化学教育二班 姓 名 廉洛仓 论文题目 精细化工的现状和前景展望 指导教师 方林霞 职称 副教授 2009年5月16日 学号:

目录 摘要 (3) 关键词 (3) Abstract (3) Keywords (3) 前言 (3) 1.我国精细化工的现状 (3) 2.国内外精细化工的发展趋势 (5) 2.1电子化学品 (5) 2.2食品添加剂 (5) 2.3饲料添加剂 (5) 2.4皮革化学品 (5) 2.5造纸化学品 (5) 2.6胶粘剂 (6) 2.7水处理化学品 (6) 2.8生物化工 (6) 2.9表面活性剂 (6) 3.我国精细化工的发展前景展望 (6) 参考文献 (7)

精细化工的现状和前景展望 学生姓名:廉洛仓学号:20050504071 化学化工学院化学专业 指导教师:朱建君职称:讲师 摘要:概述当前精细化工的范畴和部分精细化学用品的发展状况,介绍了我国精细化工的现状和国内外精细化工的发展趋势,指出21世纪中国的精细化工将会有一个飞速的发展,并将对我国国民经济的发展起到巨大的推动作用。 关键词:精细化工;化学工业;现状;发展趋势 Abstract: This paper summarizes the scope of the current fine chemicals and fine chemicals part of the development of products, introduced the current situation of China's fine chemical industry and domestic and international trends in the development of fine chemicals, pointing out that the 21st century will be China's fine chemical industry in the development of a rapid and the development of China's national economy played a huge role in promoting. Keywords: fine chemicals; chemical industry; the status quo; development trend 前言 精细化工产品在国民经济各个行业发展中起着十分重要的作用[1]。在世纪之交之际,精细化工的作用变得越来越重要。目前一些发达国家都将精细化工的发展作为化学工业结构调整的战略重点,从新产品开发到应用研究,投入大量的人力,物力,其精细化工率已达到55%–65%,尤其是生命科学(包括医药,农药,营养品,生物工程等)的发展倍受重视[2]。精细化工的发展水平代表一个国家的工业发展水平,更代表化学工业的发展水平[3]。 1.我国精细化工的现状 精细化工是生产精细化学品工业的通称,简称“精细化工”。精细化学品的含义,原指产量小、纯度高、价格贵的化工产品,如医药、染料、涂料等[4]。但是,这个含义还没有充分揭示精细化学品的本质。近年来,各国专家对精细化学品的定义有了一些新的见解,欧美一些国家把产量小、按不同化学结构进行生产和销售的化学物质,称为精细化学品;把产量小、经过加工配制、具有专门功能或最终使用性能的产品,称为专用化学品。中国、日本等则把这两类产品统称为精细化学品[5]。但从总体上看

茂金属催化剂催化烯烃聚合反应研究的综述

关于“茂金属催化剂催化烯烃聚合反应研究”的文献检索综述 摘要:本文综述了近年来带有给电子配体的单茂金属化合物应用于烯烃聚合的研究。带有给电子配体的单茂金属化合物是目前烯烃配位聚合催化剂的研究热点之一。作为新型的聚合催化剂, 这类催化剂具有合成简单、结构清晰的特点, 用于催化烯烃聚合, 可得到高聚合活性, 同时得到高分子量聚合物。用于共聚时, 具有很好的共聚能力。通过共聚, 可以得到用Ziegler2Natta 催化剂和传统茂金属催化剂不能得到的新的共聚物。通过调整催化剂上茂配体和给电子配体的结构, 可以方便地调节聚合行为, 从而调整聚合物的结构。文中涉及了乙烯、A2烯烃的均聚与共聚, 乙烯与环烯烃共聚合等方面的研究。 关键词单茂金属烯烃聚合给电子配体共聚合 Abstract The present article reviews the recent progress of metallocene with donor ligand( s) as catalyst for olefin polymerization. Metallocene with donor ligand( s) is an important type of catalyst for olefin polymerization, and attracts more and more attentions. As a novel type of polymerization catalyst, the complexwith clear structure could be synthesized in simple procedure. Using as catalyst for olefin polymerization, high activity is available, and affording polymer with high molecular weight. For olefin copolymerization, excellent copolymerization ability could be observed, and some of the obtained copolymers could not be produced by Ziegler2Natta catalyst and traditional metallocene catalyst systems. Polymerization behavior and polymer structure could be adjusted through balancing the structures of cyclopentadienyl ligand and donor ligand. The homo2 and co2polymerization of ethylene and A2olefin, copolymerization of ethylene and cyclic olefin, and styrene polymerization are involved. Key words metallocene; olefin polymerization; copolymerization 聚烯烃是日常生活中最重要的合成聚合物材料,传统材料如聚乙烯(HDPE,LLDPE)、聚丙烯(PP)市场还在不断扩张。近年来,具有新型功能、高附加值的聚烯烃材料逐渐引起研究人员的关注。因为新型材料具有高性能、易于回收、污染小、成本低等特点,如环烯烃共聚物(COC)、乙烯2苯乙烯共聚物等,可取代传统上高成本的材料。过渡金属催化剂可以有效地控制配位聚合。从传统的Ziegler2Natta催化剂到茂金属催化剂,到非茂金属和后过渡金属催化剂来看,烯烃聚合发展的历史就是烯烃聚合催化剂发展的历史。可以说,催化剂技术是聚烯烃工业的命脉。另一方面,烯烃聚合催化剂的发展也促进了催化化学和金属有机化学的基础研究。20世纪80年代以来茂金属催化剂的研究充分说明了这一点。[1]与传统的Ziegler2Natta催化剂相比,茂金属和其他均相催化剂(非茂金属和后过渡金属催化剂)具有更优良的聚合行为,可以赋予聚合材料独特的结构和性能。[1][2]许多高成本和高毒性的材料可以用低成本,环境友好和易于回收的聚烯烃材料代替。 设计新型的有效烯烃聚合过渡金属催化剂必须考虑到一下几点:聚合活性、聚合物分子量及分子量分布、共聚合能力等。配体是设计新型催化剂的关键。配体结构的微小变化可能会引起催化剂性能的巨大变化。一般来说,配体的立体效应、电子效应及其所造成的催化剂构型对催化剂性能有重要影响。所以要精心平衡配体的各种因素,实现烯烃的可控聚合。配体设计主要有以下几个原则:(1)配体与过渡金属作用后,可以形成高效、广谱的烯烃聚合催化剂。(2)配体易于制备。简单的合成路线合和廉价的原料不仅使研究周期短,同时也可以降低研究成本,有利于后期可能的工业应用。更重要的是,简单的和成路线允许方便有效的调整配体上的取代基团,从而平衡络合物中的立体和电子效应,达到可控聚合的目的。(3)

国内外精细化工发展现状趋势

国内外精细化工发展现状趋势 精细化工是当今化学工业中最具活力的新兴领域之一,是新材料的重要组成部分。 精细化工产品种类多、附加值高、用途广、产业关联度大,直接服务于国民经济的诸多行 业和高新技术产业的各个领域。 大力发展精细化工已成为世界各国调整化学工业结构、 提升化学工业产业能级和扩大经济 效益的战略重点。 精细化工率(精细化工产值占化工总产值的比例)的高低已经成为衡量一个国家或地区化 学工业发达程度和化工科技水平高低的重要标志。 一、世界精细化工总体发展态势综观近 20 多年来世界化工发展历程,各国、尤其是美国、 欧洲、日本等化学工业发达国家及其著名的跨国化工公司,都十分重视发展精细化工,把精细 化工作为调整化工产业结构、提高产品附加值、增强国际竞争力的有效举措,世界精细化工呈 现快速发展态势,产业集中度进一步提高。 进入 21 世纪,世界精细化工发展的显著特征是:产业集群化,工艺清洁化、节能化,产 品多样化,专用化、高性能化。 1 精细化学品销售收入快速增长,精细化率不断提高上世纪九十年代以来,基于世界高度 发达的石油化工向深加工发展和高新技术的蓬勃兴起,世界精细化工得到前所未有的快速发 展,其增长速度明显高于整个化学工业的发展。 近几年,全世界化工产品年总销售额约为 1.5 万亿美元,其中精细化学品和专用化学品约 为 3800 亿美元,年均增长率在 5~6%,高于化学工业 2~3 个百分点。 预计至 2017 年,全球精细化学品市场仍将以 6%的年均速度增长。 2017 年,世界精细化学品市场规模将达到 4500 亿美元。 目前,世界精细化学品品种已超过 10 万种。 精细化率是衡量一个国家和地区化学工业技术水平的重要标志。 美国,西欧和日本等化学工业发达国家,其精细化工也最为发达,代表了当今世界精细化 工的发展水平。 目前,这些国家的精细化率已达到 60~70%。 近几年, 美国精细化学品年销售额约为 1250 亿美元, 居世界首位, 欧洲约为 1000 亿美元, 日本约为 600 亿美元,名列第三。 三者合计约占世界总销售额的 75%以上。 2 加强技术创新,调整和优化精细化工产品结构加强技术创新,调整和优化精细化工产品 结构,重点开发高性能化、专用化、绿色化产品,已成为当前世界精细化工发展的重要特征, 也是今后世界精细化工发展的重点方向。 以精细化工发达的日本为例,技术创新对精细化学品的发展起到至关重要的作用。 过去 10 年中,日本合成染料和传统精细化学品市场缩减了一半,取而代之的是大量开发 功能性、绿色化等高端精细化学品,从而大大提升了精细化工的产业能级和经济效益。

茂金属催化剂的研究进展及发展趋势

茂金属催化剂的研究进展 及发展趋势 Last revision on 21 December 2020

茂金属催化剂的研究进展及发展趋势 近几年出现了一种新型聚合催化剂,称为茂金属催化剂,应用此催化剂可以生产出具有新物理性能的塑料。茂金属聚烯烃就是以茂金属配位化合物为催化剂,进行烯烃聚合反应所制的的聚合物。茂金属聚合物加工性能好、强度高、刚性和透明性好,耐温,耐化学药品等方面的性能得到了显着的改善,许多用传统催化剂难以合成的材料,在采用茂金属催化技术后变得容易进行。在烯烃聚合物合成中茂金属催化剂正在替代传统催化剂。茂金属催化剂在全球增长非常迅速,具有广阔的应用和市场前景。 一、茂金属催化剂简介 茂金属催化剂是由过渡金属锆(Zr)(也可是钛等)与两个环戊二烯基或环戊二烯取代基及两个氯原子(也可是甲基等)形成的有机金属络合物和助催化剂甲基铝氧烷 (MAO,Methylalummoxane)组成的。其中具有环戊二烯基的有机金属络合物亦称茂金属化合物(Metallocene),中文称环戊二烯。 金属催化剂一般由有机金属络合物、助催化剂、载体三个组分组成。在溶液聚合中不需要载体,有机金属络合物是由过渡金属与各种有机物取代基相结合构成的,其占催化剂的质量分数为1%-2%。助催化剂通常为铝氧化物和氟化有机硼酸盐混合物,具有强化过渡金属系统的作用,与有机金属络合物相比,常常被过量应用。茂金属催化剂的活性是齐格勒一纳塔型催化剂的2-5倍。 现在很多茂金属催化剂被深人研究和充分利用。具有一个以金属为中心的催化剂不同于具有多个中心的传统催化剂(如齐格勒一纳塔催化剂、铬催化剂、钒催化剂),茂金属催化剂的金属催化活性中心处于闭合的空间中,到达其单体的同结构的聚合物。所形成的聚合物提高了强度、硬度、透明度和轻便性。除此之外,可以在更廉价的生产工艺中获得具有指定性能的专用塑料,包括结构塑料。 二、茂金属催化剂的性能特点 茂金属催化剂的性能特点有: (1)超高活性。以过渡金属计,其活性大约相当于氯化镁载体类催化剂的10倍以上。 (2)相对分子质量及组成分布极窄,其Mw[ TX- ] /Mn [ TX-]一般都可低于2(理论值为1),而用钛基齐格勒一纳塔催化剂时,则为3-8;用铬催化剂时则为8-30组成分布也很均匀,如共聚单体宏观质量分数为10%的极低密度聚乙烯,每个分子链中,其共聚单体的

茂金属催化剂

茂金属催化剂 1.1 茂金属催化剂 早期聚乙烯催化剂是不含金属组分的空气(氧)或过氧化物,同时也不用溶剂。所得聚乙烯质地最纯,加工性能、制品的柔软性和透明性都是其它聚乙烯产品所不能取代的。这是聚烯烃生产中唯一不用催化剂的品种。不过由于能耗和市场等原因,近年来的发展速度已经落后于其它品种。 目前应用较多的催化剂称为“过渡金属催化聚合”,是指主催化剂中含有过渡金属元素的催化体系,过渡金属元素则以钒和钛为主。这类催化剂体系的首创者为德国的 Karl Ziegler和 Giulio Natta,他们曾经因此而获得1963年诺贝尔化学奖,所以通称为Ziegler-Natta催化剂。 由茂金属和助催化剂组成的烯烃聚合催化剂。与常用的齐格勒催化剂相比,具有更高的活性(工业生产上常以每单位容积(或质量)催化剂在单位时间内转化原料反应物的数量来表示,如每立方米催化剂在每小时内能使原料转化的千克数)。茂金属催化剂的代表性基本结构是茂,茚,芴的金属化合物,助催化剂主要有甲基铝氧,如二环戊二烯基二氯合锆[bis(cyclopenta-dienyl) zirconium dichloride]与甲基铝氧(CH3AlO)组成的催化剂用于乙烯聚合,活性比齐格勒催化剂高数十倍。 相对传统Ziegler-Natta催化剂,茂金属催化剂有4个显著的特征: (1)单活性中心优势:因为它的金属原子一般都处在受限制的环境条件下,只允许聚合单体单个进入催化活性点上,因此,它可以形成比较整齐一致而且可以重复制取的聚合物结构,分子量分布和组成分布窄,可生产极均一的均聚物和共聚物。 (2)单体选择优势,能使任何a-烯烃单体聚合。 (3)立体选择优势,能使用a-烯烃聚合生成立构规整度极高的等规或间规聚合物。 (4)可以控制聚合物中乙烯基的不饱和度,可以严格控制聚合过程,使其能持续生产均匀一致的聚合物。 目前茂金属催化剂技术已经成为全球性聚烯烃领域新的开发方向,其相对于目前主流Ziegler-Natta催化剂优势极为明显。 1.2 茂金属烯烃聚合物 茂金属烯烃聚合物是一代新型树脂,以茂金属配位化合物为催化剂,进行烯烃聚合反应所制得,以下均简称茂金属聚烯烃。相比传统的Ziegler-Natta工艺,茂金属烯烃聚合工艺具有更高的灵活性和可控性,广泛应用在弹性体、通用塑料、工程塑料、玻璃、纸以及部分金属中,具有良好的市场前景,部分茂金属聚合物的性能甚至已经延伸到特种工程塑料性能领域,并有逐渐替代普通聚烯烃材料的趋势和潜能。 目前世界范围内已开发的茂金属材料品种繁多,主要有:茂金属聚乙烯(m-PE)、茂金属聚丙烯(m-PP)、茂金属乙丙橡胶(m-EPDM)、茂金属塑性体(POP)、茂金属弹性体(POE)、茂金属聚苯乙烯(m-PS)、茂金属环烯烃共聚物(COC)等。

国内外精细化工发展现状趋势

国内外精细化工发展现状趋势 精细化工是当今化学工业中最具活力的新兴领域之一,是新材料的重要组成部分。 精细化工产品种类多、附加值高、用途广、产业关联度大,直接服务于国民经济的诸多行业和高新技术产业的各个领域。 大力发展精细化工已成为世界各国调整化学工业结构、提升化学工业产业能级和扩大经济效益的战略重点。 精细化工率(精细化工产值占化工总产值的比例)的高低已经成为衡量一个国家或地区化学工业发达程度和化工科技水平高低的重要标志。 一、世界精细化工总体发展态势综观近20多年来世界化工发展历程,各国、尤其是美国、欧洲、日本等化学工业发达国家及其着名的跨国化工公司,都十分重视发展精细化工,把精细化工作为调整化工产业结构、提高产品附加值、增强国际竞争力的有效举措,世界精细化工呈现快速发展态势,产业集中度进一步提高。 进入21世纪,世界精细化工发展的显着特征是:产业集群化,工艺清洁化、节能化,产品多样化,专用化、高性能化。 1精细化学品销售收入快速增长,精细化率不断提高上世纪九十年代以来,基于世界高度发达的石油化工向深加工发展和高新技术的蓬勃兴起,世界精细化工得到前所未有的快速发展,其增长速度明显高于整个化学工业的发展。 近几年,全世界化工产品年总销售额约为1.5万亿美元,其中精细化学品和专用化学品约为3800亿美元,年均增长率在5~6%,高于化学工业2~3个百分点。

预计至2017年,全球精细化学品市场仍将以6%的年均速度增长。 2017年,世界精细化学品市场规模将达到4500亿美元。 目前,世界精细化学品品种已超过10万种。 精细化率是衡量一个国家和地区化学工业技术水平的重要标志。 美国,西欧和日本等化学工业发达国家,其精细化工也最为发达,代表了当今世界精细化工的发展水平。 目前,这些国家的精细化率已达到60~70%。 近几年,美国精细化学品年销售额约为1250亿美元,居世界首位,欧洲约为1000亿美元,日本约为600亿美元,名列第三。 三者合计约占世界总销售额的75%以上。 2加强技术创新,调整和优化精细化工产品结构加强技术创新,调整和优化精细化工产品结构,重点开发高性能化、专用化、绿色化产品,已成为当前世界精细化工发展的重要特征,也是今后世界精细化工发展的重点方向。 以精细化工发达的日本为例,技术创新对精细化学品的发展起到至关重要的作用。 过去10年中,日本合成染料和传统精细化学品市场缩减了一半,取而代之的是大量开发功能性、绿色化等高端精细化学品,从而大大提升了精细化工的产业能级和经济效益。 例如,重点开发用于半导体和平板显示器等电子领域的功能性精细化学品,使日本在信息记录和显示材料等高端产品领域建立了主导地位。

相关文档
最新文档