人教版高中物理选修3-1知识点整理及重点题型梳理] 静电场 复习与巩固 提高

人教版高中物理选修3-1知识点整理及重点题型梳理]  静电场 复习与巩固  提高
人教版高中物理选修3-1知识点整理及重点题型梳理]  静电场 复习与巩固  提高

人教版高中物理选修3-1

知识点梳理

重点题型(常考知识点)巩固练习

静电场复习与巩固

【学习目标】

1.了解静电现象及其在生活中的应用;能用原子结构和电荷守恒的知识分析静电现象。

2.知道点电荷,知道两个点电荷间的相互作用规律。

3.了解静电场,初步了解场是物质存在的形式之一。理解电场强度。会用电场线描述电场。

4.知道电势能、电势,理解电势差。了解电势差与电场强度的关系。

5.了解电容器的电容。

【知识网络】

【要点梳理】

要点一、与电场有关的平衡问题

1.同种电荷相互排斥,异种电荷相互吸引.库仑力实质上就是电场力,与重力、弹力一样,它也是一种基本力.注意力学规律的应用及受力分析.

2.明确带电粒子在电场中的平衡问题,实际上属于力学平衡问题,其中仅多了一个电场力而已.3.求解这类问题时,需应用有关力的平衡知识,在正确的受力分析的基础上,运用平行四边形定则、三角形定则或建立平面直角坐标系,应用共点力作用下物体的平衡条件、灵活方法(如合成分解法,矢量图示法、相似三角形法、整体法等)去解决.

要点诠释:(1)受力分析时只分析性质力,不分析效果力;只分析外力,不分析内力.

(2)平衡条件的灵活应用.

要点二、与电场有关的力和运动问题

带电的物体在电场中受到电场力作用,还可能受到其他力的作用,如重力、弹力、摩擦力等,在诸多力的作用下物体可能处于平衡状态(合力为零),即静止或匀速直线运动状态;物体也可能所受合力不为零,做匀变速运动或变加速运动.处理这类问题,就像处理力学问题一样,首先对物体进行受力分析(包括电场力),再根据合力确定其运动状态,然后应用牛顿运动定律和匀变速运动的规律列等式求解.

要点三、与电场有关的功和能问题

带电的物体在电场中具有一定的电势能,同时还可能具有动能和重力势能等.因此涉及与电场有关的功和能的问题可用以下两种功和能的方法来快速简捷的处理,因为功与能的关系法既适用于匀强电场,又适用于非匀强电场,且使同时不须考虑中间过程;而力与运动的关系法不仅只适用于匀强电场,而且还须分析其中间过程的受力情况运动特点等.

1.用动能定理处理,应注意:

(1)明确研究对象、研究过程.

(2)分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功.

(3)弄清所研究过程的初、末状态.

2.应用能量守恒定律时,应注意:

(1)明确研究对象和研究过程及有哪几种形式的能参与了转化.

(2)弄清所研究过程的初、末状态.

(3)应用守恒或转化列式求解.

要点诠释:(1)电场力做功的特点是只与初末位置有关。与经过的路径无关.

(2)电场力做功和电势能变化的关系:电场力做正功.电势能减小,电场力做负功,电势能增加,且电场力所做的功等于电势能的变化(对比重力做功与重力势能的变化关系).

(3)如果只有电场力做功,则电势能和动能相互转化,且两能量之和保持不变.这一规律虽然没有作为专门的物理定律给出,但完全可以直接用于解答有关问题.

要点四、巧用运动合成与分解的思想分析带电体在复合场中的运动问题

带电体在电场和重力场的复合场中,若其运动既非类平抛运动,又非圆周运动,而是一般的曲线运动,在处理这类较复杂的问题时,既涉及力学中物体的受力分析、力和运动的关系、运动的合成与分解、功能关系等概念和规律,又涉及电场力、电场力做功、电势差及电势能等知识内容,问题综合性强,思维能力要求高,很多学生感到较难,不能很好地分析解答。其实,处理这类问题若能巧妙运用的分解思想,研究其两个分运动,就可使问题得到快捷的解决.

【典型例题】

类型一、与电场有关的平衡问题

例1.如图所示,A、B是带有等量的同种电荷的两小球(可视为点电荷),它们的质量都是m,它们的悬线长度是L,悬线上端都固定于同一点O,B球悬线竖直且被固定,A球在力的作用下,于偏离B

球x的地方静止,此时A球受到绳的拉力为1F,现在保持其他条件不变,用改变A球质量的方法,使A球

的距B为1

2

x处平衡,则此时A受到绳的拉力为()

A .1F

B .12F

C .14F

D .18F

【答案】D

【解析】A 球受到重力G 、B 球对A 球的库仑力F 、绳的拉力1F ,如图所示.

由共点力平衡条件,G 、F 、1F 三力的图示必然构成封闭三角形,由相似三角形得

1

F mg F L x L

==. 由此得

1F mg =,

x

F mg L

=

. 当球在

1

2

x 处平衡时,同理可得 1''F m g =,

12''x F m g L

=. 设A 、B 两球的带电荷量均为q ,由库仑定律可知

2

2kq F x

=,

22

'12kq F x =

?? ???

'

4F F

=,即 1

'421

xm g

xmg =.

所以

8m m '=。

因此

1188F m g mg F '='==.

【总结升华】本题考查了库仑定律及三力作用下物体的平衡问题.在已知长度的条件下,可首选

力的矢量三角形与几何三角形相似的方法巧解该类练习题.

举一反三:

【变式】如图所示,将两个摆长均为l 的单摆悬于O 点,摆球质量均为m ,带电荷量均为()0q q >.将另一个带电荷量也为()0q q >的小球从O 点正下方较远处缓慢移向O 点,当三个带电小球分别处在等边三角形abc 的三个顶点上时,摆线的夹角恰好为120?,则此时摆线上的拉力大小等于(

)

A. B .2mg

l

3l

【思路点拨】本题意在巩固学生对平衡问题的处理能力,同时加强库仑力与前面力学问题的整合.

【答案】D

【解析】当夹角为120?时,对a 或b 进行受力分析,小球受拉力、重力和另外两个小球对它的斥力,两个库仑力大小相等,两个库仑力的合力方向与水平方向成30?,所以绳子拉力与库仑力的合力成120?,

根据力的合成的知识可得绳子拉力大小等于重力为mg

或等于库仑力的合力为2

2

3l ,D 对.

【总结升华】本题考查涉及库仑定律的平衡问题,与前面力学平衡问题解题思路相同,但要注意库仑力的特征.

类型二、求解电场强度的几种特殊方法

例2.物理学中有些问题的结论不一定必须通过计算才能验证,有时只需通过一定的分析就可以判断结论是否正确.如图所示为两个彼此平行且共轴的半径分别为1R 和2R 的圆环,两圆环上的电荷量均为

(0)q q >,而电荷均匀分布.两圆环的圆心1O 和2O 相距为2a ,连线的中点为O ,轴线上的A 点在O 点

右侧与O 点相距为()r r a <.试分析判断下列关于A 点处电场强度大小E 的表达式(式中k 为静电力常量)正确的是( )

A .12

2222

12[()][()]

kqR kqR E R a r R a r =

-+++- B .1

2

3

3

22222212[()]

[()]

kqR kqR E R a r R a r =-

+++-

C .222

212()()

[()][()]

kq a r kq a r E R a r R a r +-=

-+++- D .3

3

22222

2

12()

()

[()][()]kq a r kq a r E R a r R a r +-=-

+++-

【思路点拨】本题实质体现的是转化思想的运用,即把不能视为点电荷的问题转化为点电荷问题(库仑

定律适用于点电荷),微元法是实现这一转化的有效手段.

【答案】D

【解析】当0r =时,A 点位于O 处,可以把12O O 、两个带电圆环均等效成两个位于圆心处的点电荷,根据场强的叠加容易知道。此时总场强0E =,将0r =代入各选项,排除AB 选项;当r a =时,A 点位于2O 处,带电圆环2O 由于对称性在A 点的电场为0,根据微元法可以求的此时的总场强为

13

22

1224kqa E E R a ==

??+??

,将r a =代入,CD 选项可排除C . D 对.

【总结升华】本题考查学生通过“微元法”处理实验数据的能力.

举一反三:

【变式】如图所示,均匀带电圆环的电荷量为Q ,半径为R ,圆心为O ,P 为垂直于圆环平面的对称轴上的一点,OP L =,试求P 点的场强.

【答案】3222

()QL k

R L +

【解析】本题需要用“微元法”.将非点电荷电场问题转化成了点电荷电场问题求解.设想将圆环等分为n 个小段,每一小段便可看作点电荷,其带电荷量为Q

q n

=,由点电荷场强公式可得每一小段点电荷在P 处的场强为

222()

Q Q E k

k nr n R L ==+. 由对称性可知,各小段带电环在P 处的场强E 的垂直于轴向的分量y E 相互抵消.而E 的轴向分量x E 之和即为带电圆环在P 处的场强.

22223

222

cos ()()()P x Q Q QL E E k

k k

n R L n R L R L α==?==+++

∑∑∑.

类型三、电场线与电场力

例3.某静电场的电场线分布如图所示,图中P Q 、两点的电场强度的大小分别为P E 和Q E ,电势分别为P U 和Q U ,则(

)

A.P Q P Q E E U U >> B .P Q P Q E E U U ><

C .

P Q P Q E E U U <> D .P Q P Q E E U U <<

【思路点拨】本题意在通过不等量异种电荷电场线的分布、电场强弱分析、电势高低的判断考查学生灵活应用能力,使学生认识到不但要能用电场线知识分析典型电场,还要能分析非典型电场.

【答案】A

【解析】电场强度的大小用电场线的疏密来判断,密处场强大,显然P Q E E >;又沿着电场线的方向,电势越来越低,则知P Q U U >, A 正确,B 、C 、D 均错误.

举一反三:

【变式1】如图甲所示,MN 为很大的薄金属板(可理解为无限大),金属板原来不带电.在金属板的右侧距金属板距离为d 的位置上放入一个带正电、电荷量为q 的点电荷,由于静电感应产生了如图甲所示的电场分布.P 是点电荷右侧与点电荷之间的距离也为d 的一个点,

几位同学想求出P 点的电场强度大小,但发现问题很难.几位同学经过仔细研究,从图乙所示的电场得到了一些启示,经过查阅资料他们知道:图甲所示的电场分布与图乙中虚线右侧的电场分布是一样的.图乙中两异号点电荷的电荷量的大小均为

q ,它们之间的距离为2d ,虚线是两点电荷连线的中垂线.由此他们分别求出了P 点的电场强度大小,

一共有以下四个不同的答案(答案中k 为静电力常量),其中正确的是( )

A.

289kq d B.2kq d C.234kq d D.2

109kq

d

【答案】A

【解析】如图所示:

根据题意可知,图甲中P 点场强应和图乙中q +右侧距离为d 处的P '点场强相同,即

P 2228E =E =

99P kq kq kq d d d

'-=. 所以本题只有选项A 正确.

【变式2】在光滑的绝缘水平面上,有一个正三角形abc ,顶点a b c 、、处分别固定一个正点电荷,

电荷量相等,如图所示,D 点为正三角形外接圆的圆心,E G H 、、点分别为ab ac bc 、、的中点,F 点为E 点关于电荷c 的对称点,则下列说法中不正确的是( )

A .D 点的电场强度一定不为零,电势可能为零

B .E F 、两点的电场强度等大反向,电势相等

C .E G H 、、三点的电场强度和电势均相同

D .若释放电荷c ,电荷c 将一直做加速运动(不计空气阻力)

【答案】 ABC

【解析】根据对称性,a b c 、、处等量正点电荷在D 处产生的场强矢量和为零,选项A 错误;根据点电荷产生场强的计算公式及电场叠加原理易知E 点合场强小于F 点合场强,选项B 错误;E G H 、、三点电场强度大小相等、方向不同,则选项C 错误;若释放电荷c ,电荷c 将沿a b 、连线中垂线向右做加速度逐渐减小的加速直线运动,选项D 正确.本题要求选不正确选项,故应选ABC.

类型四、与电场有关的力和运动问题

例4.如图所示,点电荷4Q +与Q +分别固定在A B 、两点,C D 、两点将AB 连线三等分.现使一个带负电的检验电荷,从C 点开始以某一初速度向右运动,不计检验电荷的重力.则关于该电荷在CD 之间的运动.下列说法中可能正确的是( )

A.一直做减速运动,且加速度逐渐变小

B.做先减速后加速的运动

C.一直做加速运动,且加速度逐渐变小

D.做先加速后减速的运动

【答案】AB

【解析】D 点的场强2

2402D kQ kQ

E d d

=

-=,D 点左侧场强向右,右侧场强向左,检验电荷带负电从C 点到D 点过程可能一直减速,加速度逐渐减小,也可能减速到0反向加速.

举一反三:

【变式】下列带电粒子均从初速为零的状态开始在电场力作用下做加速运动,经过相同的电势差U 后,哪个粒子获得的速度最大( )

A.质子11(H)

B.氘核21(H)

C.α粒子4

2(He) D.钠离子(Na )+

【答案】A

类型五、与电场有关的功和能问题

例5.某电场的电场线分布如图所示,以下说法正确的是( )

A.c 点场强大于b 点场强

B.a 点电势高于b 点电势

C.若将一试探电荷q +由a 点释放,它将沿电场线运动到b 点

D.若在d 点再固定一点电荷Q -,将一试探电荷q +由a 移至b 的过程中,电势能减小

【答案】BD

【解析】本题考查电场线的知识.由题可知,c 点电场线比b 点电场线稀疏,所以c 点场强小于b 点场强,A 选项错误;沿着电场线方向,电势降低,所以a 点电势高于b 点电势,B 选项正确;电场线方向不是电荷运动方向,C 选项错误;正点电荷从a 点移到b 点,电场力做正功,电势能减小,D 选项正确.

举一反三:

【变式】如图所示,在xOy 平面内有一个以O 为圆心、半径0.1m R =的圆,P 为圆周上的一点,O P 、两点连线与x 轴正方向的夹角为θ.若空间存在沿y 轴负方向的匀强电场,场强大小=100V/m E ,则

O P 、两点的电势差可表示为( )

A.10 sin (V)OP U θ=-

B.10 sin (V)OP U θ=

C.10 cos (V)OP U θ=-

D.10 cos (V)OP U θ=

【思路点拨】主要侧重于电势能、电势、电势差与电场力做功的考查,澄清各概念本质,掌握其相互关系并能进行定性和定量的分析.

【答案】A

【解析】本题考查匀强电场的特点,中档题.在匀强电场中,两点间的电势差等于

O P U Ed ??=-=-,

d 表示沿电场线方向的距离,则此时

sin d R θ=, 得10sin V U θ=-,A 对.

【总结升华】利用公式AB W qU =计算时,有两种运算法.

(1)正负号运算法:按照符号规定把电荷量q 、移动过程始末两点电势差AB U 及电场力的功AB W 代入公式计算.

(2)绝对值运算法:公式中AB AB q U W 、、均为绝对值,算出数值后再根据“正(或负)电荷从电势较高的点移动到电势较低的点时,电场力做正功(或电场力做负功);正(或负)电荷从电势较低的点移到电势较高的点时,电场力做负功(或电场力做正功)”来判断.

类型六、等势面与电场线

例6.如图所示,实线是等量异种点电荷所形成的电场中每隔一定电势差所描绘的等势线.现有外力移动一个带正电的试探电荷,下列过程中该外力所做正功最多的是( )

A.从A 移到B B .从C 移到D C.从D 移到E D .从E 移到F

【思路点拨】本题意在巩固学生对于典型电场的等差等势面的分布规律.

【答案】B

【解析】电荷从A移到B及从D移到E的过程中电场力做正功,则外力做负功,选项A、C错误;从C移到D比从E移到F克服电场力做功多,即外力做功最多,选项B正确、D错误.【总结升华】本题重点考查等量异种点电荷等势面的分布及与电场力做功的关系,属于必须准确掌握的考点.

举一反三:

、是不同等势面上的两点.关于该电【变式】如图所示为一个点电荷电场中的等势面的一部分,A B

场,下列说法正确的是()

A. A点的场强一定大于B点的场强

B. A点的场强可能等于B点的场强

C. A点的电势一定高于B点的电势

D. A点的电势一定低于B点的电势

【答案】A

【解析】根据等势面和电场线的关系画出几条电场线,如图所示.

由图可知A点所在处电场线较B点处密集,故A点的场强大于B点场强,A正确、B错误;由于不

、两点的电势高低,故C、D错误.

知道电场线的方向也不知场源电荷的正负,无法判断A B

类型七、电容与电容器

例7.用控制变量法,可以研究影响平行板电容器电容的因素(如图所示).设两极板正对面积为S,极板间的距离为d,静电计指针偏角为θ.实验中,极板所带电荷量不变,若()

A.保持S不变,增大d,则θ变大

B.保持S不变,增大d,则θ变小

C.保持d不变,减小S,则θ变小

D.保持d不变,减小S,则θ不变

【思路点拨】本题意在巩固学生对电容器的动态分析能力.静电计本质上也是一个电容器,理解好这

一点有利于理解和掌握该演示实验.

【答案】A

【解析】本题考查影响电容大小的因素,中档题.在电荷量保持不变的情况下,保持S 不变,增大d ,

则电容变小,根据C =Q U ,电压U 变大,则θ变大,A 对.保持d 不变,减小S ,则电容减小,根据C =Q

U

电压U 变大,则θ变大,C 、D 都错.

【总结升华】本题以教材中的演示实验为基础,考查考生对电容器动态变化问题的分析能力,其中静电计的作用是显示电容器两极板间的电压.

举一反三:

【变式】一平行板电容器充电后与电源断开,负极板接地,在两极间有一正电荷(电荷量很小)固定在P 点,如图所示.以U 表示两极板间的电压,E 表示两极板间的场强,ε表示该正电荷在P 点的电势能,若保持负极板不动,而将正极板移至图中虚线所示位置,则( )

A. U 变小,ε不变 B .E 变大,ε不变 C. U 变小,E 不变 D .U 不变,ε不变

【答案】AC

【解析】电容器充电后与电源断开,Q 不变,结合4S C k d επ=,由d 变小,知C 变大,又Q

U C

=,则U 变小,又4=

4U Q Q k Q

E Sd d Cd S k d

πεεπ===

,可知E 不变,P 点到极板的距离不变,则P 点与下极板的电势差不变,P 点的电势P ?不变,P 点电势能P q ε?=不变,所以A 、C 选项正确.

类型八、巧用运动合成与分解的思想分析带电体在复合场中的运动问题

例8.如图所示,ABD 为竖直平面内的光滑绝缘轨道,其中AB 段是水平的,BD 段为半径0.2m R =的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,场强大小3

5.010V/m E =?.一个带电的绝缘小球甲以速度0v 沿水平轨道向右运动,与静止在B 点带正电的小球乙发生弹性碰撞.已知甲、乙两球的质量均为2

=1.010

kg m ?-,乙所带电荷量5=2.010C q ?-,210m/s g 取.(水平轨道足够长,甲、

乙两球可视为质点,整个运动过程无电荷转移)

(1)甲、乙两球碰撞后,乙恰能通过轨道的最高点D ,求乙在轨道上的首次落点到B 点的距离; (2)在满足(1)的条件下,求甲的速度0v ;

(3)若甲仍以速度0v 向右运动,增大甲的质量,保持乙的质量不变,求乙在轨道上的首次落点到B 点的距离范围.

【思路点拨】本题意在培养学生对于力电综合问题的解题能力,整合其解题思路.

【答案】(1) 0.4m s = (2) (3) 04m 1.6m s ≤'.<

【解析】(1)在乙恰能通过轨道最高点的情况下,设乙到达最高点速度为D v ,乙离开D 点到达水平轨道的时间为t ,乙的落点到B 点的距离为s ,则

2

D v m mg q

E R

=+ ① 2

12()2mg qE R t m

+= ②

D s v t = ③

联立①②③得

0.4m s = ④

(2)设碰撞后甲、乙的速度分别为v v 乙甲、,根据动量守恒定律和机械能守恒定律有

0mv mv mv =+乙甲 ⑤

222

0111222

mv mv mv =+乙甲 ⑥ 联立⑤⑥得

00v v v ==乙甲, ⑦

由动能定理,得

22112222

D mg R q

E R mv mv -?-?=-乙 ⑧

联立①⑦⑧得

0v =

(3)设甲的质量为M ,碰撞后甲、乙的速度分别为M m v v 、,根据动量守恒定律和机械能守恒定律有

0M m Mv Mv mv =+ ⑩

22

2111222

D M m

Mv Mv mv =+ ? 联立⑩?得

2m Mv v M m

=

+ ?

由?和M m ≥,可得

002m v v v ≤< ?

设乙球过D 点时速度为D v ',由动能定理得

22

112222

D m

mg R qE R mv mv -?-?='- ? 联立⑨??得

2m/s 8m/s D v ≤'< ?

设乙在水平轨道上的落点距B 点的距离为s ',有

D s v t '=' ?

联立②??得

04m 1.6m s ≤'.<

【总结升华】涉及电场力做功的综合问题与力学综合问题分析思路相同,要注意力学解题规律在此处

的迁移应用.

例9.一个带负电的小球,质量为M ,带电荷量为q .在一个如图所示的平行板电容器的右侧板边被竖直上抛,最后落在电容器左侧板边同一高度处.若电容器极板是竖直放置的,两板间距为d ,板间电压为U ,求小球能达到的最大高度及抛出时的初速度.

【答案】24Mgd qU 【解析】小球以初速度0v 抛出后,它会受到竖直向下的重力Mg 及水平向左的电场力qE 的作用.在重力Mg 的作用下,小球在竖直方向将做竖直上抛运动,在电场力qE 的作用下,小球在水平方向向左做初速度为零的匀加速直线运动.即小球所做的曲线运动可以分解为竖直方向的竖直上抛和水平方向的初速

度为零的匀加速运动两个互相正交的分运动,如图所示.

在竖直分运动中,小球所能达到的最大高度202v H g =,所用的总时间02v

t g

=.在水平分运动中,位

移221122qU d at t Md ==。联立以上各式解得:24Mgd H qU =

,0v =. 【总结升华】对于带电粒子在电场中是否考虑重力作用的问题,一般有以下两种情况:

(1)对于像电子、质子、原子核等基本粒子,因一般情况下的电场力远大于重力,所以都不计重力.但对于带电小球、带电油滴、带电尘埃等较大的带电体,一般要考虑重力作用.如本题中的带电小球,则考虑其重力作用.

(2)有些问题没有明确说明是基本粒子还是带电体,如电荷、粒子之类,可能计重力,也可能不计重力,是否考虑重力往往隐含在题目中.

例10.如图所示,空间有电场强度0.5N/C E =的竖直向下的匀强电场,长l =的不可伸长的轻绳一端固定于O 点,另一端系一质量0.01kg m =的不带电小球A ,拉起小球至绳水平后,无初速度释

放.另一电荷量=+0.1C q 、质量与A 相同的小球P ,以速度0v 水平抛出,经时间0.2s t =与小球A 在D 点迎面正碰并黏在一起成为小球C ,碰后瞬间断开轻绳,同时对小球C 施加一恒力,此后小

球C 与D 点下方一足够大的平板相遇.不计空气阻力,小球均可视为质点,取2

=10m/s g .

(1)求碰撞前瞬间小球P 的速度.

(2)若小球C 经过路程=0.09m s 到达平板,此时速度恰好为0,求所加的恒力.

(3)若施加恒力后,保持平板垂直于纸面且与水平面的夹角不变,在D 点下方任意改变平板位置,小球C 均能与平板正碰,求出所有满足条件的恒力.

【思路点拨】本题是一道综合性较强的题目,过程复杂.解决本题的关键在于分析清楚本题的各个物体的运动过程.在本题中涉及三个运动的物体,一是小球A 绕O 点做圆周运动,在D 点的速度方向与A 的速度方向相反,且发生碰撞;二是小球P 做类平抛运动,小球P 运动中受到电场力和重力,力在竖直方向上,初速度水平,所以运动分解到两个方向上研究;三是A 、P 碰后小球C 的运动,可能是类平抛运动,也可能是直线运动,这由C 受到的重力和电场力及施加的恒力决定.确定了物体的运动,各个运动运用相应的规律和定律即可求解.

【答案】(1)6 m/s (2) 30F N α=

=?, (3) 1N (0120)8cos(30)

F θθ=≤??-式中< 【解析】(1) P 做抛体运动,竖直方向的加速度为

2=

15m/s mg Eq

a m

+=

在D 点的竖直速度为

3m/s y v at ==

P 碰前的速度为

P v =

(2)设在D 点轻绳与竖直方向的夹角为θ,由于P 与A 迎面正碰,则P 与A 速度方向相反,所以P 的速度与水平方向的夹角为θ,有

tan 3

y v v θ=

=

,30θ=? 对A 到达D 点的过程中根据动能定理

2

1cos 2

A mv mgl θ= 化简并解得

3m/s A v =

P 与A 迎面正碰结合为C ,根据动量守恒得

-2P A C mv mv mv =

解得

1.5m/s C v =

小球C 经过s 路程后速度变为0,一定做匀减速运动,根据位移推论式

2212.5m/s 2C v a s

'==

设恒力F 与竖直方向的夹角为α,如图所示,根据牛顿第二定律

cos(90)(2)sin 2F mg qE ma αθθ?---+=' sin(90)(2)cos 0F mg qE αθθ?---+=

代入数据得

cos(90)0.375F αθ?--= sin(90)0.125F αθ?--=

解得

304

F N α=

=?, (3)恒力1F 的方向可从竖直向上顺时针转向无限接近速度方向,设恒力与竖直向上方向的角度为θ,

有:

0(9030)120θ≤?+?=?< 在垂直于速度方向上,有

1cos()(2 )cos F mg qE βθβ-=+

则1F 大小满足的条件为:

1N (0120)8cos(30)

F θθ=

≤??-式中<.

【总结升华】本题意在强化学生对带电粒子在电场中的类平抛运动问题的分析能力,尤其是运动的合成与分解的思想的应用和与能量观点的综合应用能力.

举一反三:

【变式】如图所示,两块相同的金属板正对着水平放置,板间距离d .当两板间加电压U 时,一个质量为m 、电荷量为q +的带电粒子,以水平速度0v 从A 点射入电场,经过一段时间后从B 点射出电场,

A B 、间的水平距离为L .不计重力影响.求:

(1)带电粒子从A 点运动到B 点经历的时间t ; (2) A B 、间竖直方向的距离y ; (3)带电粒子经过B 点时速度的大小v .

【答案】(1) 0L v (2)22

2qUL mdv

【解析】(1)带电粒子在水平方向做匀速直线运动,从点运动到B 点经历的时间

L t v =

(2)带电粒子在竖直方向做匀加速直线运动 板间场强大小为

U E d =

加速度大小

qE a m

=

A B 、间竖直方向的距离

2

22

122qUL y at mdv == (3)带电粒子从A 点运动到B 点过程中,根据动能定理得

22

1122

AB qU mv mv =- 而

·AB U E y =

解得带电粒子在B 点速度的大小

v =

类型九、带电粒子在交变电场中的运动

例11.制备纳米薄膜装置的工作电极可简化为真空中间距为d 的两平行极板,如图甲所示.加在极板

A B 、间的电压AB U 作周期性变化,

其正向电压为0U ,反向电压为0(1)kU k ->,电压变化的周期为2τ,如图乙所示.在0t =时,极板B 附近的一个电子,质量为m 、电荷量为e ,受电场作用由静止开始运动.若整个运动过程中,电子未碰到极板A ,且不考虑重力作用.

(1)若5

4

k =

,电子在02τ~时间内不能到达极板A ,求d 应满足的条件; (2)若电子在0200τ~时间内未碰到极板B ,求此运动过程中电子速度v 随时间t 变化的关系;

(3)若电子在第N 个周期内的位移为零,求k 的值.

【思路点拨】本题为带电粒子在交变电场中的运动问题,需要分初速度方向和垂直初速度

方向两个方向来研究,两个分运动具有等时性.另外注意本题对数学归纳法的应用.若带电粒子在交变电场中沿平行于电场方向做直线运动,要及时通过图象变换画出带电粒子的-v t 图象帮助分析.

【答案】

(1)d ,(2) 0[(1)(1)],(0,1,2,

,99)eU v n k kt n dm τ=++-=,

(3) 41

43

N k N -=-

【解析】(1)电子在0τ~时间内做匀加速运动,加速度的大小

1eU a md

=

① 位移

2

1112

s a τ=

② 在2ττ~时间内先做匀减速运动,后反向做匀加速运动,加速度的大小

254eU a md

=

③ 初速度的大小

11v a τ= ④

匀减速运动阶段的位移

2

122

2v s a = ⑤ 由题知

12d s s >+,

解得

d ⑥ (2)在2(21)(0,1,299)n n n ττ+=~,,,时间内

速度增量

11v a τ?= ⑦

在(21)2(1)(0,1,299)n n n ττ++=~,,,时间内, 加速度的大小

2ekU a md

'=

速度增量

22v a τ?=-' ⑧

(a )当0-2t n ττ<<时 电子的运动速度

121(2)v n v n v a t n τ=?+?+- ⑨

解得

[(1)]

(0,1,2,,99)eU v t k n n dm

τ=-+= ⑩

(b )当0(21)t n ττ≤-+<时

电子的运动速度

122(1)[(21)]v n v n v a t n τ=+?+?-'-+ ?

解得

[(1)(1)]

,(0,1,2,,99)eU v n k kt n dm

τ=++-= ?

(3)电子在2(1)(21)N N ττ--~时间内的位移

2212211

2

N N s v a ττ=+--

电子在(21)2N N ττ-~时间内的位移

22212N N s v a ττ=-'-

由⑩式可知

22(1)(1)N eU v N k dm

τ

=--- 由?式可知

21()N eU v N Nk k dm

τ

=-+- 依据题意

2120N N s s +=-

解得

41

43

N k N -=

-

【总结升华】本题意在让学生掌握处理带电粒子在交变电场中运动问题的基本思路,让学生清楚粒子

在交变电场中可做直线运动,也可做曲线运动.

举一反三:

【变式】如图甲所示,两平行金属板竖直放置,左极板接地,中间有小孔.右极板电势随时间变化的规律如图乙所示.电子原来静止在左极板小孔处.(不计重力作用)下列说法中正确的是( )

A.从0t =时刻释放电子,电子将始终向右运动,直到打到右极板上

B.从0t =时刻释放电子,电子可能在两极板间振动

C.从4T

t =

时刻释放电子,电子可能在两极板间振动,也可能打到右极板上 D.从38

T

t =时刻释放电子,电子必将从左极板上的小孔中穿出

【答案】AC

【解析】作出不同时刻的释放电子的v t -图象,从图可知选项AC 正确.

高考必备:高中物理电场知识点总结大全

高中物理电场知识点总结大全 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k为静电力常量,k=9.0×10 9 N m2/c2 成立条件:①真空中(空气中也近似成立),②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r)。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E是描述电场的力的性质的物理量。 (1)定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点 的电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是:,其中Q是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是:,其中d是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ①电势定义为φ=,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高。 ②电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

高中物理电场图像专题

场强图像 1.如图所示,两个带电荷量分别为2q和-q的点电 荷固定在x轴上,相距为2L。下列图象中,两个点电荷连线上场强大小E与x关系的图象可能是( ) 2.一带正电粒子在正点电荷的电场中仅受静电力作用,做初速度为零的直线运动。取该直线为x轴,起始点 O为坐标原点,则下列关于电场强度E、粒子动能E k、粒子电势能E p、粒子加速度a与位移x的关系图象可能的是( ) 3如图所示x轴上各点的电场强度如图所示,场强方 向与x轴平行,规定沿x轴正方向为正,一负点电荷从坐标原点O以一定的初速度沿x轴正方向运动,点电荷到达x2位置速度第一次为零,在x3位置第二次速度为零,不计粒子的重力。下列说法正确的是( ) A.O点与x2和O点与x3电势差U Ox2=U Ox3 B.点电荷从O点运动到x2,再运动到x3的过程中, 加速度先减小再增大,然后保持不变 C.点电荷从O点运动到x2,再运动到x3的过程中,速度先均匀减小再均匀增大,然后减小再增大D.点电荷在x2、x3位置的电势能最小 4.如图甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,在t=0时刻,一不计重力的带电粒子沿板间中线垂直电场方向射入电场,粒子射入电场时的速度为v0,t=T时刻粒子刚好沿MN 板右边缘射出电场。则( ) A.该粒子射出电场时的速度方向一定是沿垂直电场方向的 B.在t= T 2 时刻,该粒子的速度大小为2v0 C.若该粒子在 T 2 时刻以速度v0进入电场,则粒子会打在板上 D.若该粒子的入射速度变为2v0,则该粒子仍在t=T 时刻射出电场 5.在x轴上关于原点对称的a、b两点处固定两个电荷量相等的点电荷,如图所示的E-x图象描绘了x轴上部分区域的电场强度(以x轴正方向为电场强度的正方向)。对于该电场中x轴上关于原点对称的c、d两点,下列结论正确的是( ) A.两点场强相同,c点电势更高 B.两点场强相同,d点电势更高 C.两点场强不同,两点电势相 等,均比O点电势高 D.两点场强不同,两点电势相等,均比O点电势低 6.(多选)静电场在x轴上的 场强E随x的变化关系如图所 示,x轴正方向为场强正方向, 带正电的点电荷沿x轴运动, 则点电荷( )

高中物理选修3-1电势能和电势知识点总结

高中物理选修3-1电势能和电势知识点总结 一、电势差:电势差等于电场中两点电势的差值。电场中某点的电势,就是该点相对于零势点的电势差。 (1)计算式 (2)单位:伏特(V) (3)电势差是标量。其正负表示大小。 二、电场力的功 电场力做功的特点: 电场力做功与重力做功一样,只与始末位置有关,与路径无关。 注意:系统性、相对性 2.电势能的变化与电场力做功的关系 (1)电荷在电场中具有电势能。 (2)电场力对电荷做正功,电荷的电势能减小。 (3)电场力对电荷做负功,电荷的电势能增大。 (4)电场力做多少功,电荷电势能就变化多少。 (5)电势能是相对的,与零电势能面有关(通常把电荷在离场源电荷无限远处的电势能规定为零,或把电荷在大地表面上电势能规定为零。) (6)电势能是电荷和电场所共有的,具有系统性。 (7)电势能是标量。 3.电势能大小的确定

电荷在电场中某点的电势能在数值上等于把电荷从这点移到电势能为零处电场力所做的功。 三、电势 电势:置于电场中某点的试探电荷具有的电势能与其电量的比叫做该点的电势。是描述电场的能的性质的物理量。其大小与试探电荷的正负及电量q均无关,只与电场中该点在电场中的位置有关,故其可衡量电场的性质。 单位:伏特(V)标量 1.电势的相对性:某点电势的大小是相对于零点电势而言的。零电势的选择是任意的,一般选地面和无穷远为零势能面。 2.电势的固有性:电场中某点的电势的大小是由电场本身的性质决定的,与放不放电荷及放什么电荷无关。 3.电势是标量,只有大小,没有方向.(负电势表示该处的电势比零电势处电势低.) 4.计算时EP,q,都带正负号。 5.顺着电场线的方向,电势越来越低。 6.与电势能的情况相似,应先确定电场中某点的电势为零.(通常取离场源电荷无限远处或大地的电势为零.) 三、等势面 1.等势面:电场中电势相等的各点构成的面。 2.等势面的特点 ①等势面一定跟电场线垂直,在同一等势面的两点间移动电荷,电场力不做功; ②电场线总是由电势高的等势面指向电势低的等势面,任意两个等势面都不会相交; ③等差等势面越密的地方电场强度越大。

高中物理选修32知识点详细汇总

电磁感应现象愣次定律 一、电磁感应 1.电磁感应现象 只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。 产生的电流叫做感应电流. 2.产生感应电流的条件:闭合回路中磁通量发生变化 3. 磁通量变化的常见情况(Φ改变的方式): ①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S 增大或减小 ②线圈在磁场中转动导致Φ变化。线圈面积与磁感应强度二者之间夹角发生变化。如匀强磁场中转动的矩形线圈就是典型。 ③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化 (Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件: 无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源. 电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势, 而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化 二、感应电流方向的判定 1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手 掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即 为感应电流方向(电源). 用右手定则时应注意: ①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定, ②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直. ③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向. ④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势. ⑤“因电而动”用左手定则.“因动而电”用右手定则. ⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。 导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便. 2.楞次定律 (1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。 (定语) 主语 (状语) 谓语 (补语) 宾语 (2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。阻碍磁通量变化指: 磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用); 磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”. (3)楞次定律另一种表达:感应电流的效果总是要阻碍 ...).产生感应电流的原因. (F安方向就起到阻 ..(.或反抗

高中物理电磁学和光学知识点公式总结大全

高中物理电磁学知识点公式总结大全 来源:网络作者:佚名点击:1524次 高中物理电磁学知识点公式总结大全 一、静电学 1.库仑定律,描述空间中两点电荷之间的电力 ,, 由库仑定律经过演算可推出电场的高斯定律。 2.点电荷或均匀带电球体在空间中形成之电场 , 导体表面电场方向与表面垂直。电力线的切线方向为电场方向,电力线越密集电场强度越大。 平行板间的电场 3.点电荷或均匀带电球体间之电位能。本式以以无限远为零位面。 4.点电荷或均匀带电球体在空间中形成之电位。 导体内部为等电位。接地之导体电位恒为零。 电位为零之处,电场未必等于零。电场为零之处,电位未必等于零。 均匀电场内,相距d之两点电位差。故平行板间的电位差。 5.电容,为储存电荷的组件,C越大,则固定电位差下可储存的电荷量就越大。电容本身为电中性,两极上各储存了+q与-q的电荷。电容同时储存电能,。 a.球状导体的电容,本电容之另一极在无限远,带有电荷-q。 b.平行板电容。故欲加大电容之值,必须增大极板面积A,减少板间距离d,或改变板间的介电质使k变小。 二、感应电动势与电磁波 1.法拉地定律:感应电动势。注意此处并非计算封闭曲面上之磁通量。 感应电动势造成的感应电流之方向,会使得线圈受到的磁力与外力方向相反。 2.长度的导线以速度v前进切割磁力线时,导线两端两端的感应电动势。若v、B、互相垂直,则 3.法拉地定律提供将机械能转换成电能的方法,也就是发电机的基本原理。以频率f 转动的发电机输出的电动势,最大感应电动势。 变压器,用来改变交流电之电压,通以直流电时输出端无电位差。 ,又理想变压器不会消耗能量,由能量守恒,故 4.十九世纪中马克士威整理电磁学,得到四大公式,分别为 a.电场的高斯定律 b.法拉地定律 c.磁场的高斯定律 d.安培定律 马克士威由法拉地定律中变动磁场会产生电场的概念,修正了安培定律,使得变动的电场会产生磁场。e.马克士威修正后的安培定律为 a.、 b.、 c.和修正后的e.称为马克士威方程式,为电磁学的基本方程式。由马克士威方程式,预测了电磁波的存在,且其传播速度。 。十九世纪末,由赫兹发现了电磁波的存在。 劳仑兹力。 右手定则:右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高三物理电场专题复习

电场复习指导意见 20XX 年课标版考试大纲本章特点 概念多、抽象、容易混淆。电场强度、电场力、电势、电势差、电势能、 电场力做功。 公式多。在帮助学生理解公式的来龙去脉、物理意义、适用条件的同时,可将其归类。 正负号含义多。在静电场中,物理量的正负号含义不同,要帮助学生正确理解物理量的正负值的含义。 知识综合性强。要把力学的所有知识、规律、解决问题的方法和能力应用 内 容要求说明 54.两种电荷.电荷守恒 55.真空中的库仑定律.电荷量 56.电场.电场强度.电场线.点电荷的场 强.匀强电场.电场强度的叠加 57.电势能.电势差.电势.等势面 58.匀强电场中电势差跟电场强度的关系 59.静电屏蔽 60.带电粒子在匀强电场中的运动 61.示波管.示波器及其应用 62.电容器的电容 63.平行板电容器的电容,常用的电容器 Ⅰ Ⅱ Ⅱ Ⅱ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ 带电粒子在匀强 电场中运动的计算,只 限于带电粒子进入电场时速度平行或垂直于场强的情况

到电场当中 具体复习建议 一.两种电荷,电荷守恒,电荷量(Ⅰ) 1.两种电荷的定义方式。(丝绸摩擦玻璃棒,定义玻璃棒带正点;毛皮 摩擦橡胶棒,定义橡胶棒带负电) 2.从物质的微观结构及物体带电方法 接触带电(所带电性与原带电体相同) 摩擦起电(两物体带等量异性电荷) 感应带电(两导体带等量异性电荷) 3.由于物体的带电过程就是电子的转移过程,所以带电过程中遵循电荷守恒。每个物体所带电量应为电子电量(基本电量)的整数倍。 4.知道相同的两金属球绝缘接触后将平分两球原来所带净电荷量。(注意电性)

二.真空中的库仑定律(Ⅱ)1.r r q kq F 2 2112 或 2 2121 12r q kq F F 方向在两点电荷连线上,满足同性相斥,异性相吸。2.规律在以下情况下可使用:(1)规定为点电荷;(2)可视为点电荷; (3)均匀带电球体可用点电荷等效处理,绝缘均匀带电球体间的库仑力可用库仑定律 2 21r q kq F 等效处理,但r 表示 两球心之间的距离。(其它形状的带电体不可用电荷中心等效) (4)用点电荷库仑定律定性分析绝缘带电金属球相互作用力的情况 两球带同性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 两球带异性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 3.点电荷库仑力参与下的平衡模型(两质量相同的带电通草球模型) 4.两相同的绝缘带电体相互接触后再放回原处 (1)相互作用力是斥力或为零(带等量异性电荷时为零) L mg F T α mgtg l q kq 2 2 1) sin 2(3 2 21sin 4cos l q kq mg T

高中物理 静电场 知识点归纳

静电场 第一讲 电场力的性质 一、 二、电荷及电荷守恒定律 1、 2、 自然界中只存在两种电荷,一种是正电,例如用丝绸摩擦玻璃棒,玻璃棒带正电;另一种带负电,用 毛皮摩擦橡胶棒,橡胶棒带负电。 3、 4、 电荷间存在着相互作用的引力或斥力(同性相吸,异性相斥)。 5、 6、 电荷在它的周围空间形成电场,电荷间的相互作用力就是通过电场发生的。电荷的多少叫电量。 元电荷e=×10-19 C ,所有带电体的电荷量都等于e的整数倍。点电荷 7、 8、 使物体带电叫做起电。使物体带电的方法有三种:(1)摩擦起电;(2)接触带电;(3)感应起电。 9、 10、 电荷既不能创造,也不能消灭,它只能从一个物体转移到另一个物体,或从物体的一部分转移到 另一部分,在转移的过程中,电荷的总量不变。这叫做电荷守恒定律。 【重点理解】(1)摩擦起电;(2)接触带电;(3)感应起电 当两个物体互相摩擦时,一些束缚得不紧的电子往往从一个物体转移到另一个物体,于是原来电中性的物体由于得到电子而带负电,失去电子的物体带正电,这就是摩擦起电. 当一个带电体靠近导体,由于电荷间相互吸引或排斥,导体中的自由电荷便会趋向或远离带电体,使导体靠近带电体的一端带异号电荷,远离带电体的一端带同号电荷,这就是感应起电,也叫静电感应. 接触起电指让不带电的物体接触带电的物体,则不带电的物体也带上了与带电物体相同的电荷,如把带负电的橡胶棒与不带电的验电器金属球接触,验电器就带上了负电,且金属箔片会张开;带正电的物体接触不带电的物体,则是不带电物体上的电子在库仑力的作用下转移到带正电的物体上,使原来不带电的物体由于失去电子而带正电。 实质:电子的得失或转移 二、库仑定律 1、内容:在真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的平方成反比,作用力的方向在它们的连线上。 2、公式:2 2 1r Q Q k F ,F叫库仑力或静电力,也叫电场力,F可以是引力,也可以是斥力,K叫静电力常量,公式中各量均取国际单位制单位时,K=×109 N ·m 2 /C 2

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第一章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥期特:电生磁 2.产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备 b ②产生感应电动势的那部分导体 相当于电源。 ③电源内部的电流从负极流向正 极。 3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容: b.表达式:t n E ??? =φ (2).计算感应电动势的公式 ①求平均值:t n E ??? =φ_ ②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω2 2 1BL E = ④闭合电路殴姆定律:)r (R I E +=感 5.感应电流的计算: 平均电流:t r R r R E I ?+?=+= )(_ φ 瞬时电流:r R BLV r R E I +=+= 6.安培力计算: (1)平 均值: t BLq t r )(R BL L I B F ?=?+?= =φ_ _ (2). 瞬时值:r R V L B BIL F +==22 7.通过的电荷量:r R q t I +?= - = ??φ 注意:求电荷量只能用平均值,而不 能用瞬时值。 8.互感: 由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。这种现象叫互感。 9.自感现象: (1)定义:是指由于导体本身的电流发 生变化而产生的电磁感应现象。 (2)决定因素: 线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。 (3)类型: 通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微 亨(μH )。 10.涡流及其应用 (1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流 (2)应用: a.新型炉灶——电磁炉。 b.金属探测器:飞机场、火车站安全检查、扫雷、探矿。 第二章 交变电流 一.正弦交变电流 1.两个特殊的位置 a.中性面位置: 磁通量ф最大,磁通量的变化率为零,即感应电动势零。

高中物理 静电场及其应用精选测试卷专题练习(word版

高中物理 静电场及其应用精选测试卷专题练习(word 版 一、第九章 静电场及其应用选择题易错题培优(难) 1.如图,真空中x 轴上关于O 点对称的M 、N 两点分别固定两异种点电荷,其电荷量分别为1Q +、2Q -,且12Q Q >。取无穷远处电势为零,则( ) A .只有MN 区间的电场方向向右 B .在N 点右侧附近存在电场强度为零的点 C .在ON 之间存在电势为零的点 D .MO 之间的电势差小于ON 之间的电势差 【答案】BC 【解析】 【分析】 【详解】 AB .1Q +在N 点右侧产生的场强水平向右,2Q -在N 点右侧产生的场强水平向左,又因为 12Q Q >,根据2Q E k r =在N 点右侧附近存在电场强度为零的点,该点左右两侧场强方向相反,所以不仅只有MN 区间的电场方向向右,选项A 错误,B 正确; C .1Q +、2Q -为两异种点电荷,在ON 之间存在电势为零的点,选项C 正确; D .因为12Q Q >,MO 之间的电场强度大,所以MO 之间的电势差大于ON 之间的电势差,选项D 错误。 故选BC 。 2.如图所示,竖直平面内有半径为R 的半圆形光滑绝缘轨道ABC ,A 、C 两点为轨道的最高点,B 点为最低点,圆心处固定一电荷量为+q 1的点电荷.将另一质量为m 、电荷量为+q 2的带电小球从轨道A 处无初速度释放,已知重力加速度为g ,则() A .小球运动到 B 2gR B .小球运动到B 点时的加速度大小为3g C .小球从A 点运动到B 点过程中电势能减少mgR D .小球运动到B 点时对轨道的压力大小为3mg +k 12 2 q q R 【答案】AD 【解析】

高中物理选修32知识点详细讲解版

第一章电磁感应知识点总结 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。 (2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。 (3)“阻碍”的含义 . ①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”) ②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引

高二物理知识点总结

电场 库仑定律、电场强度、电势能、电势、电势差、电场中的导体、导体 知识要点: 1、电荷及电荷守恒定律 ⑴自然界中只存在正、负两中电荷,电荷在它的同围空间形成电场,电荷间 的相互作用力就是通过电场发生的。电荷的多少叫电量。基本电荷 e =?-1610 19 .C 。 ⑵使物体带电也叫起电。使物体带电的方法有三种:①摩擦起电 ②接触带 电 ③感应起电。 ⑶电荷既不能创造,也不能被消灭,它只能从一个物体转移到另一个物体,或从的体的这一部分转移到另一个部分,这叫做电荷守恒定律。 2、库仑定律 在真空中两个点电荷间的作用力跟它们的电量的乘积成正比,跟它们间的距 离的平方成反比,作用力的方向在它们的连线上,数学表达式为F K Q Q r =122 , 其中比例常数K 叫静电力常量,K =?90109.N m C 22·。 库仑定律的适用条件是(a)真空,(b)点电荷。点电荷是物理中的理想模型。当带电体间的距离远远大于带电体的线度时, 可以使用库仑定律,否则不能使用。例如半径均为r 的金属球如 图9—1所示放置,使两球边缘相距为r ,今使两球带上等量的异种电荷Q ,设两电荷Q 间的库仑力大小为F ,比较F 与K Q r 22 3() 的大小关系,显然,如果电荷 能全部集中在球心处,则两者相等。依题设条件,球心间距离3r 不是远大于r ,故不能把两带电体当作点电荷处理。实际上,由于异种电荷的相互吸引,使电荷分布在两球较靠近的球面处,这样电荷间距离小于3r ,故F K Q r >22 3() 。同理, 若两球带同种电荷Q ,则F K Q r <22 3() 。 3、电场强度 ⑴电场的最基本的性质之一,是对放入其中的电荷有电场力的作用。电场的这种性质用电场强度来描述。在电场中放入一个检验电荷q ,它所受到的电场力 F 跟它所带电量的比值F q 叫做这个位置上的电场强度,定义式是E F q = ,场强 是矢量,规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向相反。 由场强度E 的大小,方向是由电场本身决定的,是客观存在的,与放不放检

高中物理选修3-3知识点与题型复习

热学知识点复习→制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T越高,运动越激烈,分子平均动能。 注意:对于理想气体,温度T还决定其内能的变化。 扩散现象:相互渗透的反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r的增加而。 (1)分子力的合力F表现:是为F引还是F斥?看间距与分界点r0关系,看下图 当r=r0时,F引=F斥,分子力为0; 当r>r0时,F引>F斥,分子力表现为 当r

非晶体:无确定的熔点。 → 物理性质:各向同性。原子排列:无规则 2,、同一种物质可能以晶体与非晶体两种不同形态出现。如碳形成的金刚石与石墨 3、有些晶体与非晶体可以相互转化。 4、常考晶体有:金刚石与石墨、石英、云母、食盐。常考非晶体有:玻璃、蜂蜡、松香。 三、热力学定律→研究高考对象为→主要还是理想气体 1、热力学第一定律:ΔU =W+Q 表达式中正、负号法则:如下图 2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点: (1)等温过程:内能不变,即ΔU=0。温度T ↑,则内能增加,ΔU >0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 2、液体柱模型 (1)明确点:P 液=egh 一般不用。当液体为汞时,大气压以 为单位时,高为h cm 时,P 液=h .计算气

高中物理选修32知识点总结-高中物理选修3-1欧姆定律知识点总结

高中物理选修32知识点总结|高中物理选修3-1欧姆定律知识点总结 【--高中生入党申请书】 欧姆定律是物理选修3-1课本的内容,高中生在学习时要掌握相关知识点,下面是给大家带来的高中物理选修3-1欧姆定律知识点,希望对你有帮助。 高中物理选修3-1欧姆定律知识点 一、导体的电阻 (1)定义:导体两端电压与通过导体电流的比值,叫做这段导体的电阻。 (2)公式:R=U/I(定义式)

说明: A、对于给定导体,R一定,不存在R与U成正比,与I成反比的关系,R只跟导体本身的性质有关。 B、这个式子(定义)给出了测量电阻的方法--伏安法。 C、电阻反映导体对电流的阻碍作用 二、欧姆定律 (1)定律内容:导体中电流强度跟它两端电压成正比,跟它的电阻成反比。

(2)公式:I=U/R (3)适应范围:一是部分电路,二是金属导体、电解质溶液。 三、导体的伏安特性曲线 (1)伏安特性曲线:用纵坐标表示电流I,横坐标表示电压U,这样画出的I-U图象叫做导体的伏安特性曲线。 (2)线性元件和非线性元件 线性元件:伏安特性曲线是通过原点的直线的电学元件。 非线性元件:伏安特性曲线是曲线,即电流与电压不成

正比的电学元件。 四、导体中的电流与导体两端电压的关系 (1)对同一导体,导体中的电流跟它两端的电压成正比。 (2)在相同电压下,U/I大的导体中电流小,U/I小的导体中电流大。所以U/I反映了导体阻碍电流的性质,叫做电阻(R) (3)在相同电压下,对电阻不同的导体,导体的电流跟它的电阻成反比。 高中物理选修3-1必考知识点 两种电荷

自然界中的电荷有2种,即正电荷和负电荷。如:丝绸摩擦过的玻璃棒所带的电荷是正电荷;用干燥的毛皮摩擦过的硬橡胶棒所带的电荷是负电荷。同种电荷相斥,异种电荷相吸。 相互吸引的一定是带异种电荷的物体吗?不一定,除了带异种电荷的物体相互吸引之外,带电体有吸引轻小物体的性质,这里的"轻小物体可能不带电。 电荷守恒定律 表述1:电荷守恒定律:电荷既不能凭空产生,也不能凭空消失,只能从一个物体转移到另一个物体,或从物体的一部分转移到另一部分,在转移的过程中,电荷的总量保持不变。

高中物理选修3-1静电场重点题型专题练习

静电场重点题型复习 题型一、利用电场线判断带电粒子运动情况 1.某静电场中的电场线如图所示,带电粒子在电场中仅受电场力作用,其运动轨迹如图中虚线所示,由M运动到N, 以下说法正确的是() A.粒子必定带正电荷 B.粒子在M点的电势能小于它在N点的电势能 C.粒子在M点的加速度小于它在N点的加速度 D.粒子在M点的动能小于它在N点的动能 2.如图所示,a、b带等量异种电荷,MN为a、b连线的中垂线,现有一个带电粒子从M点以一定的初速度v射出,开始时一段轨迹如图中实线所示,不考虑粒子的重力,则在飞越该电场的过程中() A.该粒子带正电 B.该粒子的动能先增大,后减小 C.该粒子的电势能先减小,后增大 D.该粒子运动到无穷远处后,速率大小一定仍为v 3.某电场的电场线分布如图所示,以下说法正确的是( ) A.c点场强大于b点场强 B.c点电势高于b点电势 C.若将一试电荷+q由a点释放,它将沿电场线运动到b点 D.若在d点再固定一点电荷-Q,将一试探电荷+q由a移至b的过程中,电 势能减小 4.如图所示,在竖直平面内,带等量同种电荷的小球A、B,带电荷量为-q(q>0),质量都为m,小球可当作质点处理.现固定B球,在B球正上方足够高的地方释放A球,则从释放A球开始到A球运动到最低点 的过程中() A小球的动能不断增加 B.小球的加速度不断减小 C.小球的机械能不断减小 D.小球的电势能不断减小 5.如图所示,平行的实线代表电场线,方向未知,电荷量为1×10-2C的正电荷在电场中只受电场力作用,该电荷由A点运动到B点,动能损失了0.1J,若A点电势为10V,则() A.B点电势为零 B.电场线方向向左 C.电荷运动的轨迹可能是图中曲线① D.电荷运动的轨迹可能是图中曲线②

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第四章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b .磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S不变,B 变,BS ?=?φ ③B和S 同时变,12φφφ-=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω22 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I = = (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H)、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿 接通电源的瞬间,灯 泡A 1较慢地亮起来。 断开开关的瞬间,灯泡A 逐渐变暗。

人教版高中物理选修3-1静电场专题练习

高中物理学习材料 金戈铁骑整理制作 静电场专题练习 1.电子伏(eV)是电学中的一个重要单位,1eV=__________________J。 2.将一个电量为1×10-5C的正电荷从从无穷远处移到电场中的A点,需克服电场力做功6×10-3J,则A点的电势为φA=_________V;如果此电荷从无穷远处移到电场里的另一点B时,电场力做功0.02J,则A、B两点电势差为U AB=_________V;如果另一个电量是-0.2C的负电荷从A移到B,则电场做功为_____________J。 3.规定无穷远处电势为零,则负点电荷周围空间的电势为__________值;一正电荷位于某负点电荷产生的电场内,它的电势能为___________值;一负电荷位于某负点电荷产生的电场内,它的电势能为___________值。 4.在电场中A、B两点的电势分别为φA=300V,φB=200V,则A、B间的电势差U AB=___________,一个质子从A点运动到B点,电场力做功_____________,质子动能的增量为______________。 5.将一个电量-2×10-8C的点电荷,从零电势点O移到M点需克服电场力做功4×10-8J,则M点电势φM=___________;若将该电荷从M点再移至N点,电场力做功1.4×10-7J,则N 点电势φN=__________,M、N两点间的电势差U MN =_____________。 6.电场中A点电势φA=80V,B点电势φB= -20V,C点电势φC=80V,把q= -3×10-6C的电荷从B点移到C点的过程中电场力做功W BC=______________,从C点移到A点,电场力做功W CA=______________。 7.在电场中,A点的电势高于B点的电势,则 A.把负电荷从A点移到B点,电场力做负功 B.把负电荷从A点移到B点,电场力做正功 C.把正电荷从A点移到B点,电场力做负功 D.把正电荷从A点移到B点,电场力做正功 8.在静电场中,关于场强和电势的说法正确的是 A.电场强度大的地方电势一定高 B.电势为零的地方场强也一定为零 C.场强为零的地方电势也一定为零 D.场强大小相同的点电势不一定相同 9.关于电势差和电场力做功的说法中,正确的是 A.电势差的大小由电场力在两点间移动电荷做的功和电荷的电量决定 B.电场力在两点间移动电荷做功的多少由两点间的电势差和该电荷的电量决定 C.电势差是矢量,电场力做功是标量 D.在匀强电场中与电场线垂直方向上任意两点间的电势差均为零

相关文档
最新文档