基于UGGrip的船用螺旋桨三维建模关键技术

基于UGGrip的船用螺旋桨三维建模关键技术
基于UGGrip的船用螺旋桨三维建模关键技术

第35卷 第4期大连海事大学学报Vol.35 N o.4 2009年11月Journal of Dalian Maritime University N ov., 2009

文章编号:1006-7736(2009)04-0121-03

基于UG Grip的船用螺旋桨三维建模关键技术

程 东1,朱新河1,邓金文2

(1.大连海事大学轮机工程学院,辽宁大连 116026; 2.中国船级社广州分社,广州 510000)

摘要:为建立精确的船用螺旋桨三维模型,采用UG Grip二次开发技术探讨了船用螺旋桨三维建模的关键技术,实现了对桨叶叶尖、导(随)边缘过渡、防鸣音随边、根部过渡等关键部位的合理处理,建立了精确的三维螺旋桨模型.

关键词:船用螺旋桨;三维模型;UG G rip;防鸣音

中图分类号:U664.31 文献标志码:A

Key technologies for3D modeling of marine

propeller based on UG Grip

CHENG Dong,ZHU Xin-he,DENG Jin-wen

(1.Marine Eng ineering College,Dalian M aritime University,

Dal ian116026,China;2.Guangzhou B ranch,China Classification

Society,Guangzhou510000,China)

A bstract:T o establish a precise3D model of marine propeller, the key technolo gies fo r3D modeling of marine propeller were studied by using UG G rip seco ndary development,and a precise 3D model with co rrect treatment of blade tip,fillets of leading edge and trailing edge,anti-singing edge and blade root fillets w as established.

Key words:marine propeller;3D mo del;UG G rip;anti-sing ing

0 引 言

建立完善的船用螺旋桨三维模型是实现螺旋桨铸造过程模拟、铸造砂型制作、数控加工等工艺过程的关键和难点,也是实现螺旋桨强度分析、特性分析的基础.国内不少学者对螺旋桨的三维造型方法进行了研究[1-4],但所建模型均未涉及叶尖、导(随)边缘过渡、防鸣音处理、根部过渡等关键技术.目前常用的三维模型设计软件主要有Pro E、UG NX、MDT 等.其中,UG NX(UG)是当今世界上先进的、紧密集成的、面向制造业的三维CAD CAM CAE高端软件之一,被众多制造商广泛应用于工业设计、工程仿真和数字化制造等领域.尤其是UG Grip的二次开发功能为用户提供了方便和功能扩展的空间.因此,本文拟采用UG Grip的二次开发技术自动实现螺旋桨的三维建模,并对桨叶的边缘和根部等关键部位进行合理处理,以建立精确的船用螺旋桨三维模型.

1 船用螺旋桨三维建模的关键技术

1.1 螺旋桨三维造型方法

螺旋桨三维建模时,通常先建立桨叶的模型,再进行桨毂的造型,然后进行两者之间的过渡连接.桨叶的形状由轮廓参数和型值参数决定.桨叶轮廓参数主要包括截面半径、螺距、后倾值(角)等

.

图1 桨叶截面参数

图1为桨叶截面型值参数示意图.图中C为叶截面型宽,CLE为导边到基线的距离(辐射参考系的距离),SS为吸力面型值点到螺距线的距离,PS 为压力面型值点到螺距线距离.造型时先构造出压力面和吸力面曲线,再对导边和随边进行过渡圆角处理.其中RLE、R TE为导边和随边的过渡圆角半径,Y TE、Y LE为过渡圆圆心到螺距线的距离.

建立三维模型时,需将二维型值点转换为三维空间坐标点,再在立体空间中构造出桨叶的各个截面轮廓,然后利用BSURF命令构造出整个桨叶的外表面.三维空间坐标转换公式如下[5]:

x=r cos(

(l-h tan)cos

r

)

收稿日期:2009-08-25.

作者简介:程 东(1972-),男,安徽宿州人,博士,副教授,E-mail:chddmu@https://www.360docs.net/doc/f919140312.html,.

y =r sin ((l -h tan )cos

r )

z =P θ2π

+h cos -r tan φ

θ=

(l -h tan )cos

r

其中:r 为切面半径;h 为型值点到螺距线的距离;l

为型值点到基线的距离; 为螺距角;φ为后倾角;P 为螺距.

螺旋桨工艺型值参数较多,人工输入较为繁琐.为此,可事先将上述参数存入一个tx t 文件,然后利用FETCH 命令在执行程序时读出上述数据,便可实现模型的自动建立.1.2 导边、随边过渡圆的处理

螺旋桨叶片切面运转于非均匀的尾流场中,叶切面边缘处圆弧的大小对螺旋桨的性能有极大的影响,特别对空泡性能的影响较大.因此螺旋桨边缘的圆弧处理正确与否,将严重影响螺旋桨的性能.通常设计单位只提供螺旋桨轮廓参数和叶面型值参数,桨叶边缘部分没有型值点参数,只有过渡圆角半径和圆心,且各个半径处的圆角半径各不相同.

本文在二维坐标系统中首先根据各截面型值点构造出上下表面曲线,然后通过FILLET 指令根据已知的过渡圆角半径和圆心构造出过渡曲线.导边、随边过渡圆的圆心坐标分别为(RLE ,YLE )、(C -R TE ,Y TE ),如图2(a )所示.最后对过渡曲线进行离散处理,生成若干个点作为圆角部位的型值点[图2(b )],以便于与叶面、叶背的型值点拟合出各个半径处封闭的截面曲线

.

图2 桨叶边缘的过渡圆

1.3 随边抗鸣音处理

鸣音产生的主要原因是桨叶随边产生的漩涡频

率恰好与桨叶的固有频率相近,使叶片发生弹性振动.常用的抗鸣音处理方法有:

①加厚法:将桨叶随边中部加厚,使由桨叶随边

发出的一系列漩涡引起的振动频率低于桨叶本身的固有频率.

②减薄法:将桨叶随边中部减薄,使由桨叶随边发出的一系列漩涡引起的振动频率高于桨叶本身的固有频率.

③特殊构造法:特殊构造法有多种,可以在随边部分粘贴一排小圆块,或把桨叶随边做成锯齿形,或者将桨叶的随边做成抗鸣音边.

本文采用的抗鸣音边如图3所示.造型时先根据型值参数求出点A (0,TE 2)、点B (0,-TE 2)和m 点坐标(C -X TE ,0),通过m 点做一条垂直螺距线chord 的直线M 1M 2,求出直线M 1M 2与该截面的上下两条叶面曲线的交点M 1和M 2,连接M 1A 和M 2B ,对该两条直线进行离散,并在该两条直线上各选取4个点作为新的型值点.

图3 抗鸣音边

1.4 桨叶根部的过渡处理

完成叶根的过渡处理,建立一个完善的螺旋桨三维模型是实现后期数控加工和应力分析的基础.

图4 桨叶根部的过渡

为减少应力集中,设计时叶根部有时采用两个过渡半径.图4中,R I 为第一过渡半径,H 为该半径的过渡起始处;R II 为第二过渡半径.当只有一个过渡半径时,R I =0.另外,多数大型螺旋桨设计时只给出

最大截面的过渡半径R 0,而实际沿周向不同区域的过渡半径值不同.结合实际生产经验,本文所采用的过渡半径变化规律如图5所示(叶面、叶背相同).所

122 大连海事大学学报 第35卷 

形成的桨叶根部的过渡曲面如图6所示

.

图5 过渡半径R

沿根部的变化

图6 根部的过渡曲面

1.5 桨叶尖部的处理

上述方法所形成的三维桨叶模型的尖部并没有实现密封.为形成完整、封闭的三维实体,为后续的

螺旋桨模型特性分析奠定基础,必须对桨叶的尖部进行合理处理.首先将导边和随边的边缘轮廓线过渡连接,形成如图7所示的桨叶尖端曲线,然后利用导边过渡曲线、随边过渡曲线、压力面曲线、吸力面曲线及桨叶尖端的过渡曲线,根据SSURF 命令形成桨叶尖端表面

.

图7 桨叶尖端曲面的形成方法

1.6 模型特性分析

将上述形成的桨叶尖部、桨叶表面及根部的过

渡曲面缝合,并进行复制旋转.绘制完桨毂后形成的三维螺旋桨模型如图8所示.在此基础上可利用ANLSIS 命令进行螺旋桨的特性分析,计算其体积、

重量,为螺旋桨铸造工艺参数的确定奠定基础

.

图8 三维螺旋桨模型

2 结 论

本文采用UG Grip 二次开发技术探讨了船用螺

旋桨三维建模的关键技术,实现了对桨叶叶尖、导(随)边缘过渡、防鸣音随边、根部过渡等关键部位的合理处理,建立了精确的三维螺旋桨模型,为船用螺旋桨的三维建模提供一条有效的途径,也为船用螺旋桨的制造、加工和特性分析奠定了基础.参考文献(References ):

[1]张振金,薛兆鹏.利用U G G RIP 构建螺旋桨三维数字模

型[J ].现代制造工程,2009(2):52-55.

[2]李艳聪,郑清春,薛兆鹏.基于UG Grip 的螺旋桨三维设

计技术研究[J ].天津理工学院学报,2003,19(1):40-43[3]张宏伟,王树新,侯 巍,等.螺旋桨三维建模方法研究

[J ].机床与液压,2006(5):60-63.

[4]谢云平,张 伟,李 娟.基于NA PA 的螺旋桨几何造型

和图形生成方法研究[J ].江苏科技大学学报:自然科学版,2009,23(1):9-12

[5]姚 山,麻春英,徐艳丽,等.复杂曲面船用螺旋桨铸造工

艺三维参数化设计[J ].铸造,2006,55(10):1004-1006.

123第4期 程 东,等:基于UG Grip 的船用螺旋桨三维建模关键技术

基于UG二次开发的船用螺旋桨参数化建模方法与实现

SHIP ENGINEERING 船舶工程 V ol.32 No.4 2010 总第32卷,2010年第4期基于UG二次开发的船用螺旋桨参数化 建模方法与实现 唐英1,王志坚1,杨凯2 (1.北京科技大学机械工程学院,北京 100083;2.中国电子科技集团公司第45研究所,三河 065201) 摘 要:船用螺旋桨的建模方法是将二维初始型值点导入通用CAD软件,通过多步操作得出三维空间数据,完成整个造型过程.这种方法不但操作繁琐,而且效率低.在研究了船用螺旋桨参数化建模方法的基础上,采用对UG进行二次开发的方法,编制出船用螺旋桨参数化建模的功能模块.通过给定船用螺旋桨的主要几何参数,计算出初始型值点,进行坐标变换,将其从平面坐标系还原到空间真实位置.另外给出桨叶叶梢缺失部分数据的NURBS拟合补充方法,并在进行光顺处理后,最终生成船用螺旋桨的三维模型. 关键词:船用螺旋桨;UG二次开发;自由曲面;参数化建模 中图分类号:U664.33 文献标志码:A 文章编号:1000-6982 (2010) 04-0052-04 Parametrical Modeling Method and Implementation of Marine Propeller Based on UG Software TANG Ying1, W ANG Zhi-jian1, Y ANG Kai2 (1.School of Mechanical Engineering, Beijing Science and Technology University, Beijing 100083, China; 2.The 45th Research Institute of China Electronics Technology Group Corporation, Sanhe 065201, China) Abstract:Marine propeller is a type of part with free-form surface. Traditional modeling method of marine propeller needs to export the origin data into CAD software, converting the origin 2D point data to the 3D point data after several steps and then complete the modeling process. This method is time-consuming and inefficiency. With parametrical modeling technology, functional package for marine propeller modeling based on UG software is developed and introduced in the paper. In the developed package, some key structural parameters of marine propeller are inputted firstly and then the 2D point data and the 3D surface data are calculated automatically. To build the 3D model of the propeller part, firstly the coordinate transformation operation from a 2D coordinate system to a 3D reference system is needed to recover the points in its 2D drawing to their true position in 3D model. And then, point data at the tip of propeller are added with NURBS fitting method. After smoothing calculation of the surface, the 3D model of the marine propeller is completed. Key words: marine propeller; UG Software; free-form surface; parametrical modeling 0 引言 船用螺旋桨是典型的自由曲面类零件,一般由桨叶和桨毂两部分构成.桨毂外形通常较为简单,是近似的圆锥体或圆柱体,而桨叶形状非常复杂.除极少数情况外,桨叶形状无法用简单数学公式进行描述,而是用许多离散点的坐标值来表示,这种用来表示形状的离散点称为型值点.每个桨叶叶片的型值点通常多达数百个,有时甚至更多.从二维图纸的型值点到最终三维模型的建立,其间需经过偏移、旋转、生成曲线、生成曲面等多步操作.大量数值的计算处理工作和繁冗复杂的操作过程使船用螺旋桨建模过程不仅费时费力,且容易出现差错.鉴于目前针对船用螺旋桨设计建 收稿日期:2009-10-27;修回日期:2010-01-20 作者简介:唐英(1967-),女,副教授,博士后,主要从事机械制造与自动化方面的科研与教学工作.

螺旋桨课程设计

螺旋桨图谱课程设计天津大学仁爱学院 姓名:陈旭东 学号:6010207038 专业:船舶与海洋工程 班级:2班 日期:2013.6.30

螺旋桨图谱课程设计 一.已知船体的主要参数 船 型:双机双桨多用途船 总 长: L=150.00m 设计水线长: WL L =144.00m 垂线 间长: PP L =141.00m 型 深: H=11.00m 设计 吃水: T=5.50m 型 宽: B=22.00m 方形 系数: B C =0.84 菱形 系数: P C =0.849 横剖面系数: M C =0.69 排水 量: ?=14000.00t 尾轴距基线距离: P Z =2.00m 二.主机参数 额定功率: MCR=1714h 额定转速: n=775r/min 齿轮箱减速比: i=5 旋向: 右旋 齿轮箱效率: G η=0.97 三.推进因子的确定 伴流分数 ω=0.248 ;推力减额分数 ; t=0.196 相对旋转效率 R η=1.00 ;船身效率 ;H η=11t ω --=1.0691 四.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备为10% ,轴系效率S η=0.97 ,螺旋桨转速N=n/i=155r/min 螺旋桨敞水收到马力:D P = 1714 * 0.9 * S η*R η*G η =1714 * 0.9 * 0.97*1.00*0.97 =1451.43 (hp) 根据MAU4-40、MAU4-55、MAU4-70的P B δ-图谱列表计算如下:

项目 单位 数值 假定航速V kn 11 12 13 A V =(1-ω)V kn 8.27 9.02 9.78 0.5 2.5/P D A B NP V = 30.024 24.166 19.742 P B 5.479 4.916 4.443 MAU4-40 δ 65.4 59.732 54.377 P/D 0.692 0.728 0.764 0η 0.613 0.632 0.66 TE P =2D P ×H η×0η hp 1902.4 1961.38 2048.28 MAU4-55 δ 64 58.2 53.535 P/D 0.738 0.778 0.80 0η 0.588 0.614 0.642 TE P =2D P ×H η×0η hp 1824.83 1905.61 1992.41 MAU4-70 δ 63.3 57.4 52.8 P/D 0.751 0.796 0.842 0η 0.565 0.582 0.607 TE P =2D P ×H η×0η hp 1753.45 1806.21 1883.79 根据上表中的计算结果可以绘制TE P 、δ、P/D 及0η对V 的曲线,如图1所示。

船用螺旋桨的设计关键分析

船用螺旋桨的设计关键分析 船、机、桨系统中,船体是能量的需求者,主机是能量的发生器,螺旋桨是能量转换装置,三者之间是相互紧密联系的,但同时又要遵从各自的变化特性。 1.螺旋桨 民用船使用的图谱桨,一般以荷兰的B型桨和日本的AU桨为主。AU桨为等螺距桨、叶切面为机翼型;B型桨根部叶切面为机翼型、梢部为弓形,除四叶桨0.6R至叶根处为线性变螺距外,其余均为等螺距,桨叶有15°的后倾。为便于设计方便,由.KT、KQ——J敞水性征曲线图转换为BP一δ图谱。 桨与船体各自在水中运动时,都会形成一个水流场。水流场与桨的敞水工作性能和船的阻力性能密切相关。当桨在船后运动时,2个原本独立的水流场必然会相互作用、相互影响。船体对螺旋桨的影响体现在2个方面:(1)伴流。由于船尾部螺旋桨桨盘处因水的粘性等因素作用,形成一股向前方向的伴流,使得螺旋桨的进速小于船速。(2)伴流的不均匀性。船后桨在整个桨盘面上的进速不等(在实用上可取相对旋转效率为1)。 2.螺旋桨对船体的影响 由于螺旋桨对水流的抽吸作用,造成桨盘处的水流加速,由伯努利定律可知,同一根流线上,水质点速度加快,必然会导致压力下降,从而造成船的粘压阻力增加。也就是桨产生的推一部分用于克服船体产生的附加阻力。 如果用伴流分数ω表征伴流与船速的比值,用推力减额t表征船体附加阻力与船体自身阻力的比值。那么,敞水桨与船后桨的差别就在于一个船身效率(1一t)/(1一ω)从中可以看出,伴流分数ω越大、推力减额t越小,则船身效率越高。 从螺旋桨图谱可以看出,横坐标的参数为√BP或BP。BP称为收到功率系数(或称为载荷系数),其值为:BP=NPD0.5 /VA2.5式中:N为螺旋桨转速;PD为螺旋桨敞水收到功率;VA为螺旋桨进速。 BP值越小,对应的螺旋桨敞水效率越高;反之,则螺旋桨效率越低。从个体因素来讲,N值和PD0.5 /VA2.5值越小,BP 值就越小。PD和VA参数有联动关系,在相对低速的范围内,PD值变大、BP值变小;在相对高速的范围内,PD值变大、BP值也变大。这取决于船的阻力特性。 实际船螺旋桨设计时,还要考虑以下的先决条件:螺旋桨直径有无限制、船舶航速的具体要求。 一般情况下,螺旋桨设计工况都对应船舶满载航行的状态,在该航行状态下,主机发出预定功率、螺旋桨效率达到最佳,船、机、桨匹配理想。但如果设计参数选择不当,就会造成螺旋桨产生“轻载”或“重载”的现象,“轻载”是指螺旋桨达到设计转速后,不能充分吸收主机的转矩,主机发不出预定功率;“重载”是指螺旋桨还未达到设计转速时,主机转矩已达到最大值,主机同样发不出预定功率。 螺旋桨设计产生“轻载”还是“重载”现象,主要取决于2个方面:(1)伴流分数ω、推力减额t取值是否正确。(2)船舶阻力计算的误差。 如选取的伴流分数ω大于船后实际值,则螺旋桨不能吸收预定的功率和发出要求的推力,从而无法达到预定的航速,螺旋桨处于“轻载”状态;反之螺旋桨处于“重载”状态。

基于CATIA的船用螺旋桨三维建模方法

第47卷一第4期2018年8月一一一一一一一一一一一船海工程SHIP&OCEANENGINEERING一一一一一一一一一一一一一 Vol.47一No.4 Aug.2018 一一一 DOI:10.3963/j.issn.1671 ̄7953.2018.04.020 基于CATIA的船用螺旋桨三维建模方法 刘勇杰1?徐青2?胡勇1?郑绍春1 (1.武汉理工大学交通学院?武汉430063?2.广州文冲船厂有限责任公司?广州510727) 摘一要:针对船用螺旋桨三维外形较复杂的特点?提出一种基于CATIA平台的坐标变换的船用螺旋桨三维建模方法?给出由叶切面局部坐标系到全局坐标系的变换公式?采用Excel快速完成数据处理?用VB.net语言对CATIA进行二次开发?完成桨叶曲面型值数据的读取与批量导入?最终快速得到螺旋桨三维模型?该方法柔性好二效率高?可以根据不同设计参数快速得到对应的螺旋桨三维模型?并对模型进行优化处理? 关键词:船用螺旋桨?三维建模?CATIA?Excel?二次开发 中图分类号:U664.33一一一一文献标志码:A一一一一文章编号:1671 ̄7953(2018)04 ̄0084 ̄04 收稿日期:2017-10-17修回日期:2017-11-15 基金项目:国家自然科学基金项目(51379167)第一作者:刘勇杰(1992 )?男?硕士生研究方向:船舶先进制造技术 一一为了满足设计中不断改进?制造中节约成本?一次成型的需求?关于快速有效的船用螺旋桨三维建模方法研究集中在不需要计算?完全利用二维图 缠绕 变换来生成螺旋桨三维曲面[1]?基于CATIA软件平台?将二维图进行 逆向投影 的螺旋桨三维曲面建模[2]?通过坐标变换将变换后的螺旋桨曲面型值点导入Pro/E中得到光滑曲面?进而得到螺旋桨实体模型[3 ̄4]?设计螺旋桨二维图形和三维实体之间转换的代码[5]?等方面?为了避免传统几何建模方法的手工操作量大的缺点? 结合坐标变换自动化的思想?提出一种基于CAT ̄IA二次开发和坐标变换的船用螺旋桨三维建模新方法? 1一CATIA软件平台概述 CATIA软件提供了多种二次开发的接口?其 中包括自动化对象编程(V5Automation)和开放的基于构件的应用编程接口(CAA)?其中?Auto ̄ mation开发模式可以完成绝大部分开发工作?只有少部分不足之处才采取CAA开发方式进行补充?Automation开发模式又可分为以下几种? 1)VBAProject?采用CATIA提供的VBA集成开发环境进行程序设计?属于CATIA进程内?能够设计窗体界面?且可以方便地把生成的程序 添加到CATIA工具条中? 2)CATIA宏脚本?采用VBScript语言编写 代码?可以把程序集成到CATIA工具条中?但脚本程序的输入输出功能较弱?无法实现复杂的交互界面? 3)其他脚本语言?采用VBScript二JavaS ̄ cript二Python等语言编写代码?在CATIA以外执行(进程外)?可以写成短小灵活的代码集成到其他应用中? 4)高级语言?采用VB.net二C#等高级语言编 写代码?可以制作比较复杂的交互界面?利用.net优势简化复杂业务流程设计任务? 2一螺旋桨建模 螺旋桨的主要参数包括纵斜角(后倾角)二螺 距比二盘面比二母线到叶片随边的距离二母线到叶片导边的距离二叶片宽度二叶片厚度二导边至最厚点的距离和螺旋桨叶切面尺寸表等? 2.1一二维型值点计算 以直径为0.25m的MAU4-40型的模型螺旋桨为实例?根据MAU型螺旋桨桨叶轮廓尺寸表(见表1)计算得到模型螺旋桨的伸张轮廓尺寸?包括叶片宽度W(以最大叶片宽度的%表示)二母线到叶片随边的距离L1二母线到叶片导边的距离L2二叶片厚度T(以螺旋桨直径的%表示)二导边至最厚点的距离L3(以叶片宽度%表示)等?根据MAU型叶切面尺寸表(见表2)计算得到不同半径叶切面的二维型值点?以上数据组成了传统二维图纸中的数据信息? 由表1二2中参数的排布规律可知?选择Excel 4 8

DWT油污水接收船螺旋桨设计书

1145 DWT油污水接收船螺旋桨设计书 指导老师: 专业班级: 学生姓名: 学号: 邮箱: 完成日期:2013/4/24

目录 1.船型............................. 错误!未定义书签。2.主机参数. (4) 3.推进因子的确定 (4) 4.桨叶数Z的选取 (4) 5.AE/A0的估算 (4) 6.桨型的选取说明 (5) 7.根据估算的AE/A0选取2~3张图谱 (5) 8.列表按所选图谱(考虑功率储备)进行终结设计 (5) 9.空泡校核 (6) 10.计算与绘制螺旋桨无因次敞水性征曲线 (8) 11. 船舶系泊状态螺旋桨计算 (9) 12.桨叶强度校核 (9) 13.桨叶轮廓及各半径切面的型值计算 (10) 14.桨毂设计 (10) 15.螺旋桨总图绘制 (11) 16.螺旋桨重量及转动惯量计算 (11) 17.螺旋桨设计总结 (12) 18.课程设计总结 (12)

1. 船型 单甲板,流线型平衡舵,柴油机驱动,适于油污水接收的中机型单桨船。 1.1艾亚法有效功率估算表:(按《船舶原理(上)》P285实例计算)(可以自主选定一种合适的估算方法,例如泰勒法。)

2.主机参数(设计航速约11kn ) 型号: 6L350PN 标定功率: P S2 = 650kw 标定转速: 362 r/min 3.推进因子的确定 (1)伴流分数w 本船为单桨内河船,故使用巴甫米尔公式估算 =0.165*C B x x=1 =0.1×(Fr-0.2)=0.1*(0.228-0.2)=0.0028 ω=0.185 (2)推力减额分数t 本船为有流线型舵使用商赫公式 t=k =0.111 k=0.6 (3)相对旋转效率: 近似地取为ηR =1.00 (4)船身效率 ηH =w -1t -1=1.091 4.桨叶数Z 的选取 根据一般情况,单桨船多用四叶,加之四叶图谱资料较为详尽、方便查找, 故选用四叶。 5.A E /A 0的估算 按公式A E /A 0 = (1.3+0.3×Z)×T / (p 0-p v )D 2 + k 进行估算, 其中:T =P E /(1-t)V= 346/((1-0.111)*11*0.515)=68.7028kN 水温15℃时汽化压力p v =174 kgf/m 2=174×9.8 N/m 2=1.705 kN/m 2 静压力p 0=p a +γh s =(10330+1000×2.5)×9.8 N/m 2=125.734kN/m 2

螺旋桨UG建模

由桨叶截面尺寸表得到三维建模坐标 直径D 螺距P 后倾角θ 螺距角φ 1、 计算出0.2R 、0.3R …… 2、 利用反正切函数计算出螺距角:以0.2R 举例 φ-0.2R=ATAN(P/(2*π*0.2R)),弧度表示 φ-0.2R/π*180°或用=DEGREES(φ-0.2R)函数,角度表示 3、 中心线距导边-最厚点距导边=中心线距最厚点=H X 4、 h X =最厚点距导边-X 5、 计算0.2R-0坐标 注:h X =最厚点距导边-X ;H X =中心线距导边-最厚点距导边=中心线距最厚点

6、叶梢坐标 7、通过延伸插值得到0.1R处的叶宽、最大叶厚、最大叶厚至导边、中心线至导 边,再用第5步计算。

螺旋桨UG中建模 1、导入三维坐标 2、连接样条曲线,随边点-导边点-随边点;连接螺旋桨轮廓 3、将螺旋桨轮廓打断于叶梢点:编辑-曲线-分割曲线,类型选“在结点处”,选 择曲线,结点方法选“选择结点”,确定。 或者采用添加点然后重新绘制两条样条曲线的方式,添加点:插入-基准/点,选择几何体中选择要添加点的样条曲线,等弧长定义中点数输入需要的点即可。 4、建立螺旋桨包面:主曲线—叶梢点+桨叶切面;次曲线—随边+导边+随边。 5、将桨叶表面封闭起来:插入-网格曲面-N边曲面-外环选择曲线即可 裁去上述封闭曲面多余部分:修剪片体-目标选择片体-边界对象选择边界曲线-选择区域保留! 6、桨叶片体缝合:插入-组合-缝合,选择需要缝合的片体即可 7、阵列桨叶:阵列特征-选择特征(选桨叶包面)-布局(选圆形)-旋转轴(选 桨榖对称轴)-角度方向(间距选数量和节距,数量选叶数,节距角为360/n),确定。阵列后可能所有桨叶多余的片体都要修剪—此功能好像不成功 或者采用旋转功能:编辑-移动对象-运动选角度-角度72°-结果复制原先的-非关联副本数4 8、建立桨榖。目测回转的曲线为拍照CAD得到。回转-选择曲线-指定矢量(选 桨榖对称轴)-其他默认即可。 此处可能涉及到显示/隐藏功能,可用快捷键Ctrl+shift+k,可用功能编辑-显示和隐藏-全部显示 9、将桨叶与桨榖求和:求和-选择体即可 10、螺旋桨建模完成。据说导出为iges格式。

船舶螺旋桨的设计

摘要 螺旋桨是造船行业必备的推进部件,它的设计精度将直接影响船的推进速度,它为船的前进提供的推力。 螺旋桨设计是整个船舶设计的一个重要组成部分,它是保证船舶快速性的一个重要方面。一般螺旋桨设计是在初步完成了船舶线型设计,并通过估算或用船模试验的方法确定了船体有效功率之后进行的。影响螺旋桨推进性能的因素很多,在本设计过程中主要对螺旋桨的直径、螺距比、盘面比、桨叶轮廓形状等因素进行研究,并通过在工作中积累的经验,设计一艘内河A级拖船的螺旋桨。 关键词 螺旋桨直径螺距比盘面比桨叶轮廓形状 Abstract Propeller is a necessary promoting components of shipbuilding industry, which be used to providing thrust for ship moving. Its design precision will directly affect the forward speed of the ship. The propeller design the whole ship design is a vital part of the ship, it is to guarantee an important aspect of the swiftness. General propeller design is in preliminary finished ship lines design, and through the estimation or with model test method to determine the hull effective power after. Affect the propeller to advance performance in the many factors in the design process of the propeller diameter, mainly pitch than, than, disk blades factors such as profile, and through the experience in work, design an inland ship class A tug propeller Keywords Propellers diameter pitch of screws ratio pie area ratio paddle outline

浅谈船舶螺旋桨的设计

浅谈船舶螺旋桨的设计 目录 目录 (1) 2 摘要 ...................................................... 关键词 (2) 引言 (2) 1结构与计算要素 .......................................... 1.1结构组成 ............................................ 1.2计算要素 ............................................ 2项目设计过程及结果与分析 ................................ 2.1船体估算数据 ....................................... 2.2螺旋桨要素选取及结果与分析 .......................... 2.3推力曲线及自由航行计算及结果与分析 .................. 2.4计算总结 ............................................ 2.5螺旋桨模型的敞水实验 ................................ 3螺旋桨设计的发展 ....................................... 3.1节能减排促使螺旋桨加快创新 ......................... 结束语 ................................................... 3 3 3 5 6 6 7 9 9 11 11 13 14 14 14 参考文献 ................................................. 致谢 ..................................................... 附录 .....................................................

船用螺旋桨小知识集锦

船用螺旋桨小知识集锦 螺旋桨简介 由桨毂和若干径向地固定于毂上的桨叶所组成的推进器,俗称车叶。螺旋桨安装于船尾水线以下,由主机获得动力而旋转,将水推向船后,利用水的反作用力推船前进。螺旋桨构造简单、重量轻、效率高,在水线以下而受到保护。 普通运输船舶有1~2个螺旋桨。推进功率大的船,可增加螺旋桨数目。大型快速客船有双桨至四桨。螺旋桨一般有3~4片桨叶,直径根据船的马力和吃水而定,以下端不触及水底,上端不超过满载水线为准。螺旋桨转速不宜太高,海洋货船为每分钟100转左右,小型快艇转速高达每分钟400~500转,但效率将受到影响。螺旋桨材料一般用锰青铜或耐腐蚀合金,也可用不锈钢、镍铝青铜或铸铁。 驱动船前进的一种盘形螺旋面的推进装置。由桨叶及与其相连结的桨毂构成。常用的是三叶、四叶和五叶。包括单体螺旋桨、龙叶导管螺旋桨、对转螺旋桨、串列螺旋桨、可调螺距螺旋桨、超空泡螺旋桨、大侧斜螺旋桨等。螺旋桨一般安装在船尾(水下)。船用螺旋桨多由铜合金制成,也有铸钢,铸铁,钛合金或非金属材料制成。对船用螺旋桨的研究分理论和试验两个方面。理论方面现已有动量定理、叶元体理论、升力线理论、升力面理论、边界元方法等理论和分析方法,能较准确地预报螺旋桨的水动力性能并进行理论设计。试验方面的研究主要是通过模型试验研究螺旋桨性能,绘制螺旋桨设计图谱。船用螺旋桨的设计方法分两大类,即理论设计方法和图谱设计方法。 60年代以来,船舶趋于大型化,使用大功率的主机后,螺旋桨激振造成的船尾振动、结构损坏、噪声、剥蚀等问题引起各国的重视。螺旋桨激振的根本原因在于螺旋桨叶负荷加重,在船后不均匀尾流中工作时容易产生局部的不稳定空泡,从而导致螺旋桨作用于船体的压力、振幅和相位都不断变化。 螺旋桨的分类 在普通螺旋桨的基础上,为了改善性能,更好地适应各种航行条件和充分利用主机功率,发展了以下几种特种螺旋桨。 可调螺距螺旋桨 简称调距桨,可按需要调节螺距,充分发挥主机功率;提高推进效率,船倒退时可不改变主机旋转方向。螺距是通过机械或液力操纵桨毂中的机构转动各桨叶来调节的。调距桨对于桨叶负荷变化的适应性较好,在拖船和渔船上应用较多。对于一般运输船舶,可使船-机-桨处于良好的匹配状态。但调距桨的毂径比普通螺旋桨的大得多,叶根的截面厚而窄,在正常操作条件下,其效率要比普通螺旋桨低,而且价格昂贵,维修保养复杂。 导管螺旋桨 在普通螺旋桨外缘加装一机翼形截面的圆形导管而成。此导管又称柯氏导管。导管与船体固接的称固定导管,导管被连接在转动的舵杆上兼起舵叶作用的称可转导管。导管可提高螺旋桨的推进效率,这是因为导管内部流速高、压力低,导管内外的压力差在管壁上形成了附加推力;导管和螺旋桨叶间的间隙很小,限制了桨叶尖的绕流损失;导管可以减少螺旋桨后的尾流收缩,使能量损失减少。但导管螺旋桨的倒车性能较差。固定导管螺旋桨使船舶回转直径增大,可转导管能改善船的回转性能。导管螺旋桨多用于推船。

船舶快速性螺旋桨设计

课程设计成果说明书 题目:散货船螺旋桨设计 学生姓名:杨再晖 学号:101306119 学院:东海科学技术学院 班级:C10船舶1班 指导教师:应业炬 浙江海洋学院教务处 2013年 6月 21日

浙江海洋学院课程设计成绩评定表 2012 —2013 学年第 2 学期 学院东海科学技术学院班级 C10船舶1班专业船舶与海洋工程

摘要 螺旋桨是船舶的重要组成部分之一,没有它,船舶就无法快速的前行,是造船行业必备的推进部位。螺旋桨设计是船舶设计过程中有关船舶快速性性能设计的重要组成部分,它的设计精度将直接影响船的推进效率。 在船舶线型初步设计完成后,通过有效马力的估算或船模阻力试验,得出该船的有效马力曲线。在此基础上,设计一个效率最佳的螺旋桨,既能达到预定的航速,又要使消耗的主机功率小;或者当主机已选定,设计一个在给定主机条件下使船舶能达到最高航速的螺旋桨,本次课程设计属于第二种。 影响螺旋桨性能的因素有很多,主要有螺旋桨的直径,螺距比,盘面比,桨叶轮廓形状等因素。本次课程设计是用船体的主要参数、主机与螺旋桨螺旋桨参数、设计工况算出以上数据,设计一个螺旋桨,并用CAD软件画出螺旋桨的外形。 关键词:螺旋桨设计;图谱;AUTOCAD

目录 1、已知船体的主要参数 (1) 2、主机与螺旋桨参数 (1) 3、设计工况 (1) 4、按船型及经验公式确定推进因子 (2) 5、可以达到最大航速的计算 (2) 6、桨叶空泡校核,确定螺旋桨主要参数 (4) 7、桨叶强度校核 (6) 8、螺距修正 (8) 9、重量及惯性矩计算 (8) 10、绘制螺旋桨水动力性能曲线 (9) 11、系柱特性与航行特性计算并绘制航行特性曲线图 (10) 12、航行特性计算时取3挡转速按下表进行: (11) 13、螺旋桨计算总结 (13) 14、感想 (14) 15、参考资料 (14)

螺旋桨设计与绘制汇总

第1章螺旋桨设计与绘制 1.1螺旋桨设计 螺旋桨设计是船舶快速性设计的重要组成分。在船舶型线初步设计完成后,通过有效马力的估算获船模阻力试验,得出该船的有效马力曲线。在此基础上,要求我们设计一个效率最佳的螺旋桨,既能达到预定的航速,又能使消耗的主机马力最小;或者当主机已经选定,要求设计一个在给定主机条件下使船舶能达到最高航速的螺旋桨。螺旋桨的设计问题可分为两类,即初步设计和终结设计。 螺旋桨的初步设计:对于新设计的船舶,根据设计任务书对船速要求设计出最合适的螺旋桨,然后由螺旋桨的转速计效率决定主机的转速及马力。 终结设计:主机马力和转速决定后,求所能达到的航速及螺旋桨的尺度。 在本文中,根据设计航速17.5kn,设计螺旋桨直径6.6m,进行初步设计,获得所需主机的马力和主机转速,然后选定主机;根据选定的主机,计算最佳的螺旋桨要素及所能达到的最大航速等。 1.1.1螺旋桨参数的选定 (1)螺旋桨的数目 选择螺旋桨的数目必须综合考虑推进性能、震动、操纵性能及主机能力等各方面因素。若主机马力相同,则当螺旋桨船的推进效率高于双螺旋浆船,因为单螺旋桨位于船尾中央,且单桨的直径较双桨为大,故效率较高。本文设计船的设计航速约为17.5kn的中速船舶,为获得较高的效率,选用单桨螺旋桨。 (2)螺旋桨叶数的选择 根据过去大量造成资料的统计获得的桨叶数统计资料,取设计船螺旋桨的叶数为4叶。考虑到螺旋桨诱导的表面力是导致强烈尾振的主要原因,在图谱设计中,单桨商船的桨叶数也选为4叶。 (3)桨叶形状和叶切面形状 螺旋桨最常用的叶切面形状有弓形和机翼型两种。弓形切面的压力分布较均匀,不易产生空泡,但在低载时效率较机翼型约低3%~4%。若适当选择机翼型切面的中线形状使其压力分均匀,则无论对空泡或效率均有得益,故商用螺旋桨

船舶原理 螺旋桨 螺距

第一章绪论 第二章螺旋桨的几何特征 一、主要内容 1、本课题的主要研究内容; 2、有效马力、机器马力、收到马力和传送效率、推进效率和推进系数的 概念; 3、螺旋桨的外形和名称及几何特征的有关专业术语。 二、重点内容 1、有效马力、机器马力、收到马力和传送效率、推进效率和推进系数的 概念; 2、桨叶数、桨的直径、螺距比和盘面比等概念。 三、教学方法 多媒体授课、结合螺旋桨模型组织教学 四、思考题 1、什么是有效马力、机器马力、收到马力和传送效率、推进效率和推进 系数? 2、表征螺旋桨几何特征的主要参数有哪些? 三、下讲主要内容 理想推进器理论。

第一章绪论 一、本课题的研究对象和内容 1、船舶快速性 船舶在给定主机马力(功率)情况下,在一定装载时于水中航行的快慢问题。 2、推进器 将能源(发动机)发出的功率转换为推船前进的功率的专门装置或机构。常见的推进器为螺旋桨。 3、主要内容 1)推进器在水中运动时产生推力的基本原理及其性能好坏; 2)螺旋桨的图谱设计方法。

二、马力及效率 1、有效马力P E 1)公制有效马力(本教材常用)2)英制有效马力式中,Te 为有效推力(kgf ),R 为阻力(kgf ),v 为船速(m/s )E ()7575P v Rv UShp =e =或hp T E ()7676P v Rv UKhp =e =T 思考:在船舶专业中常用的速度单位还有哪些?

2、主机马力和传送效率 推进船舶所需要的功率由主机供给,主机发出的马力 称为主机马力,以P S 表示。 主机马力经减速装置、推力轴承及主轴等传送至推进器,在主轴尾端与推进器联接处所量得的马力称为推进器 的收到马力,以P D 表示。 传送效率η s =P D / P S ,它反映了推力轴承、轴承地、 尾轴填料函及减速装置等的摩擦损耗。

某沿海单桨散货船螺旋桨设计计算说明书

某沿海单桨散货船螺旋桨 设计计算说明书 刘磊磊 2008101320 2011年7月

某沿海单桨散货船螺旋桨设计计算说明书 1.已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--= w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 hp

根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn Bp=NP D 0.5/V A 2.5 Bp MAU 4-40 δ P/D ηO P TE =P D ·ηH ·ηO hp MAU 4-55 δ P/D ηO P TE =P D ·ηH ·ηO hp MAU 4-70 δ P/D ηO P TE =P D ·ηH ·ηO hp 据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如下图所示。

螺旋桨-课程设计

山东104总吨钢质拖网渔船 1.已知船体主要参数 船型:单桨,转动导流管平衡舵,尾机型钢质拖网渔船。设计水线长:L wl=27.50m 垂线间长:L pp=26.00m 型宽:B=5.40m 型深:D=2.50m 平均吃水:T m=1.90m 尾吃水: T a=2.40m 方形系数:C b=0.502 棱形系数:C p=0.592 宽吃水比:B/T m=2.84 排水量:Δ=137.35t 浮心纵向坐标(LCB):X b=-0.78m 桨轴中心距基线:Z s=0.35m 用艾亚法估算船体有效功率数据表:

首先计算所需参数如下: L/Δ1/3 = 5.04 Δ0.64 = 23.346 X c=-3% 速度 v(kn)9 10 11 速长比V/L1/20.974 1.083 1.191 傅汝德数Vs/(gL)1/20.290 0.322 0.354 标准Co 查图7-3 295 243 205 标准Cbc,查表7-5 0.593 0.56 0.546 实际Cb(肥或瘦)(%)15.35,瘦10.36,瘦8.06,瘦Cb修正(%)11.21 7.174 5.104 Cb修正数量△133 17 10 已修正Cb之△1328 260 215 B/T修正(%)=-10Cb(B/T-2)% -4.2168 -4.2168 -4.2168 B/T修正数量,△2[式7-23] -14 -11 -9 已修正B/T之C2 314 249 206 标准Xc,%L,船中前或后,查表7-5 1.838,船中 后 2.3275,船 中后 2.4955,船 中后 实际Xc,%L,船中前或后3,船中后3,船中后3,船中后相差%L,在标准者前或后 1.162,后0.6725,后0.5045,后Xc修正(%),查表7-7(b)0.22 0.5 0.96 Xc修正数量,△3[式(7-24)] -1 -1 -2 已修正Xc之C3 313 248 204 长度修正(%)=(Lwl-1.025Lbp) /Lwl*100% 3.2 3.2 3.2 长度修正数量,△ 4 [式(7-25)] 10 8 7 已修正长度C4 323 256 211 Vs3729 1000 1331 Pe=△0.64*Vs3/C4*0.735(KW) 39 68 109 2.主机参数 主机型号6160A-123 功率(KW)136 转速(转/分)850 齿轮箱型号2HC250 减速比 1.97:1

基于ProE的螺旋桨设计与实体建模

第6期(总第175期) 2012年12月机械工程与自动化 MECHANICAL ENGINEERING & AUTOMATIONNo.6 Dec. 文章编号:1672-6413(2012)06-0056-0 2基于Pro/E的螺旋桨设计与实体建模 张沛强,李文英,周晓萍 (太原理工大学机械电子工程研究所,山西 太原 030024 )摘要:螺旋桨是船用推进器中应用最广的一种。对螺旋桨的参数计算设计思路以及实体建模方法进行了详细介绍,为螺旋桨的初学设计人员提供了一般性的思路,便于依据实际参数要求,便捷地设计螺旋桨和运用Pro/E软件进行螺旋桨的三维实体建模。关键词:螺旋桨;参数计算;实体建模;设计 中图分类号:U661.33+ 6∶TP391.7 文献标识码:A 收稿日期:2012-05-07;修回日期:2012-06-2 9作者简介:张沛强(1987-) ,男,山西汾阳人,在读硕士研究生,研究方向:煤矿机械。0 引言 近年来,随着我国海洋经济的发展,近海经济型船只和水下航行器的设计制造需求不断提高。对于大量使用的内河及近海船用小型螺旋桨的加工,传统的手工操作方式越来越多地被具有良好加工精度的数控加工方式取代。螺旋桨的数控加工编程首先需要对螺旋桨进行三维实体建模,而实体建模又需要对螺旋桨参数有个初步的拟定。本文结合工程实际情况,先对螺旋桨的设计思路进行简要介绍,再使用计算机辅助设计软件生成实体,从而提供了一种简便实用的螺旋桨三维建模方法。1 螺旋桨设计1.1 螺旋桨的选型 船用螺旋桨使用的图谱桨一般以荷兰的B型桨和日本的AU型桨为主。AU型桨为等螺距桨,叶切面为机翼型;B型桨根部叶切面为机翼型,梢部为弓形,除四叶桨0.6R(R为螺旋桨的梢圆半径)至叶根处为线性变螺距外,其余均为等螺距,桨叶有15° 的后倾。某船主机最大持续功率为6 180kW,转速为160r/min。根据船型资料,选取伴流分数ω=0.35,按经验公式决定推力减额分数t=0.74ω=0.21,取相对旋转效率ηR=1.0,船身效率ηH=(1-t)/(1-ω)=1.215 4,则螺旋桨选用AU3型。1.2 负荷系数Bp的计算 按图谱设计最佳螺旋桨是从“最佳效率曲线”着 手。对于一定的盘面比,给定一个负荷系数Bp,就有一个最佳效率及与其对应的螺距比P/D(P为螺距,D为螺旋桨的梢圆直径)和直径系数δ,而且这些对应关系是唯一的。在设计的过程中,我们一般会先选定船体的航行速度vS。 Bp的计算公式为:Bp=nP0.5D/v2.5 A 。其中:vA为螺旋桨前进速度,vA=vS(1-ω);n为螺旋桨转速,r/min;PD为螺旋桨收到的功率,kW。 在设定好船体航速和了解到螺旋桨收到的功率后, 就能通过相关公式计算出该螺旋桨的负荷系数。1.3 螺旋桨梢圆直径D和螺距比P/D的计算 螺旋桨的选型已经确定,负荷系数Bp已经计算出, 在螺旋桨最佳要素计算式及回归系数表中找到对应的系数a、b、c三值,然后将a、b、c三值代入对应的公式中,螺旋桨的最佳效率η0、 螺距比P/D、直径系数δ都可计算出。D的计算公式为: D=δvA /n。计算出直径D后,根据已经算得的螺距比P/D,可将螺距P也计算出来。 2 螺旋桨实体建模原理 根据螺旋桨的选型,依据对应的叶切面尺寸表,可计算出各半径柱面切平面上对应的叶背、叶面坐标值;将该叶背、叶面坐标值描点连线生成曲线,再将生成的曲线旋转,包络到相应半径柱面上,旋转角度值为螺旋桨的螺旋倾角;最后通过边界混合命令将柱面上的曲

船用螺旋桨推进器探讨

船用螺旋桨推进器探讨 一,船用推进器的发展历程。 船舶推进器的种类很多,最古老的要算篙了,它可撑着船前进。后来又发明了桨和橹,它们一直沿用至今。随后是利用风帆作为推进工具,出现了多种形式的帆船。随着机器在船上的应用,就出现了明轮推进器。19世纪初出现了螺旋桨推进器。为了证明螺旋桨的优越性, 英国海军组织了一场有趣比赛:把动力相当的“响尾蛇号”螺旋桨轮船和“爱里克托号”明轮进行了竞赛。两艘船的船尾用粗缆绳系起来,让它们各朝相反的方向驶去。“响尾蛇号”的螺旋桨飞快地旋转,“爱里克托号”的明轮猛烈地向后拨水。先是互不相让,但过了一会儿,“响尾蛇号”就把“爱里克托号”拖走了。这场比赛证明了螺旋桨的优越性。从此,螺旋桨轮船就取代了明轮。 二,螺旋桨的基本构造与在船舶中的应用基本知识。 螺旋桨俗称车叶,由若干桨叶所组成。桨叶的数目通常为三叶、四叶或五叶,各叶片之间相隔的角度相等。螺旋桨通常装在船的尾部,螺旋桨与艉轴的连接部分称为毂,桨叶就固定在毂上。有船尾向船首看时,所看到的螺旋桨桨叶的一面称为叶面(压力面),另一面称为叶背(吸力面)。桨叶的外端为叶梢,而与毂的连接处称为叶根。螺旋桨旋转时叶梢的圆形轨迹为梢圆,此圆称为螺旋桨桨盘,直径称为螺旋桨直径,其面积称为盘面积。 螺旋桨正车旋转时,有船尾向船首看所见到的旋转方向为顺时针方向的称为右旋桨,反之为左旋桨。双桨船的螺旋桨装在船尾二侧,正常旋转时,若其上都向着船中线转动的称为内旋桨,反之为外旋桨。螺旋桨直径的大小往往受到船舶吃水的限制。一般来说,螺旋桨直径愈大转速愈低,其效率愈高。螺旋桨与船的尾框要有良好的配合,避免叶尖露出水面而影响效率。螺旋桨船体间隙要适当,以避免引起严重的振动。 三,船用螺旋桨的工作原理。 螺旋桨旋转时,把水往后推。根据力的作用与反作用的原理,水给螺旋桨以反作用力,这就是推力,推船前进。螺旋桨的运动情况同螺钉的运动情况极为相似。把螺钉旋转一圈,它就在螺帽中向前推进一段距离,这段距离称为螺距。螺旋桨的桨叶叶面(压力面)通常是螺旋面的一部分,就像螺钉的螺纹的一部分那样,不过螺旋桨是在水中运动的,水取代的螺帽的地位。 四,船用螺旋桨的有关几何参数。 桨叶数目(B):可以认为螺旋桨的拉力系数和功率系数与桨叶数目成正比。 直径(D):影响螺旋桨性能重要参数之一。一般情况下,直径增大拉力随之增大,效率随之提高。所以在结构允许的情况下尽量选直径较大的螺旋桨。 螺距:它是桨叶角的另一种表示方法。各种意义的螺矩与桨叶角的关系。 实度(σ):桨叶面积与螺旋桨旋转面积(πR2)的比值。它的影响与桨叶数目的影响相似。随实度增加拉力系数和功率系数增大。 桨叶角(β):桨叶角随半径变化,其变化规律是影响桨工作性能最主要的因素。习惯上以70%直径处桨叶角值为该桨桨叶角的名称值。

相关文档
最新文档