第4讲 导数的四则运算及导数的几何意义(教师版)

第4讲 导数的四则运算及导数的几何意义(教师版)
第4讲 导数的四则运算及导数的几何意义(教师版)

导数的四则运算及导数的几何意义

一.基础知识回顾

1.两个函数和(差)的导数等于这两个函数导数的和(差),即[f(x)+g(x)]′=f′(x)+g′(x),[f(x)-g(x)]′=f′(x)-g′(x).

2.一般地,若两个函数f(x)和g(x)的导数分别是f′(x)和g′(x),则[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);

????

??f x g x ′=f′x g x -f x g′x g 2

x .特别地,当g(x)=k 时,有[kf(x)]′=kf ′(x)

1.函数f (x )在x =x 0处的导数函数y =f (x )在x 0点的瞬时变化率称为函数y =f (x )在x 0点

的导数,通常用符号f ′(x 0)表示,记作f ′(x 0)=lim Δx →0

Δy Δx =lim Δx →0

f x 0+Δx -f x 0Δx

2.曲线的切线如图,曲线y =f (x )的一条割线AB ,其中A (x 0,f (x 0)),

B (x 0+Δx ,f (x 0+Δx )).当Δx 趋于零时,割线AB 将绕点A 转动最后趋于直线l ,称直线l 为曲线y =f (x )在点A 处的切线. 3.函数的平均变化率的几何意义是曲线y =f (x )割线的斜率;函数y =f (x )在x 0处的导数f ′(x 0)表示曲线f (x )在点A 处的切线的斜率 二.问题探究

探究点一:导数的加法与减法法则

例1:求下列函数的导数.(1)y =x 3+x 2+x ;(2)y =2x

+x.

解:(1)y ′=(x 3+x 2+x)′=(x 3)′+(x 2)′+(x)′=3x 2+2x +1. (2)y ′=(2x

+x)′=

(2x )′+(x)′=2x

ln 2+12x

.

跟踪训练1:已知f(x)=tan x +sin x ,求f′? ??

??π3. 解:f ′(x)=(tan x)′+(sin x)′=

1cos 2x +cos x ,∴f ′? ??

??π3=4+12=92.

探究点二:导数加减法的应用

例2:已知函数f(x)=x 3

+x ,求函数在点(2,10)处的切线方程.

解:f ′(x)=(x 3+x)′=(x 3)′+(x)′=3x 2+1. ∴f ′(2)=3×22

+1=13. ∴所求切线的斜率是13. ∴切线方程为y -10=13(x -2),即13x -y -16=0. ∴所求切线的方程是13x -y -16=0.

跟踪训练2:已知函数f(x)=sin x +cos x ,求曲线y =f(x)在x =π

4

处的切线方程.

解:∵f ′(x)=(sin x +cos x)′=(sin x)′+(cos x)′=cos x -sin x ,∴f ′? ??

??π4=cos π4-sin π4=0. ∴曲线y =f(x)在x =π4处的切线斜率为0. 又f ? ????π4=2,∴所求切线方程为y = 2.

探究点三:导数乘除法的运算法则 例3:求下列函数的导数:

(1)y =x 5+x +sin x x 2; (2)y =ln x +2x x 2

;(3)y =1-12sin 2x 2

.

解:(1)∵y =x 3

3

2x

-

+sin x x

2

=x 3

3

2x

-

+sin x ·

x

-2

,∴y ′=(x 3

3

2x

-

+sin x ·

x

-2

)′=3x 2

32

52

x

-

+cos x ·x -2+(-2x -3)sin x =3x 2

32x

5

+cos x x 2-2sin x

x

3

.∴y ′=3x 2

+cos x x 2-32x 2

x -2sin x x 3. (2)y ′=(ln x x 2+2x

x 2)′=(ln x x 2)′+(2

x

x 2)′=1x ·x 2

-ln x ·2x x 4+2x ·ln 2·x 2-2x ·2x x

4

=1-2ln x x +ln 2·x 2-2x ·2

x

x

4

=1-2ln x +ln 2·x -22x

x 3

.(3)∵y =1-12sin 2x 2=14(3+1-2sin 2x

2)=14(3+cos x)=34+14cos x ,∴y ′=(34+14cos x)′=-1

4

sin x.

跟踪训练3:求下列函数的导数:

(1)y =x·tan x;(2)y =x +3x 2+3;(3)y =xsin x -2

cos x .

解:(1)y ′=(x ·tan x)′=(

xsin x cos x

)′=xsin x ′cos x -xsin x cos x ′

cos 2

x =sin x +xcos x cos x +xsin 2

x

cos 2x =sin xcos x +x

cos 2x

(2)y ′=

x +3′x 2

+3-x +3x 2

+3′

x 2+32=-x 2

-6x +3x 2+32.(3)y ′=(xsin x)′-

(

2cos x )′=sin x +xcos x -2sin x cos 2

x . 探究点四:导数的应用

例4:曲线f(x)=sin x sin x +cos x -12在点M ? ????π4,0处的切线的斜率为 (B) A .-1

2

B .1

2

C .-

2

2

D .

22

(1)解析:f ′(x)=cos x sin x +cos x -sin x cos x -sin x sin x +cos x 2

1

sin x +cos x 2

,故f ′(π4)=12,∴曲线在点M ? ??

??π4,0处的切线的斜率为12.

跟踪训练4:设函数f(x)=13x 3-a 2x 2

+bx +c ,其中a>0,曲线y =f(x)在点P(0,f(0))处的

切线方程为y =1,确定b 、c 的值.

解:由题意得,f(0)=c ,f ′(x)=x 2

-ax +b ,由切点P(0,f(0))既在曲线f(x)=13x 3-a 2

x

2+bx +c 上又在切线y =1上知???

??

f ′0=0

f 0=1

,即???

??

02

-a ·0+b =0

c =1

,故b =0,c =1.

探究点五:求切线的方程

例5:已知曲线f (x )=x 2

,(1)求曲线在点P (1,1)处的切线方程;(2)求曲线过点P (3,5)的切线方程.

解:(1)设切点为(x 0,y 0),lim Δx →0

x 0+Δx 2

-x 2

Δx

=lim Δx →0

x 20+2x 0·Δx +Δx 2

-x 2

Δx

=2x 0,

∴f ′(1)=2. ∴曲线在点P (1,1)处的切线方程为y -1=2(x -1),即y =2x -1. (2)点P (3,5)不

在曲线f (x )=x 2

上,设切点为(x 0,y 0) 由(1)知,f ′(x 0)=2x 0,∴切线方程为y -y 0=2x 0(x

-x 0),由P (3,5)在所求直线上得5-y 0=2x 0(3-x 0)①,再由A (x 0,y 0)在曲线y =x 2

上得y 0

=x 2

0②,联立①,②得,x 0=1或x 0=5. 从而切点A 的坐标为(1,1)或(5,25) 当切点为(1,1)时,切线的斜率为k 1=2x 0=2,此时切线方程为y -1=2(x -1),即y =2x -1,当切点为(5,25)时,切线的斜率为k 2=2x 0=10,此时切线方程为y -25=10(x -5),即y =10x -25. 综上

所述,过点P (3,5)且与曲线y =x 2

相切的直线方程为y =2x -1或y =10x -25.

跟踪训练5:已知曲线y =2x 2

-7,求:(1)曲线上哪一点的切线平行于直线4x -y -2=0? (2)曲线过点P (3,9)的切线方程. 解:y ′=lim Δx →0

Δy Δx

=lim Δx →0

[2x +Δx 2

-7]-2x 2

-7Δx

=lim Δx →0

(4x +2Δx )=4x . (1)设切

点为(x 0,y 0),则4x 0=4,x 0=1,y 0=-5,∴切点坐标为(1,-5).(2)由于点P (3,9)不在曲线上.设所求切线的切点为A (x 0,y 0),则切线的斜率k =4x 0,故所求的切线方程为y -y 0

=4x 0(x -x 0).将P (3,9)及y 0=2x 20-7代入上式,得9-(2x 2

0-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25).从而所求切线方程为8x -y -15=0和16x -y -39=0.

三.课后联系作业 一.选择题

1. 下列结论不正确的是 (D)

A .若y =3,则y ′=0

B .若f (x )=3x +1,则f ′(1)=3

C .若y =-x +x ,则y ′=-1

2x

+1 D .若y =sin x +cos x ,则y ′=cos x +

sin x

2. 函数y =x -(2x -1)2

的导数是 (D)

A .3-4x

B .3+4x

C .5+8x

D .5-8x

3. 曲线f (x )=x 3

+x -2在P 0点处的切线平行于直线y =4x -1,则P 0点的坐标为 (C)

A .(1,0)

B .(2,8)

C .(1,0)和(-1,-4)

D .(2,8)和(-1,-4)

4. 曲线f (x )=x 2

+bx +c 在点(1,2)处的切线与其平行直线bx +y +c =0间的距离是 (C)

A.24

B.22

C.322

D. 2 5. 已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能是 (A)

A .f (x )=(x -1)3+3(x -1)

B .f (x )=2(x -1)

C .f (x )=2(x -1)2

D .f (x )=x -1

6. 函数y =2x 2

-x x +3x -2

x

的导数为 (D)

A.x ?

??

??3+1x 2+1 B .x ?

??

??3-1x 2-1 C.x ?

??

??3-1x

2+1

D.x ?

??

??3+1x

2-1

7.设函数f (x )=g (x )+x 2

,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线

y =f (x )在点(1,f (1))处切线的斜率为 (A)

A .4

B .-14

C .2

D .-1

2

8. 若函数f (x )=ax 4+bx 2

+c 满足f ′(1)=2,则f ′(-1)等于 (B)

A .-1

B .-2

C .2

D .0

9. 已知点P 在曲线y =4

e x +1

上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是

(D)

A.??????0,π4

B.??????π4,π2

C.? ????π2,3π4

D.??????3π4,π 10. 设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12

],则导数f ′(1)

的取值范围是

(D)

A .[-2,2]

B .[2,3]

C .[3,2]

D .[2,2] 二.填空题

11. 过点P (-1,2)且与曲线f (x )=3x 2

-4x +2在点M (1,1)处的切线平行的直线方程是2x -y +4=0

12. 某物体做直线运动,其运动规律是s =t 2

+3t

(t 的单位是s ,s 的单位是m),则它在第

4 s 末的瞬时速度应该为713

16

m/s

13.已知f (x )=13

x 3

+3xf ′(0),则f ′(1)=1

14. 设f (x )=a e x

+b ln x ,且f ′(1)=e ,f ′(-1)=1e

,则a +b =1

15.若函数f (x )=e x x 在x =x 0处的导数值与函数值互为相反数,则x 0的值为1

2

三.解答题

16.已知抛物线y =ax 2

+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a 、

b 、

c 的值.

解:因为y =ax 2

+bx +c 过点(1,1),所以a +b +c =1.y ′=2ax +b ,曲线在点(2,-1)处的切线的斜率为4a +b =1.又曲线过点(2,-1),所以4a +2b +c =-1.由

????

?

a +

b +

c =1,4a +b =1,4a +2b +c =-1,

解得????

?

a =3,

b =-11,

c =9.

所以a 、b 、c 的值分别为3、-11、9.

17.设函数f (x )=ax -b

x

,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;

(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.

解:(1)由7x -4y -12=0得y =74x -3.当x =2时,y =12,∴f (2)=12,①又f ′(x )=a +b

x 2,

∴f ′(2)=7

4

,②由①,②得

????

?

2a -b 2=12

a +

b 4=74.

解之得???

??

a =1

b =3

.故f (x )=x -3

x

.(2)证明

设P (x 0,y 0)为曲线上任一点,由y ′=1+3

x

2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=

(1+3x 20)(x -x 0),即y -(x 0-3x 0)=(1+3x 20)(x -x 0).令x =0得y =-6

x 0

,从而得切线与直线

x =0的交点坐标为(0,-6

x 0

).令y =x 得y =x =2x 0,从而得切线与直线y =x 的交点坐标为

(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形面积为12|-6

x 0

||2x 0|

=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值此定值为6.

18.已知直线l 1为曲线y =x 2

+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.

求直线l 2的方程.

解:∵y ′=2x +1,∴直线l 1的方程为y =3x -3.设直线l 2与曲线y =x 2

+x -2的切点为B (b ,

b 2+b -2),则l 2的方程为y =(2b +1)x -b 2-2.∵l 1⊥l 2,∴2b +1=-13,b =-2

3

.∴直

线l 2的方程为y =-13x -22

9.

19.已知偶函数f (x )=ax 4+bx 3+cx 2

+dx +e 的图像过点P (0,1),且在x =1处的切线方程

为y =x -2,求y =f (x )的解析式.

解:∵f (x )的图像过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (-x )=f (x ).∴ax 4+bx

3

+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0,∴f (x )=ax 4+cx 2

+1.∵函数f (x )在x =1处的切线方程为y =x -2,可知切点为(1,-1),∴a +c +1=-1.①∵f ′(1)

=4a +2c ,∴4a +2c =1.②由①②解得a =52,c =-9

2

.∴函数y =f (x )的解析式为f (x )

=52x 4-92

x 2

+1. 20.已知曲线C 1:y =x 2与曲线C 2:y =-(x -2)2

,直线l 与C 1和C 2都相切,求直线l 的方程.

解:设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2

).对于C 1:y ′=2x ,

则与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x -x 2

1.①对于C 2:y ′=-2(x

-2),则与C 2相切于点Q 的切线方程为y +(x 2-2)2

=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x

+x 2

2

-4.②因为两切线重合,所以由①②,得?

????

2x 1=-2x 2-2,

-x 21=x 2

2-4解得?

??

??

x 1=0,x 2=2或

????

?

x 1=2,x 2=0.

所以直线l 的方程为y =0或y =4x -4.

导数的计算及其几何意义

导数的计算及其几何意义 一、导数的概念及其几何意义 1.函数的平均变化率: 定义:已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=- 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-,则当0x ?≠时,商 00()()f x x f x y x x +?-?=??称 作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注意:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 定义:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-.如果当x ?趋近于0时,平均变化 00()()f x x f x y x x +?-?=??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作:“当0 x ?→时, 00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '.这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ?→时, 000()() ()f x x f x f x x +?-'→?” 或 “0000 ()() lim ()x f x x f x f x x ? →+?-'=?”. 注:0'()f x 是个数. 3.可导与导函数: 定义:如果()f x 在开区间(,)a b 内每一点都是可导的,则称()f x 在区间(,)a b 可导.这样,对开区间(,)a b 内每个值x ,都对应一个确定的导数()f x '.于是,在区间(,)a b 内,()f x '构

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f / (x)的图象是( ) 4.下列求导数运算错误.. 的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 A x D C x B

导数的几何意义教学设计说明

运用学案导学的课堂教学案例分析 ——《导数的几何意义和应用》 一、导学案设计: 《导数的几何意义和应用》学案 年 级 高二 科 目 数学 课 型 新课 主备人 霍菁琰 【学习目标】1、掌握导数的几何意义;了解曲线在某点处切线的定义; 2、会利用导数求过曲线上一点的切线方程。 【复习巩固】 (1)已知点()11,A x y ,()22,B x y ,则斜率AB k = ; (2)经过点() 00,A x y ,斜率为k 的直线方程为 ; (3)导数)(0/x f 的本质是什么?请写数学表达式。 导数)(0/x f 的本质是函数)(x f 在 处的 即: (4)曲线21y x =+在0x x =处的导数 。 【合作探究】 (1)探究过程:函数)(x f 平均变化率x x f x x f ?-?+)()(00的几何意义是什么,请在 (2) 探究结果: 导数)(0/x f 的几何意义是 【自学辅导】 (1)自学教材P77面,理解任意曲线的切线定义。

(2)比较任意曲线的切线和圆的切线的定义的异同; 【典例解析】 例1、求抛物线12+=x y 在点(1,2)处的切线的斜率并写出切线方程。 【拓展引申】 引申1:求抛物线12+=x y 在点()00,()x f x 处的切线的方程。 引申2:已知曲线12+=x y 在点P 处切线的斜率为6,求点P 坐标是多少? 引申3:在曲线2x y =+1上过哪一点的切线,垂直于直线650x y ++=? 【课堂检测】 1、设'()f x =0,则曲线()y f x =在点()() 00,x f x 处的切线 ( ) (A)不存在 (B )与x 轴平行或重合 (C )与x 轴垂直 (D )与x 轴斜交

导数概念及其几何意义

导数概念及其几何意义 1、在函数的平均变化率的定义中,自变量的的增量满足() A .>0 B .<0 C D. =0 2、设函数,当自变量由改变到时,函数值的改变量是() A B C D 3、已知函数的图像上一点(1,2)及邻近一点,则等于() A 2 B 2x C D 2+ 5.函数y=f(x)在x=x0处可导是它在x=x0处连续的() A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件 6.在曲线y=2x2-1的图象上取一点(1,1)及邻近一点(1+Δx,1+Δy),则等于() A.4Δx+2Δx2 B.4+2Δx C.4Δx+Δx2 D.4+Δx 7.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y-1=0,则() A.f′(x0)>0 B.f′(x0)<0 C.f′(x0)=0 D.f′(x0)不存在 8.已知命题p:函数y=f(x)的导函数是常数函数;命题q:函数y=f(x)是一次函数,则命题p是命题q的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.设函数f(x)在x0处可导,则等于() A.f′(x0) B.0 C.2f′(x0) D.-2f′(x0) 10.设f(x)=x(1+|x|),则f′(0)等于() A.0 B.1 C.-1 D.不存在 11.若曲线上每一点处的切线都平行于x轴,则此曲线的函数必是______ 函数.(填增、减、常函数) 13.设f(x)在点x处可导,a、b为常数,则=_____. 16.已知曲线y=2x2上一点A(1,2),求(1)点A处的切线的斜率.(2)点A处的切线方程. 17.已知函数f(x)=,试确定a、b的值,使f(x)在x=0处可导.

导数的计算与导数的几何意义高考试题汇编(含答案)

专题三 导数及其应用 第七讲 导数的计算与导数的几何意义 2019年 1.(2019全国Ⅰ文13)曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________. 2.(2019全国Ⅱ文10)曲线y =2sin x +cos x 在点(π,–1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 3.(2019全国三文7)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .a=e ,b =-1 B .a=e ,b =1 C .a=e -1,b =1 D .a=e -1,1b =- 4.(2019天津文11)曲线cos 2 x y x =- 在点()0,1处的切线方程为__________. 5.(2019江苏11)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的 切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 . 2010-2018年 一、选择题 1.(2018全国卷Ⅰ)设函数32()(1)=+-+f x x a x ax .若()f x 为奇函数,则曲线()=y f x 在点(0,0)处的切线方程为 A .2=-y x B .y x =- C .2=y x D .=y x 2.(2017山东)若函数e ()x f x (e=2.71828L ,是自然对数的底数)在()f x 的定义域上单 调递增,则称函数()f x 具有M 性质,下列函数中具有M 性质的是 A .()2 x f x -= B .2 ()f x x = C .()3 x f x -= D .()cos f x x = 3.(2016年山东)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线 互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 A .sin y x = B .ln y x = C .e x y = D .3y x = 4.(2016年四川)设直线1l ,2l 分别是函数ln ,01 ()ln , 1x x f x x x -<?,图象上点1P ,2P 处

3.1.3导数的几何意义教案

3.1.3导数的几何意义 教学三维目标: 1.知识与技能:了解平均变化率与割线斜率之间的关系; 2.过程与方法:理解曲线的切线的概念; 3.情态与价值:通过函数的图像直观地理解导数的几何意义并会用导数的几何意义解题; 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义. 教学方法:讨论法 教学工具:多媒体 教学课时:1课时 教学过程: 创设情景 (一)平均变化率、割线的斜率 (二)瞬时速度、导数 我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢? 新课讲授 (一)曲线的切线及切线的斜率:如图3.1-2,当(,())(1 ,2,3,4)n n n P x f x n =沿着曲线()f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么? 我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线. 问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? ⑵切线PT 的斜率k 为多少? 图3.1-2

容易知道,割线n PP 的斜率是00 ()()n n n f x f x k x x -=-,当点n P 沿着曲线无限接近点P 时,n k 无限趋近于切线PT 的斜率k ,即0000 ()()lim ()x f x x f x k f x x ?→+?-'==? 说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. (二)导数的几何意义: 函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000()()()lim x f x x f x f x k x ?→+?-'==? 说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标; ②求出函数在点0x 处的变化率0000()()()lim x f x x f x f x k x ?→+?-'==? ,得到曲线在点00(,())x f x 的切线的斜率; ③利用点斜式求切线方程. (二)导函数: 由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ', 即: 0()()()lim x f x x f x f x y x ?→+?-''==? 注:在不致发生混淆时,导函数也简称导数. (三)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。 1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。 2)函数的导数,是指某一区间内任意点x 而言的, 就是函数f(x)的导函数 3)函数()f x 在点0x 处的导数'0()f x 就是导函数()f x '在0x x =处的函数值,这也是 求函数在点0x 处的导数的方法之一。 典例分析

高中数学知识点总结导数的定义及几何意义

导数的定义及几何意义 1.x x f x x f x f x ?-?+=→?)()(lim )(0000/ 叫函数)(x f y =在0x x →处的导数,记作0|/x x y = 。 注:①函数应在点0x 的附近有定义,否则导数不存在。②在定义导数的极限式中,x ?趋近 于0可正、可负、但不为0,而y ?可能为0。③x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点(0x ,)(0x f )及点(0x +x ?, )(00x x f ?+)的割线斜率。④导数x x f x x f x f x ?-?+=→?)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在0x 点处变化的快慢程度,它的几何意义是 曲线)(x f y =上点(0x ,)(0x f )处的切线的斜率。⑤若极限x x f x x f x ?-?+→?)()(lim 000不存在,则称函数)(x f y =在点0x 处不可导。⑥如果函数)(x f y =在开区间),(b a 内每一点 都有导数,则称函数)(x f y =在开区间),(b a 内可导;此时对于每一个x ∈),(b a ,都对应 着一个确定的导数)(/x f ,从而构成了一个新的函数)(/x f ,称这个函数)(/ x f 为函数)(x f y =在开区间),(b a 内的导函数,简称导数;导数与导函数都称为导数,这要加以区分: 求一个函数的导数,就是求导函数;求一个函数在给定点的导数,就是求导函数值。 [举例1]若2)(0/=x f ,则k x f k x f k 2)()(lim 000--→等于: (A) -1 (B) -2 (C) 1 (D) 1/2 解析:∵2)(0/=x f ,即k x f k x f k ---+→-)()]([lim 000=2?k x f k x f k 2)()(lim 000--→=-1。 [举例2] 已知0,a n >为正整数设()n y x a =-,证明1'() n y n x a -=- 解析:本题可以对()n y x a =-展开后“逐项”求导证明;这里用导数的定义证明: x a x a x x y n n x ?---?+=→?)()(lim 0/ =

3.1.3 导数的几何意义(优秀经典公开课比赛教案及联系解答)

3.1.3导数的几何意义 教学目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数. 教学重难点:函数切线的概念,切线的斜率,导数的几何意义 教学过程: 情景导入:如图,曲线C 是函数y=f(x)的图象,P(x0,y0)是曲线C 上的任意一点,Q(x0+Δx,y0+Δy)为P 邻近一点,PQ 为C 的割线,PM//x 轴,QM//y 轴,β为PQ 的倾斜角. .tan , ,:β=???=?=x y y MQ x MP 则 展示目标:见学案 检查预习:见学案 合作探究:探究任务:导数的几何意义 问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化 趋是什么? y x ??请问:是割线PQ 的什么?

新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线 割线的斜率是:n k = 当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数 就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x ?→+?-'==? 新知: 函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()lim x f x x f x f x x ?→+?-'=? 精讲精练: 例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况. 解:可用曲线 h(t) 在 t0 , t1 , t2 处的切线刻画曲线 h(t) 在上述三个时刻附近的变化情况. (1) 当 t = t0 时, 曲线 h(t) 在 t0 处的切线 l0 平行于 x 轴.故在 t = t0 附近曲线比较平坦, 几乎没有升降.(2)当 t = t1 时, 曲线 h(t) 在 t1 处的切线 l1 的斜率 h’(t1) <0 .故在t = t1 附近曲线下降,即函数 h(t) 在 t = t1 附近单调递减.(3)当 t = t2 时, 曲线 h(t) 在 t2处的切线 l2 的斜率 h’(t2) <0 .故在 t = t2 附近曲线下降,即函数 h(t) 在t = t2 附近也单调递减.从图可以看出,直线 l1 的倾斜程度小于直线 l2 的倾斜程度,这说明 h(t) 曲线在 l1 附近比在 l2 附近下降得缓慢。 例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)

导数的概念及其几何意义教案

§2 导数的概念及其几何意义 第四课时 导数的几何意义习题课 一、教学目标:会利用导数的几何意义求曲线上某点处的切线方程。 二、教学重点:曲线上一点处的切线斜率的求法 教学难点:理解导数的几何意义 三、教学方法:探析归纳,讲练结合 四、教学过程 (一)、复习:导数的几何意义:函数)(x f y =在x 0处的导数就是曲线)(x f y =在点(x 0,)(0x f )处的切线的斜率。 (二)、探究新课 例1、在曲线34x y =上求一点P 使得曲线在该点处的切线满足下列条件: (1)平行于直线y =x +1; (2)垂直于直线2x -16y +1=0; (3)倾斜角为135°。 解:设点坐标为(0x ,0y ),则 202002020202020) (48)()(484)(4x x x x x x x x x x x x x x x x x y ?+?--=??+?-?-=?-?+=?? ∴当Δx 趋于0时,30 400088)(x x x x f -=-='。 (1)∵切线与直线y =x +1平行。 ∴1)(0='x f ,即1830 =-x , ∴20-=x ,10=y 。 即P (―2,1)。 (2)∵切线与直线2x -16y +1=0垂直, ∴1)16 2(·)(0-=--'x f ,即181·830-=-x ,

∴10=x ,40=y 。 即P (―1,4)。 (3)∵切线倾斜角为135°, ∴1135tan )(00-=='x f ,即1830 -=- x , ∴20=x ,10=y 。 即P (2,1)。 例2、求曲线1)(3+==x x f y 过(1,1)点的切线的斜率。 解:设过(1,1)点的切线与13+=x y 相切与点)1,(300+x x P ,则 2020320203030)(33)()(33)1(1)(x x x x x x x x x x x x x x x y ?+?+=??+?+?=?+-+?+=?? 当Δx 趋于0时, 2003)(x x f =', 由导数的几何意义可知,曲线在点P 处的切线的斜率为203x k = ① 又过(1,1)点的切线的斜率1 11030--+=x x k ② ∴由①②得:130302 -=x x x 解得:00=x 或230=x ,∴0=k 或427=k , ∴曲线13+=x y 过(1,1)点的切线的斜率为0或427。 例3、如图,它表示跳水运动中高度随时间变化的函数 2() 4.9 6.510h x x x =-++,根据图像,请描述、比较曲线()h t 在0t 、1t 、2t 附近的变化情况. 解:我们用曲线()h t 在0t 、1t 、2t 处的切线,刻画曲线()h t 在上述三个时刻附近的变化情况. (1) 当0t t =时,曲线()h t 在0t 处的切线0l 平行于x 轴,所以,在0t t =附近曲线 比较平坦,几乎没有升降. (2) 当1t t =时,曲线()h t 在1t 处的切线1l 的斜率1()0h t '<,所以,在1t t =附近

导数的概念、运算及几何意义

导数的概率、运算以及几何意义 1.函数的平均变化率: 一般地,已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=-, 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-, 则当0x ?≠时,商00()()f x x f x y x x +?-?= ??称作函数()y f x =在区间[,]x x x +?(或00[,]x x x +?)上的平均变化率.2.函数的瞬时变化率、函数的导数: 设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-. 如果当x ?趋近于0时,平均变化率 00()() f x x f x y x x +?-?= ??趋近于一个常数,那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作: “当0x ?→时,00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→” 读作“趋近于”. 函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作()f x '. 这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作 “当0x ?→时,000()()()f x x f x f x x +?-'→?”或“0000()() lim ()x f x x f x f x x ?→+?-'=?”. 考点1: 导数的定义【铺垫】求下列函数在区间[]22x +?,和[]33x +?,上的平均变化率 ①()f x x = ②2()f x x = 【例1】 平均变化率与瞬时变化率 ⑴ 求下列函数在区间00[]x x x +?,上的平均变化率. ① ()f x x = ② 2()f x x = ③ 3()f x x = ④1 ()f x x = ⑤ ()f x ⑵ 求下列函数分别在1x =,2x =和3x =处的瞬时变化率. ① ()f x x = ② 2()f x x = ③ 3()f x x =④1 ()f x x =⑤()f x 【追问】从瞬时变化率角度分析每个函数的整体变化趋势,我们可以很明显的看出 对于一次函数,二次函数,三次函数来说,次数越高,往后变化越快. 【总结】由例1⑵看出一次函数的增长速度不变,二次函数三次函数的增长速度越来越快, 提高班学案1 【拓1】 求函数3()2f x x x =-在[]11x +?,上附近的平均变化率,在1x =处的瞬时变化率与 导数.

人教版 高中数学 选修2-2《1.1.3导数的几何意义》教案

人教版高中数学精品资料 §1.1.3导数的几何意义 教学目标: 1.了解平均变化率与割线斜率之间的关系; 2.理解曲线的切线的概念; 3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题; 教学重点:曲线的切线的概念、切线的斜率、导数的几何意义; 教学难点:导数的几何意义. 教学过程: 一.创设情景 (一)平均变化率、割线的斜率 (二)瞬时速度、导数 我们知道,导数表示函数y =f (x )在x =x 0处的瞬时变化率,反映了函数y =f (x )在x =x 0附近的变化情况,导数0()f x '的几何意义是什么呢? 二.新课讲授 (一)曲线的切线及切线的斜率:如图3.1-2,当(,() )(1,2,3,4)n n n P x f x n =沿着曲线() f x 趋近于点00(,())P x f x 时,割线n PP 的变化趋势是什么? 图3.1-2

我们发现,当点n P 沿着曲线无限接近点P 即Δx →0时,割线n PP 趋近于确定的位置,这个确定位置的直线PT 称为曲线在点P 处的切线. 问题:⑴割线n PP 的斜率n k 与切线PT 的斜率k 有什么关系? ⑵切线PT 的斜率k 为多少? 容易知道,割线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 沿着曲线无限接近点P 时,n k 无 限趋近于切线PT 的斜率k ,即0000 ()() lim ()x f x x f x k f x x ?→+?-'==? 说明:(1)设切线的倾斜角为α,那么当Δx →0时,割线PQ 的斜率,称为曲线在点P 处的切线的斜率. 这个概念: ①提供了求曲线上某点切线的斜率的一种方法; ②切线斜率的本质—函数在0x x =处的导数. (2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多个. (二)导数的几何意义: 函数y =f (x )在x =x 0处的导数等于在该点00(,())x f x 处的切线的斜率, 即 0000 ()() ()lim x f x x f x f x k x ?→+?-'==? 说明:求曲线在某点处的切线方程的基本步骤: ①求出P 点的坐标; ②求出函数在点0x 处的变化率0000 ()() ()lim x f x x f x f x k x ?→+?-'==? ,得到曲线在点 00(,())x f x 的切线的斜率; ③利用点斜式求切线方程. (二)导函数: 由函数f (x )在x =x 0处求导数的过程可以看到,当时,0()f x ' 是一个确定的数,那么,当x 变化时,便是x 的一个函数,我们叫它为f (x )的导函数.记作:()f x '或y ', 即: 0 ()() ()lim x f x x f x f x y x ?→+?-''==? 注:在不致发生混淆时,导函数也简称导数. (三)函数()f x 在点0x 处的导数0()f x '、导函数()f x '、导数 之间的区别与联系。 1)函数在一点处的导数0()f x ',就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数。

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

导数的几何意义及运算

导数的几何意义及运算复习 一、 导数的几何意义: )(0x f ?=x y ??=x x x x x f x f 0 000)()()(-?+-?+=x f x f x x ?-?+)()(00=K 当Δx----0时, )(0x f ? =K 趋近于一常数 二、 导数的求导公式及运算 典型例题: 例1、当h 无限趋近于0时,h h 4)4(22-+无限趋近于 ;h h 44-+无限趋近于 . 练习:若 )(0x f ?=3,当Δx 无限趋近于0时,x x f x f x x ??--?+)3()(00= . 例2.已知函数y=f(x)的图像在点(1,f(1))处的切线方程是x-2y+1=0,则'(1)2(1)f f += 训练1:已知函数y=f(x)的图像在点(0,f(0))处的切线方程是2x-y+2=0,则'(0)(0)f f += 2.曲线 '2(1) 1().(0)2x f x f x e f e x =-+在点(1,f(1))处的切线方程为 题型二:求切线方程 例3、已知曲线y=3 4313+x , (1)、求曲线在点P (2,4)处的切线方程; (2)、求斜率为4的曲线的切线方程; (3)、求过点P (2,4)的切线方程;

练习1:已知曲线3 y x = (1) 求曲线在点P (1,1)处的切线方程; (2) 求与直线3x-y=0平行的直线方程; (3) 求过点P(1,1)处的直线方程; 练习2:已知kx+1=㏑x 有实数解,求k 的取值范围 题型三:告诉切线方程求参数的值 例4:函数y=12+x a 图像与直线y=x 相切,则a= . 练习: 曲线y= 13++ax x 的一条切线方程为y=2x+1则实数a= 题型四:两个曲线的公切线 例5.若存有过点(1,0)的直线与曲线3y x =和21594 y ax x =+-都相切,则实数a= 例6已知曲线C 1:y=x 2与C 2:y=-)2(2-x ,直线l 与C 1,C 2都相切,求直线l 的方程.

导数的概念和几何意义同步练习题(教师版)

导数的概念和几何意义同步练习题 一、选择题 1.若幂函数()y f x =的图像经过点11(,)42 A ,则它在A 点处的切线方程是( ) A. 4410x y ++= B. 4410x y -+= C .20x y -= D. 20x y += 【答案】B 【解析】试题分析:设()a f x x =,把11(,)42A 代入,得1142a =,得12 a =,所以1 2()f x x ==() f x '= ,1 ()14f '=,所以所求的切线方程为11 24 y x - =-即4410x y -+=,选B.考点:幂函数、曲线的切线. 2.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为( ) A 、 4π B 、0 C 、4 3π D 、1 【答案】A 【解析】试题分析:由)sin (cos )('x x e x f x -=,则在点()()0,0f 处的切线的斜率1)0('==f k , 1.利用导数求切线的斜率; 2.直线斜率与倾斜角的关系 3.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 e B.2 2e C.2 4e D.22 e 【答案】D 【解析】试题分析:∵点2 (2)e ,在曲线上,∴切线的斜率'22 2 x x x k y e e --===, ∴切线的方程为2 2 (2)y e e x -=-,即2 2 0e x y e --=,与两坐标轴的交点坐标为2 (0,)e -,(1,0), ∴22 1122 e S e =??=.考点:1.利用导数求切线方程;2.三角形面积公式. 4.函数2 ()f x x =在点(2,(2))f 处的切线方程为( ) A .44y x =- B .44y x =+ C .42y x =+ D .4y = 【答案】A 【解析】 试题分析:由x x f 2)(='得切线的斜率为4)2(='f ,又4)2(=f ,所以切线方程为)2(44-=-x y ,即44-=x y .也可以直接验证得到。考点:导数求法及几何意义 5.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )() 11,e -- (B )()0,1 (C )()1,e (D )()0,2

导数的概念及几何意义运算

一、选择题 1.若f ′(x 0)=2,则 f (x 0-k )-f (x 0)2k 等于( ) A .-1 B .-2 C .1 D.12 答案:A 3. 曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y =4x -1, 则P 0点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)或(-1,-4) D .(2,8)或(-1,-4) 解析:设P 0点的坐标为(x 0,y 0),由f (x )=x 3+x -2得:f ′(x )=3x 2+1, 令f ′(x 0)=4,即3x 2 o +1=4得x 0=1或x 0=-1,∴P 0点的坐标为(1,0)或(-1,-4). 答案:C 4.设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线 的斜率为( ) A .-15 B .0 C.15 D .5 解析:由已知f ′(x )是R 上以5为周期的奇函数,则f ′(5)=f ′(0)=0. 答案:B 5. 设f (x )在x 0处可导,则 f (x 0+t )-f (x 0-t )t 的值等于________. 答案:2f ′(x 0) 6. 过原点作曲线y =e x 的切线,则切点的坐标为________,切线的斜率为________. 解析:设切点坐标为(x 0,y 0),由y =e x 知y ′=e x ,则y ′|x =x 0=e x 0, ∴y 0x 0=e x 0,即e x 0x 0 =e x 0,则x 0=1,因此切点坐标为(1,e).斜率为e. 答案:(1,e) e 7. 曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 所围成的三角形面积为16 , 则a =________. 解析:由y =x 3知y ′=3x 2,则y ′|x =a =3a 2.因此切线方程为y -a 3=3a 2(x -a ) 即y =3a 2x -2a 3,令y =0得:x =2a 3,令x =a 得y =a 3根据已知条件12|a -2a 3|·|a 3|=16 , 解得:a =±1. 答案:±1 1. 函数f (x )=(x +2a )(x -a )2的导数为( )

导数的几何意义的教学设计

导数的几何意义 【教学目标】 1.理解切线的定义 2.理解导数的几何意义 3.学会应用导数的几何意义。 【教学重点与难点】 重点:理解导数的几何意义及应用于解决实际问题,体会数形结合的思想方法。 难点:发现、理解及应用导数的几何意义。 【教学过程】

第二步:求瞬时变化率()0000 () ()lim x f x x f x f x x ?→+?-'=?. (即0x ?→,平均变化率趋近..于的确定常数....就是该点导数.. ) (2) 类比平均变化率得出导数,同样我们可以利用平均变化率的几何意义,得出导数的几何意义,我们观察函数()y f x =的图象,平均变化 率()00() f x x f x y x x +?-?=?? 的几何意义是什么 生:平均变化率表示的是割线n PP 的斜率 教师板书,便于学生 数形结合探究导数的几何意义。 突破平均变化率的 几何意义,后面在表示割线斜率时能直接联系此知识。同时引出本节课的研究问题——导数几何意义是什么 二、引导探究、获得新知 1.得到切线的新定义 要研究导数的几何意义,结合导数的概念,即要探究0x ?→,割线的变化趋势....... , ◆多媒体显示: 曲线上点P 处的切线PT 和割线n PP ,演示点n P 从右边沿着曲线逼近点P ,即0x ?→,割线n PP 的变化趋势。 教师引导学生观察割线与切线是否有某种内在联系呢 生:先观察后发现,当0x ?→,随着点n P 沿着曲线逼近点P ,割 以求导数的两个步骤为......... 依据.. ,从平均变化率的几何意义入手探索导数的几何意义,抓住0x ?→的联系,在图形上从割线入手来研究问题。 用逼近的方法体会割线逼近切线。

8导数的计算及其几何意义 - 难 -讲义

导数的计算及其 几何意义 知识讲解 一、导数的概念及其几何意义 1.函数的平均变化率: 定义:已知函数()y f x =,0x ,1x 是其定义域内不同的两点,记10x x x ?=- 10y y y ?=-10()()f x f x =-00()()f x x f x =+?-,则当0x ?≠时,商 00()()f x x f x y x x +?-?=??称 作函数()y f x =在区间00[,]x x x +?(或00[,]x x x +?)的平均变化率. 注意:这里x ?,y ?可为正值,也可为负值.但0x ?≠,y ?可以为0. 2.函数的瞬时变化率、函数的导数: 定义:设函数()y f x =在0x 附近有定义,当自变量在0x x =附近改变量为x ?时,函数值相应的改变00()()y f x x f x ?=+?-.如果当x ?趋近于0时,平均变化 00()()f x x f x y x x +?-?=??趋近于一个常数l (也就是说平均变化率与某个常数l 的差的绝对值越来越小,可以小于任意小的正数),那么常数l 称为函数()f x 在点0x 的瞬时变化率. “当x ?趋近于零时,00()() f x x f x x +?-?趋近于常数l ”可以用符号“→”记作:“当0 x ?→时, 00()()f x x f x l x +?-→?”,或记作“000()() lim x f x x f x l x ?→+?-=?”,符号“→”读作“趋近于”.函数在0x 的瞬时变化率,通常称为()f x 在0x x =处的导数,并记作0()f x '.这时又称()f x 在0x x =处是可导的.于是上述变化过程,可以记作“当0x ?→时, 000()() ()f x x f x f x x +?-'→?” 或 “0000 ()() lim ()x f x x f x f x x ? →+?-'=?”. 注:0'()f x 是个数.

导数的运算及几何意义

个性化教学辅导教案 1、某校从参加高三年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段后得到如图的频率分布直方图,请你根据频率分布直方图中的信息,估计出本次考试数学成绩的平均数为________. 2、已知△ABC 的顶点B 、C 在椭圆x 23 +y 2 =1上,顶点A 是椭圆的一个焦点,且 椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) A .2 3 B .6 C .4 3 D .12 3、如图已知圆的半径为,其内接的内角分别为和,现向圆内随机撒一粒豆子,则豆子落在内的概率为( ) A. B. C. D. 10ABC ?,A B 6045ABC ?3316π+334π+433π+1633 π +

1、导数的概念: 用定义法求函数f (x )=x 2-2x -1在x =1处的导数. 2.导数的几何意义: 曲线221y x =+在P (-1,3)处的切线方程是______________ 3.导数的运算: 求下列函数的导数: (1)y =e x ·ln x ; (2)y =x ????x 2+1x +1x 3 (3)y =sin 2????2x +π 3 (4)y =ln(2x +5) 1.学生对导数的概念不理解,没有学会利用定义求函数的导数; 2.本节课的知识点对于学生而言开始引入导数内容,难度中等,需要在对导数的定义理解的基础上,通过老师的总结引导,能够进行函数的导数运算,同时掌握导数的几何意义; 3.学生在学习导数时对公式的记忆不够熟练,对函数求导的练习量不够,学生学习比较积极,但是缺乏将知识融汇在一起的能力,总结归纳能力还需提高。

相关文档
最新文档