第11讲平面介质波导

第11讲平面介质波导
第11讲平面介质波导

第十一讲 平面介质波导(3学时)

参考书 秦秉坤 孙雨南《介质光波导及其应用》

1.

波导

源于微波。传输及束缚。

平面波导、条形波导(带状波导)和圆柱形波导(光纤) 光线理论和波动理论(为主)。波导截面很小(大与小),不可忽略波动性 Maxwell 方程组(适于所的波导),边界条件求解。

平面波导:一维边界条件。条形波导:二维直角坐标。光纤:二维柱坐标。 求解传播常数、模式、截止波长等 2.

全反射

数值孔径NA (入射、出射光的角度,与耦合效率有关)

?

=-==-≈

-=?2sin 212

2211212

12

221n n n NA n n n n n n c θ

波矢量k :空间传播特性(E=E 0exp[j(ωt-kr )]) (纵向)传播常数β(模式传播速度、色散) 折射定律另一形式:(纵向)传播常数相同(n 1sin θ1= n 2sin θ2)。β越大:越平行光轴

)

( )( )(0 1122不可能全反射条件折射βββ<<<<

?

??>=<<=>-=>-=),:k ( e 0)

:k ( e 0 0 2kx

-02jkx 02

2

2

22211衰减全反射: 传输: 传输ββββE E E E k k k k x

x Gauss-Heisson 位移:类似量子力学势阱贯穿,光纤理论及耦合理论基础 3.

平面介质波导

d 为μm 量级,n 1>n 2>n 3。全反射条件:0102 k n k n <<β

)cos(11122

0211?β+==→=-=hx A e A E h k n k jhx x x px x x e A E jp k n j k n k -=→=-=-=2120222220222ββ

z

qx x x e A E jq k n j k n k -=→=-=-=312

023*******ββ

p 和q 分别为两侧衬底的衰减系数。1/p 和1/q 分别为两侧衬底的穿透深度,为波长量级。

为连续解,根据Maxwell 方程组及边界条件可得到分立解。 4.

Maxwell 方程组

??

?

???

???

??==+??=??=????-=??=??Am pere t Gauss Farady t Gauss μερ

0 00环路定理定理磁场电磁感应定律定理电场 ???

???

?-=????+?-=???

?????+?k E k E E 2222εεεε 均匀折射率波导中,得到矢量Helmholtz 方程

?????=+?=+?0

2

222k E k E 5.

直解坐标系求解

E =E x +E y +E z ,H =H x +H y +H z ,? /? y =0

),( 2222222222

ωββj t

j z x z y x =??=??-??=??+??+??=?

6. TE 模与TM 模

???

?????

??????

???=??-??=??-??=??-??=??-??=??-??=??-??z x

y y z

x x

y

z z x y

y z

x x y

z H j y E x E H j x E z E H j z H y

E E j y

H x H

E j x H z H E j z H y H ωεωεωμωεωεωε0 ???

???

?=??-=??=-=??=-=??-y z x z y x y z y x y y z

x H

j x E E j E j x H E j H j H j x

E H j H j E j x H H j ωεβωεωεβωεωμβωεβ; ; ; ; 0

TE 模(E y 、H x 、H z :E x =E z = H y =0)和TM 模(H y 、E x 、E z :H x =H z = E y =0,) 直角坐标分量:

()

()

),-(-0 :

),-(-0 :

2222

222022

22222

222022

2=+??→

=-+??=+??→

=-+??y y y y y y

y y H q p h x H H k n x H TM E q p h x E E k n x

E TE ββ

TE 模: [][][]

[]???

??<<<->---=0exp 0cos )(exp )(exp 3

13x px E d x hx E d x d x q E z t j E y : : : ?βω 边界条件:x=0及x=d 处,E y 和H z (? E y /? x )连续。得到特征方程: 7.

TE 模特征方程

()()πn h q arctg h p arctg hd 2/2/22=--

驻波条件,菲涅尔公式计算全反射相移 数值解法。h 、p 、q 均为β和k 0(λ)的函数,波导结构及λ确定后即可解出β。分立解(TE n ) 特征方程(β-ω方程)

8.

截止条件

????

?????

-=-=-=

-==→=2

3

222322022

212

22100222:0n n n n k q n n n n k h p k n λ

πλ

π

β截止条件 截止方程:

???

? ?

?--+=-22

2123

22

2221

2n n n n arctg n d n n πλ

π

n 2 n 1 n 3

β

c

截止波长: σ

ππλarctg n n n d c +-=2

2

212

对称波导截止波长(基模截止波长为∞)

22

212

2

2122n n d n n d c -=-=

π

πλ 截止厚度: 2

2

2121

n n arctg n d c -??

?

?

?

+

=

σπλ

对称波导单模条件: 22

21

2n

n d d c -=<λ

9.

TM 模特征方程

πn h q n n arctg h p n n arctg hd 2231

221=???

?

???????? ??-????

???????? ??-

平面光波导(PLC, planar Lightwave circuit)技术

平面光波导(PLC, planar Lightwave circuit)技术 随着FTTH的蓬勃发展,PLC(Planar Lightwave Circuit,平面光路)已经成为光通信行业使用频率最高的词汇之一,而PLC的概念并不限于我们光通信人所熟知的光分路器和AWG,其材料、工艺和应用多种多样,本文略作介绍。 1.平面光波导材料 PLC光器件一般在六种材料上制作,它们是:铌酸锂(LiNbO3)、Ⅲ-Ⅴ族半导体化合物、二氧化硅(SiO2)、SOI(Silicon-on-Insulator, 绝缘体上硅)、聚合物(Polymer)和玻璃,各种材料上制作的波导结构如图1所示,其波导特性如表1所示。 图1. PLC光波导常用材料 铌酸锂波导是通过在铌酸锂晶体上扩散Ti离子形成波导,波导结构为扩散型。 InP波导以InP为称底和下包层,以InGaAsP为芯层,以InP或者InP/空气为上包层,波导结构为掩埋脊形或者脊形。 二氧化硅波导以硅片为称底,以不同掺杂的SiO2材料为芯层和包层,波导结构为掩埋矩形。 SOI波导是在SOI基片上制作,称底、下包层、芯层和上包层材料分别为Si、SiO2、Si和空气,波导结构为脊形。 聚合物波导以硅片为称底,以不同掺杂浓度的Polymer材料为芯层,波导结构为掩埋矩形。 玻璃波导是通过在玻璃材料上扩散Ag离子形成波导,波导结构为扩散型。

表1. PLC光波导常用材料特性 2.平面光波导工艺 以上六种常用的PLC光波导材料中,InP波导、二氧化硅波导、SOI波导和聚合物波导以刻蚀工艺制作,铌酸锂波导和玻璃波导以离子扩散工艺制作,下面分别以二氧化硅波导和玻璃波导为例,介绍两类波导工艺。 二氧化硅光波导的制作工艺如图2所示,整个工艺分为七步: 1)采用火焰水解法(FHD)或者化学气相淀积工艺(CVD),在硅片上生长一层SiO2,其 中掺杂磷、硼离子,作为波导下包层,如图2(b)所示; 2)采用FHD或者CVD工艺,在下包层上再生长一层SiO2,作为波导芯层,其中掺杂锗离 子,获得需要的折射率差,如图2(c)所示; 3)通过退火硬化工艺,使前面生长的两层SiO2变得致密均匀,如图2(d)所示。 4)进行光刻,将需要的波导图形用光刻胶保护起来,如图2(e)所示; 5)采用反应离子刻蚀(RIE)工艺,将非波导区域刻蚀掉,如图2(f)所示; 6)去掉光刻胶,采用FHD或者CVD工艺,在波导芯层上再覆盖一层SiO2,其中掺杂磷、 硼离子,作为波导上包层,如图2(g)所示; 7)通过退火硬化工艺,使上包层SiO2变得致密均匀,如图2(h)所示。 图2. 二氧化硅光波导的制作工艺 玻璃光波导的制作工艺如图3所示,整个工艺分为五步: 1)在玻璃基片上溅射一层铝,作为离子交换时的掩模层,如图3(b)所示; 2)进行光刻,将需要的波导图形用光刻胶保护起来,如图3(c)所示;

1平面光波导技术

光波导是集成光学重要的基础性部件,它能将光波束缚在光波长量级尺寸的介质中,长距离无辐射的传输。平面波导型光器件,又称为光子集成器件。其技术核心是采用集成光学工艺根据功能要求制成各种平面光波导,有的还要在一定的位置上沉积电极,然后光波导再与光纤或光纤阵列耦合,是多类光器件的研究热点. 按材料可分为四种基本类型:铌酸锂镀钛光波导、硅基沉积二氧化硅光波导、InG aAsP/InP光波导和聚合物(Polymer)光波导。 LiNbO3晶体是一种比较成熟的材料,它有极好的压电、电光和波导性质。除了不能做光源和探测器外,适合制作光的各种控制、耦合和传输元件。铌酸锂镀钛光波导开发较早,其主要工艺过程是:首先在铌酸锂基体上用蒸发沉积或溅射沉积的方法镀上钛膜,然后进行光刻,形成所需要的光波导图形,再进行扩散,可以采用外扩散、内扩散、质子交换和离子注入等方法来实现。并沉积上二氧化硅保护层,制成平面光波导。该波导的损耗一般为0.2-0.5dB/cm。调制器和开关的驱动电压一般为10V左右;一般的调制器带宽为几个GHz,采用行波电极的LiNbO3光波导调制器,带宽已达50GHz以上。 硅基沉积二氧化硅光波导是20世纪90年代发展起来的新技术,主要有氮氧化硅和掺锗的硅材料,国外已比较成熟。其制造工艺有:火焰水解法(FHD)、化学气相淀积法(CVD,日本NEC公司开发)、等离子增强CVD法(美国Lucent公司开发)、反应离子蚀刻技术RIE多孔硅氧化法和熔胶-凝胶法(Sol-gel)。该波导的损耗很小,约为0.02dB/cm。 基于磷化铟(InP)的InGaAsP/InP光波导的研究也比较成熟,它可与InP基的有源与无源光器件及InP基微电子回路集成在同一基片上,但其与光纤的耦合损耗较大。

基于AWG的平面光波导技术

基于AWG的平面光波导技术 采用平面光波導(Planar Lightwave Circuit,PLC)技术制作的阵列波导光栅(Arrayed Wave-guide Grating, AWG)是应用于光网络中的支撑技术波分复用(Wave Division Multiplexing, WDM)的重要器件。本文介绍了国内外AWG的应用现状和发展前景。 标签:平面光波导阵列波导光栅波分复用 1 平面光波导(Planar Light Circuit,PLC)技术的市场分析 伴随着光通信的发展,在金融危机影响下的亚太地区正成为全球光通信市场中最活跃的一部分,目前所面临的问题主要有:①运营商投资重心从SONET/SDH 转移到WDM的趋势将会持续高涨;②3G网络正式商用化带动了移动与固网宽带市场新旧技术的转换;③受市场驱动和政策面的影响,光纤到户(Fiber to the Home, FTTH)更加深入市场;④系统设备商们将持续兼并收购,以实现技术优势和资源整合。 基于PLC技术开发的光器件在光网络的组网中占据重要地位。波分复用(Waveguide Division Multiplexing, WDM)系统是当前最常见的光层组网技术,它通过复用/解复用器实现多路信号传输。早期的WDM系统并没有实现真正意义上的光层组网,难以满足业务网络IP化和分组化的要求,这种情况直到可重构光分插复用器(Reconfigurable Optical Add Drop Multiplexer, ROADM)的出现才得以改善。平面光波导ROADM是近年来广泛采用的ROADM子系统之一。PLC的ROADM上下路通道是彩色光,这意味着只有预定义的彩色波长可以在每个端口上下,也可以配合可调滤波器和可调激光器使用。由于PLC的集成特性,使其成为低成本的ROADM解决方案之一。目前的光波导,一般都是以玻璃、LiNbO3、GaAs 单晶等做衬底,再用扩散或外延技术制成的。PLC可以集成多种器件,例如:韩国的Byung Sup Rho等人用PLC研制的WDM双向模块[1],我国的浙江大学也研制出一种利用PLC的高集成化的PMD补偿器[2][3]。 2 AWG的结构及其工艺简介 阵列波导光栅(Arrayed Waveguide Grating, AWG)是第一个将PLC技术商品化的元器件。它是基于干涉原理形成的波分复用器件,通过集成的AWG可以实现波长复用和解复用,这种技术已被用于WDM系统中。目前平面波导型WDM器件有多种实现方案,其做法为在硅晶圆上沉积二氧化硅膜层,再利用光刻工艺(Photolithography)及反应式离子蚀刻法(RIE)制作出AWG。该类器件通路数大、紧凑、易于批量生产,但带内频响尚不够平坦。由于AWG采用与一般半导体相同的制作过程,多通道数与低通道数的制作成本相差不多,但更适合生产,而且整合度较高,因此应用在DWDM上具有相当的潜力。北美市场在2008年初呈现活跃状态,比如:美国加州的PLC设备供应商ANDevices在一月份签订协议,提供价值$13.5百万的产品给FTTH发展商Enablence Technologies Inc[4]。在我国,以PLC

4平面光波导工艺

2.平面光波导工艺 以上六种常用的PLC光波导材料中,InP波导、二氧化硅波导、SOI波导和聚合物波导以刻蚀工艺制作,铌酸锂波导和玻璃波导以离子扩散工艺制作,下面分别以二氧化硅波导和玻璃波导为例,介绍两类波导工艺。 二氧化硅光波导的制作工艺如图2所示,整个工艺分为七步: 1)采用火焰水解法(FHD)或者化学气相淀积工艺(CVD),在硅片上生长一层SiO2,其中掺杂磷、硼离子,作为波导下包层,如图2(b)所示; 2)采用FHD或者CVD工艺,在下包层上再生长一层SiO2,作为波导芯层,其中掺杂锗离子,获得需要的折射率差,如图2(c)所示; 3)通过退火硬化工艺,使前面生长的两层SiO2变得致密均匀,如图2(d)所示。 4)进行光刻,将需要的波导图形用光刻胶保护起来,如图2(e)所示; 5)采用反应离子刻蚀(RIE)工艺,将非波导区域刻蚀掉,如图2(f)所示; 6)去掉光刻胶,采用FHD或者CVD工艺,在波导芯层上再覆盖一层SiO2,其中掺杂磷、硼离子,作为波导上包层,如图2(g)所示; 7)通过退火硬化工艺,使上包层SiO2变得致密均匀,如图2(h)所示。 二氧化硅波导工艺中的几个关键点: 1)材料生长和退火硬化工艺,要使每层材料的厚度和折射率均匀且准确,以达到设计的波导结构参数,尽量减少材料内部的残留应力,以降低波导的双折射效应; 2)RIE刻蚀工艺,要得到陡直且光滑的波导侧壁,以降低波导的散射损耗; 3)RIE刻蚀工艺总会存在Undercut,要控制Undercut量的稳定性,作为布版设计时的补偿依据。 图2. 二氧化硅光波导的制作工艺 玻璃光波导的制作工艺如图3所示,整个工艺分为五步: 1)在玻璃基片上溅射一层铝,作为离子交换时的掩模层,如图3(b)所示; 2)进行光刻,将需要的波导图形用光刻胶保护起来,如图3(c)所示; 3)采用化学腐蚀,将波导上部的铝膜去掉,如图3(d)所示; 4)将做好掩模的玻璃基片放入含Ag+-Na+离子的混合溶液中,在适当的温度下进行离子交换,如图3(e)所示,Ag+离子提升折射率,得到如图3(f)所示的沟道型光波导; 5)对沟道型光波导施以电场,将Ag+离子驱向玻璃基片深处,得到掩埋型玻璃光波导,如图

光波导理论与技术 大学课件

光波导理论与技术大学课件 06 年复习题 x E y x t Ay cos t1. 已知一平面电磁波的电场表达式为 c , 写出与之相联系的磁场表达式。(提示:利用麦克斯韦尔方程,注意平面波的特点) 2E 1 2E2. 证明平面电磁波公式 E A cost kx 是波动微分方程 0 的解。 x 2 v 2 t 23. 在直角坐标系任意方向上以角频率传播的平面波为 E A exp j t k r ,根据波动方程 2 2E ,导出用角频率、电容率、导磁率0 表示平面波的传 E 0 2 0 播常数 k。 t4. ?璧ド矫娌ㄓ?E A exp j t kz 表示,求用电容率、导磁率0 表 示的该平面波传播速度。(提示:考虑等相位面的传播速度)5. 用文字和公式说明电磁场的边界条件。6. 设时变电磁场为 A xt A x sin ωt ,写出该电磁场的复振 幅表示式,它是时间的函数还是空间的函数,7. 分别写出麦克斯韦尔方程组和波动方程的时域与频域的表达式。8. 说明平面波的特点和产生的条件。9. 写出平面波在下列情况下的传播常数或传播速度表示式: 1 沿任意方向的传播速度; 2 在折射率为 n 的介质中的传播常数; 3 波矢方向与直角坐标系 z 轴一致的传播常数。10. 平面波波动方程的解如下式,说明等式右边两项中正负号和参数 k 的物理意义。 E x z , t E e j t kz E e j t kz11. 说明制成波片材料的结构特点,如何使波片成为 1/4 波片和 1/2 波片12. 如果要将偏光轴偏离 x 轴度的线偏振光转变 成 x 偏振光,应将/2 波片的主轴设定为偏离 x 轴多大角度13. 什么是布儒斯特 起偏角,产生的条件是什么14. 光波在界面反射时,什么情况下会产生半波损失15. 如何利用全反射使线偏振光变成园偏振光,16. 什么是消逝波,产生消逝波的条件是什么,17. 什么是相位梯度,它与光波的传输方向以及介质折射率是什么关系,18. 在非均匀介质中如何表示折射率与光线传播方向的关系,19. 光纤的数值孔径表示 什么,如何确定它的大小20. 在下列情况下,计算光纤数值孔径和允许的最大入射 角(光纤端面外介质折射率n1.00): 1 阶跃折射率塑料光纤,其纤芯折射率 n1

光波导的理论以及制备方法介绍

光波导的理论以及制备方法介绍 摘要 由光透明介质(如石英玻璃)构成的传输光频电磁波的导行结构。光波导的传输原理是在不同折射率的介质分界面上,电磁波的全反射现象使光波局限在波导及其周围有限区域内传播。 光波导的研究条件与当前科技的飞速发展是密不可分的,随着技术的发展,新的制备方法不断产生,从而形成了各种各样的制备方法,如离子注入法、外延生长法、化学气相沉淀法、溅射法、溶胶凝胶法等。重点介绍离子注入法。 光波导简介如图所示为光波导结构 图表1光波导结构 如图中共有三层平面相层叠的光学介质,其对应折射率n0,n1,n2。其中白色曲折线表示光的传播路径形式。可以看出,这是依靠全反射原理使光线限制在一层薄薄的介质中传播,这就是光波导的基本原理。为了形成全反射,图中要求n1>n0,n2。 一般来讲,被限制的方向微米量级的尺度。 图表2光波导模型 如图2所示,选择适当的角度θ(为了有更好的选择空间,一般可以通过调整三层介质的折射率来取得合适的取值),则可以将光线限制在波导区域传播。 光波导具有的特点光波导可以用于限制光线传播光路,由于本身其尺寸在微米量级,就使得其有很多较好的特点: (1)光密度大大增强 光波导的尺寸量级是微米量级,这样就使得光斑从平方毫米尺度到平方微米尺度光密度增大104—106倍。 (2)光的衍射被限制 从前面可以看出,图示的光波导已经将光波限制在平面区域内,后面会提到稍微变动一下技

术就可以做成条形光波导了,这样就把光波限制在一维条形区域传播,这就限制了光波的衍射,有一维限制(一个方向),二维限制(两个方向)区分(注:此处“一维”与“二维”的说法并不是专业术语,仅仅指光的传播方向的空间自由度,不与此研究专业领域的说法相混同)。 (3)微型元件集成化 微米量级的尺寸集成度高,相应的成本降低 (4)某些特性最优化 非线性倍频阈值降低,波导激光阈值降低 综上所述,光波导本身的尺寸优势使得其有很好的研究前景以及广泛的应用范围。 光波导的分类一般来讲,光波导可以分为以下几个大类别: 图表3平面波导(planar) 图表4光纤(fiber)

第四章 光辐射在介质光波导中的传播

第四章光辐射在介质光波导中的传播 光通信系统的组成: ?光发射系统:将输入电信号转化为与输入电信号完全一致的输出光功率 ?光传输系统:光波导、光纤都可作为光的传输介质。 ?光接收系统:将输入光信号转变成电信号输出。 平板波导的射线理论 光束在介质中传输时,由于介质的吸收和散射而引起损耗,由于绕射而引起发散,这些情况都会导致光束中心部分的强度不断地衰减。因此,有必要设计制作某种器件,它能够引导光束的传播,从而使光束的能量在横的方向上受到限制,并使损耗和噪声降到最小,这种器件通常称为光波导,简称波导。结构最简单的波导是由三层均匀介质组成的,中间的介质层称为波导层或芯层,芯两侧的介质层称为包层。芯层的介电常数比芯两侧包层的介电常数稍高,使得光束能够集中在芯层中传输,因而起到导波的作用。这种波导的介电常数分布是陡变的,也称为阶梯变化的,常称这种波导为平板波导。 对光波导特性的分析,应用两种理论,即射线光学理论和波动光学理论。射线光学理论的优点是对平板波导的分析过程简单直观,对某些物理概念能给出直观的物理意义,容易理解。缺点是对于结构复杂的多层波导射线光学理论不便于应用,或只能得出粗糙的结果。一般而言,若想全面、正确地分析各种结构的光波导的模式特性,还必须采用波动理论。 光射线,简称射线或光线,可以这样理解:一条很细很细的光束,它的轴线就是光射线。它的方向沿着光能流的方向。光线与光束是不同的,光线是无限细的,光束则有一定的尺寸。光线在均匀介质中的传输轨迹是一条直线,在非均匀介质中的传输轨迹是一条曲直线。用射线去代表光能量传输路线的方法称为射线光学。射线光学是忽略光波长的光学,亦即射线理论是光波长趋于零的波动理论。 本章将应用射线光学的基本理论对三层平板波导加以分析,目的是对波导的导波原理和与之相关的某些物理概念为读者给出直观的物理意义和清晰的理解,并为以后运用波动光学理论分析各种结构光波导的模式特性打好基础。 §4.1 模式类型 我们把波导中所能传输的电磁场型称为波导的模式,在平板波导中存在两种基本模式,一种称为TE模,另一种称为TM模。两种模式用光的电场和磁场的偏振方向来定义比较直观。选择电场只沿平行于波导界面的方向偏振,此时电场垂直于光的传播方向,是横向的,因而把这种模式称为横电模,英文为

光波导数值模拟方法

光波导数值模拟方法 介质光波导是利用介质的折射率差来限制光场,从而引导和控制光波传播的一种结构,是光波导器件中的最基本构成成分。常见的波导主要有光纤和平面波导两种,本文主要针对应用于平面集成光路的平面光波导进行讨论。 平面光波导主要有两种结构,即平板波导(二维结构)和条形波导(三维结构)两种[46], 如图2.1所示。平板波导如图2.1a 所示,在垂直于光波传播方向(z 方向)的截面上,只在纵向(x 方向)上受到限制,而在横向上(y 方向)可以无限延伸,是完全均匀的。而条形波导,如图2.1b ,则是在两个方向(x ,y 方向)同时受到限制。通常实际光器件都是建立在条形波导的基础上的,平板波导由于在横向上缺乏对光的约束,只在很少情况下(如AWG 的自由传输区)才会用到。但是从平板这种更加简单的二维结构入手,可以更方便于对波导特性的研究。 图2.1 两种平面波导结构:(a )平板波导,(b )条形波导 平板光波导理论 假设现有一平板波导由三种介质组成,如图2.2所示,上包层折射率为n c (x >a ),衬底折射率n s ,(x <-a ),芯层折射率n f (-a n s ,n c 。那么,当光线入射到界面的角度满足max(sin(),sin())c f s f arc n n arc n n θ>,光线就能同时在两个界面都发生全内反射,从而被束缚在波导之中。同时,为了使得光线能在波导中稳定传输,还必需满足光线在两个界面之间往返一次的总相位变化是2π的整数倍。于是根据以上这些条件,就可以求出对应于某一波长(真空中波矢为k 0)的光线所需满足的入射角θ,从而求出其传播常数,即传播方向上的波矢分量,0sin f k n βθ=,以及与该传播模式对应的等效折射率0eff n k β=,在此不再赘述。 图2.2 平板波导内光线传播示意图

HT型波导-微波天线设计

班级:通信13-3班 姓名:王亚飞 学号:1306030318 指导教师:徐维 成绩: 电子与信息工程学院 信息与通信工程系

目录 1设计概述 (3) 2 T型波导设计步骤 (3) 2.1创建T型波导模型 (3) 2.1.1 新建工程设置 (3) 2.2.2 创建T 形波导模型 (4) 2.2求解设置 (9) 3查看分析设计结果 (10) 3.1参数扫描和分析求解 (11) 3.2查看参数扫描结果 (11) 4心得体会 (13)

1设计概述 本课程设计所要分析的器件是图1.1 所示的一个带有隔片的T 形波导。端口1 是信号输入端口,端口2 和端口3 是信号输出端口。正对着端口1 一侧的波导壁上凹进去一块,相当于放置了一个隔片,通过改变隔片的位置可以改变端口1 到端口2 和端口3 的传输功率以及端口1 的反射功率。 仿真实验的的目标是: 在工作频率为10GHz 时,使端口3 的输出功率是端口2 输出功率的两倍。 图1.1T形波导 2T型波导设计步骤 2.1创建T型波导模型 2.1.1 新建工程设置 1.运行HFSS 并新建工程 启动HFSS 软件。HFSS 启动后,会自动创建一个默认名称为Project1 的新工程和名称为HFSSDesign1 的新设计。 从主菜单栏选择命令【File】→【Save As】,把工程文件另存为Tee.hfss。

然后右键单击HFSSDesign1,从弹出菜单中选择【Rename】命令项,把设计文件HFSSDesign1 重新命名为TeeModal。 2.选择求解类型 从主菜单栏选择【HFSS】→【Solution Type】,打开如图2.1 所示的Solution Type 对话框,选中Driven Modal 单选按钮,单击OK按钮。 3.设置长度单位 从主菜单栏选择【Modeler】→【Units】,打开如图2.1 所示的Set Model Units 对话框,选择英寸(in)单位,单击OK按钮。此时,设置了建模时的默认长度单位,即英寸。 图2.1 设置求解类型和长度单位 2.2.2 创建T 形波导模型 T 形波导模型可以分解开来,看做由3 个相同大小的长方体叠加而成,这里首先创建第一个长方体,并设置其材料属性和端口激励,然后通过复制操作命令创建第二和第三个长方体,最后通过合并操作命令创建完整的T 形波导模型。 1.创建长方体 (1)从主菜单栏选择【Tools】→【Options】→【Modeler Options】,打开3D Modeler Options对话框,选择Drawing 选项卡,确认选中Edit Properties of new primitives 复选框,然后单击OK按钮。 (2)从主菜单栏选择【Draw】→【Box】,或者单击工具栏的按钮,进入创

基于AWG的平面光波导技术

基于AWG的平面光波导技术 摘要:采用平面光波导(Planar Lightwave Circuit,PLC)技术制作的阵列波导光栅(Arrayed Wave-guide Grating, AWG)是应用于光网络中的支撑技术波分复用(Wave Division Multiplexing, WDM)的重要器件。本文介绍了国内外AWG的应用现状和发 展前景。 关键词:平面光波导阵列波导光栅波分复用 中图分类号:TN913.7 文献标识码:A 1 平面光波导(Planar Light Circuit,PLC)技术的市场分析 伴随着光通信的发展,在金融危机影响下的亚太地区正成为全球光通信市场 中最活跃的一部分,目前所面临的问题主要有:①运营商投资重心从SONET/SDH 转移到WDM的趋势将会持续高涨;② 3G网络正式商用化带动了移动与固网宽 带市场新旧技术的转换;③受市场驱动和政策面的影响,光纤到户(Fiber to the Home, FTTH)更加深入市场;④系统设备商们将持续兼并收购,以实现技术优势 和资源整合。 基于PLC技术开发的光器件在光网络的组网中占据重要地位。波分复用(Waveguide Division Multiplexing, WDM)系统是当前最常见的光层组网技术,它 通过复用/解复用器实现多路信号传输。早期的WDM系统并没有实现真正意义上 的光层组网,难以满足业务网络IP化和分组化的要求,这种情况直到可重构光分 插复用器(Reconfigurable Optical Add Drop Multiplexer, ROADM)的出现才得以改善。平面光波导ROADM是近年来广泛采用的ROADM子系统之一。PLC的ROADM上下路通道是彩色光,这意味着只有预定义的彩色波长可以在每个端口 上下,也可以配合可调滤波器和可调激光器使用。由于PLC的集成特性,使其成 为低成本的ROADM解决方案之一。目前的光波导,一般都是以玻璃、LiNbO3、GaAs单晶等做衬底,再用扩散或外延技术制成的。PLC可以集成多种器件,例如:韩国的Byung Sup Rho等人用PLC研制的WDM双向模块[1],我国的浙江大学也 研制出一种利用PLC的高集成化的PMD补偿器[2][3]。 2 AWG的结构及其工艺简介 阵列波导光栅(Arrayed Waveguide Grating, AWG)是第一个将PLC技术商品 化的元器件。它是基于干涉原理形成的波分复用器件,通过集成的AWG可以实 现波长复用和解复用,这种技术已被用于WDM系统中。目前平面波导型WDM 器件有多种实现方案,其做法为在硅晶圆上沉积二氧化硅膜层,再利用光刻工艺(Photolithography)及反应式离子蚀刻法(RIE)制作出AWG。该类器件通路数大、紧凑、易于批量生产,但带内频响尚不够平坦。由于AWG采用与一般半导 体相同的制作过程,多通道数与低通道数的制作成本相差不多,但更适合生产, 而且整合度较高,因此应用在DWDM上具有相当的潜力。北美市场在2008年初 呈现活跃状态,比如:美国加州的PLC设备供应商ANDevices在一月份签订协议,提供价值$13.5百万的产品给FTTH发展商Enablence Technologies Inc[4]。在我国,以PLC技术支持的光器件在光电子器件中占有很大份额,光电子器件从芯片、封 装和模块这三方面关键技术来看,芯片、封装2.5Gb/s有大批量生产能力,模块 10Gb/s正在形成大规模生产能力,这跟发达国家相比还有一定差距,我国的企业 家们也正致力于开发低成本、高质量的完整产业链,用以生产包括PLC技术在内 的光电子产品[5]。 3 AWG应用现状及未来发展趋势

平面光波导原理(理论)

平面光波导分路器工作原理简介The operating principle of Planar Lightwave Circuit (PLC) splitter 专业2009-12-27 10:55:40 阅读10 评论1 字号:大中小订阅 分路器作为FTTx网络的核心部件,其在无源光网络(Passive Optical Network, PON)的一个典型应用表现在以下两个方面: 1.作为下行光信号(1490nm和1550nm)的功率分配器(Power splitter)使用 2.作为上行光信号(1310nm)的合束器(Combiner)使用 详细的组网形式不是这里的讨论重点,读者可以参考相关专著(如Gerd Keiser的《FTTX Concepts and Applications》)。这里主要讨论的是分路器的工作原理和性能。 目前市场上主流的分路器主要基于两种技术形式:熔融拉锥型(Fused Biconical Taper, FBT)和平面光波导(PLC)型。同样的,两种技术形式孰优孰劣,这里不作评论。无论基于何种技术形式的分路器,都是基于1 x 2基本结构的级联而成。FBT的1 x 2结构是一耦合器,而PLC的是一Y分支结构。这个看似简单的Y分支构件,其实并不简单,因为分路器的性能优劣很大程度上就是由它决定的。如何设计一个性能优异的Y分支结构属于技术机密(Classified technology),这里不便讨论。这里仅就基于平面光波导技术的一个Y分支结构的分路器,即1 x 2分路器的工作原理作一简介。其实也就是从物理本质上粗略地解释为什么1 x 2分路器无论是上行,还是下行信号,其插入损耗都是3 dB。 1 x 2分路器的功能结构可以用图1(a)的框图来表示:一个单模输入波导,两个单模输出波导。中间用来分束的结构有很多种,这里只给出了3种结构:图1(b)的定向耦合器型(Directional Coupler, DC),图1(c)的无间距定向耦合器型(Zero-Gap Directional Coupler, ZGDC),以及图1(d)的模斑转换器型(Spot Size Converter, SSC)。定向耦合器型和零间距定向耦合器型输入端都只用其中一个端口,并且无间距定向耦合器型其实是多模干涉型(Multi-Mode Interference, MMI)。现行市场上热卖的PLC分路器都是SSC型的,之所以给出另外两种,是为了进行对比分析。 首先来看图1(b)的DC,入射光在入射单模波导内只存在一个模式:基模(0阶模)。当该0阶模到达耦合区-两相互靠近的波导(间距为波长量级)时,根据超模理论(Supermode theory),将会在耦合区激励出如图中所示的两超模(由各独立波导中的0阶模叠加而成):偶模(even mode)和奇模(odd mode),并且这两个超模具有几乎相等(近于简并)的传播常数。在偶模中,位于2个波导内的电场波峰是同相位;而奇模中两波峰是反相位。根据这样的相位关系,两超模叠加的场分布光功率,可以在相邻两波导中周期性的,成二次正(余)弦函数的,不断的交替变换。图中示意图为刚好等分(half = 3 dB)入射光强时的模式(FBT1 x 2分路器原理与此类同)。 再来考察图1(c)中的ZGDC,同样的入射光在入射单模波导内只存在一个模式:基模(0阶模)。虽然该结构也叫DC,但其工作模式与真正的DC完全不同。当入射0阶模到达两入射波导交叉点时,该处波导宽度突然增大一倍,其场宽也必然增大,变成另一0阶模。由于这两个0阶模不满足场的连续性条件,因此必然同时伴随着另一模式-1阶模的激发,而且1阶模的强度与0阶模相同。如是在中间宽度2w多模波导中便传输着两个模式,并且最多只有这两个模式:0阶模和1阶模(该2w波导为双模波导)。这样,在该区域内,光场分布就是这两个模式(0阶模,1阶模)的相互干涉场分布(前面提到的MMI)。图中示意图为刚好在两输出单模波导中等分(half = 3 dB)输入光强时的模式。 图1(d)就是现行市场上的PLC1 x 2分路器-Y分支。其工作原理如下:当入射单模波导内的0阶模刚到达锥形区域-SSC时,这里波导结构并无发生任何变化,因此仍然保持该0阶模的形态。当该0阶模继续在SSC中传播时,虽然波导宽度不断变宽到2w,此时该波导内可以存在两个模式(前已述)。然而,由于SSC区域变宽的很缓

光波导原理及器件简介

包层n 2 芯区n 1 图1. 三层平面介质波导 图2. 矩形波导 图3. 圆光波导 图4. 椭圆光波导 光波导原理及器件简介 摘要:20世纪60年代激光器的出现,导致了半导体电子学、导波光学、非线性光学等一系列新学科的涌现。20世纪70年代,由于半导体激光器和光纤技术的重要突破,导致了以光导纤维通信、光信息处理、光纤传感、光信息存储与显示等为代表的光信息科学技术的蓬勃发展,而导波光学理论是光通信技术的基础,同时也是集成光学、光纤传感等学科的基础。本文简述了光波导的原理,并着重介绍光波导开关。 关键词:光波导,波导光学,平面光波导,光波导开光 1.引言 1.1光波导的概念 波导光学是一门研究光波导中光传输特性及其应用的学科。以光的电磁理论和介质光学特性的理论为基础,研究光波导的传光理论、调制技术及光波导器件的制作与应用技术。导波光学系统是由光源、光波导器件、耦合器、光调制器及光探测器等组成的光路系统。 光波导是将光波限制在特定介质内部或其表面附近进行传输的导光通道。简单的说就是约束光波传输的媒介,又称介质光波导。介质光波导的三要素是:“芯/包”结构,凸形折射率分布(n1>n2),低传输损耗。光波导常用材料有:LiNbO3、Si 基(SiO2、SOI )、Ⅲ-Ⅴ族半导体、聚合物等。 1.2光波导的分类 按几何结构分类,光波导可分为:平面(平板)介质波导,矩形(条形)介质波导,圆和非圆介质波导。

按波导折射率在空间的分布分类,光波导可分为:非线性光波导(n=n(x,y,z,E)),线性光波导(n=n(x,y,z))。线性光波导又可分为:纵向均匀(正规)光波导 (n=n(x,y)),纵向均匀(正规)光波导(n=n(x,y))。 2.光波导的原理简介 一种为大家所熟知的介质光波导就是通常具有圆形截面的光导纤维,简称为光纤。然而,集成光学所注重的光波导往往是平面薄膜所构成的平板波导和条形波导,这里,我只讨论平面光波导。 最简单的平板波导由三层材料所构成,中间一层是折射率为 n1的波导薄膜,它沉积在折射率为 n2的基底上,薄膜上面是折射率为 n3的覆盖层,一般都为空气。薄膜的厚度一般在微米数量级,可与光的波长相比较。薄膜和基底的折射率之差一般在10-1和10-3之间。为了构成真正的光波导,要求n1必须大于 n2和 n3,即 n1>n2>=n3。这样,光能限制在薄膜之中传播。 假定导波光是相干单色光,并假定光波导由无损耗,各向同性,非磁性的无源介质构成。 光在平板波导中的传播可以看作是光线在薄膜—基底和薄膜—覆盖层分界面上发生全反射,在薄膜中沿 Z 字形路径传播。光在波导中以锯齿形沿Z 方向传播,光在x 方向受到约束,而在y 方向不受约束。 在平板波导中,n1>n2且 n1>n3,当入射光的入射角θ1超过临界角θ0时: 入射光发生全反射,此时,在反射点产生一定的位相跃变。我们从菲涅耳反射公式: 出发,推导出反射点的位相跃变φTM 、φTE 为:

平面波导型光分路器

平面波导型光分路器 1) 产品介绍: 平面导波型光分器(PCLSplitter )是一种基于石英基板集成波导光功率分配器件,具有体积小、工作波长范围宽、可靠性高、分光均匀性好等特点。特别适用于无源光网络(EPON 、BPON 、GPON 等)中连接局端和终端设备并实现光信号的分路。上海华诚通信器材有限公司可提供1*N 全系列PLC 分路器产品,并为客户定制适合各种场合的光分路器。所有产品均符合Telcordia GR-1209-CORE-2001、Telcordia GR-1221-CORE-1999和YD/T 2001.1-2009等标准,并通过泰尔(TLC)产品认证。 2) 产品分类: 1.盒式 盒式封装光分路器直接引出直径2.0mm 或3.0mm 尾纤端子,可用于桌面或托盘安装。 2.光分插片 光分插片:提供光纤适配器,适合安装在无跳接光交接箱等配线机柜或箱体

3 微型模块式 平面光波导分路器微型模块采用紧凑型封装壳体,既保留了传统裸纤型光分路器和带分支器型光分路器的结构小巧优点,又可以直接引出直径0.9mm 尾纤,应用方便。 可用于接头盒、分线盒等内安装

4.托盘式 普通光交适配器型托盘式光分路器:提供光纤适配器, 适合安装在光交接箱等配线机柜或箱体 5. 机架式 机架式封装光分路器提供适配器,适合19英寸标准机架安装。 2)平面波导型光分路器特性: ·低插入损耗 ·偏低振相关损耗 ·紧凑精巧设计 ·分光均匀性好 ·工作波长范围宽:从1260mm到1610mm ·工作温度范围广:从﹣40℃到85℃ 3)应用 光纤到点(FTTX) 光纤到户系统(FTTH) 无光源网络(PON) 本地局域网(LAN) 有线电视网络(CATV) 其他光信号分路系统 4)符合 ·Telcordia GR-1209-CORE-2001 ·Telcordia GR-1221-CORE-1999 ·YD/T 2000.1-2009 5)光电性能指标 表1 裸光纤型1×N 光分路器光学特性

第11讲平面介质波导

第十一讲 平面介质波导(3学时) 参考书 秦秉坤 孙雨南《介质光波导及其应用》 1. 波导 源于微波。传输及束缚。 平面波导、条形波导(带状波导)和圆柱形波导(光纤) 光线理论和波动理论(为主)。波导截面很小(大与小),不可忽略波动性 Maxwell 方程组(适于所的波导),边界条件求解。 平面波导:一维边界条件。条形波导:二维直角坐标。光纤:二维柱坐标。 求解传播常数、模式、截止波长等 2. 全反射 数值孔径NA (入射、出射光的角度,与耦合效率有关) ? =-==-≈ -=?2sin 212 2211212 12 221n n n NA n n n n n n c θ 波矢量k :空间传播特性(E=E 0exp[j(ωt-kr )]) (纵向)传播常数β(模式传播速度、色散) 折射定律另一形式:(纵向)传播常数相同(n 1sin θ1= n 2sin θ2)。β越大:越平行光轴 ) ( )( )(0 1122不可能全反射条件折射βββ<<<<=<<=>-=>-=),:k ( e 0) :k ( e 0 0 2kx -02jkx 02 2 2 22211衰减全反射: 传输: 传输ββββE E E E k k k k x x Gauss-Heisson 位移:类似量子力学势阱贯穿,光纤理论及耦合理论基础 3. 平面介质波导 d 为μm 量级,n 1>n 2>n 3。全反射条件:0102 k n k n <<β )cos(11122 0211?β+==→=-=hx A e A E h k n k jhx x x px x x e A E jp k n j k n k -=→=-=-=2120222220222ββ z

《光波导理论与技术 李玉权版》第一、二章

——自学《光波导理论与技术李玉权版》笔记 第1章绪论 (2) 1.1 光通信技术 (2) 1.2 光通信的发展过程 (2) 1.3 光通信关键技术 (3) 1.3.1 光纤 (3) 1.3.2 光源和光发送机 (5) 第2章电磁场理论基础 (7) 2.1 电磁场基本方程 (7) 2.1.1 麦克斯韦方程组 (7) 2.1.2 电磁场边界条件 (8) 2.1.3 波动方程和亥姆霍兹方程 (10) 2.1.4 柱型波导中的场方程 (11) 2.2 各向同性媒质中的平面电磁波 (13) 2.2.1 无界均匀媒质中的均匀电磁波 (13) 2.2.2 平面电磁波的偏振状态 (13) 2.2.3 平面波的反射和折射 (15) 2.2.4 非理想媒质中的平面电磁波 (16) 2.3 各向异性媒质中的平面电磁波 (18) 2.3.1 电各向异性媒质 (18) 2.3.2 电各向异性媒质中的平面波 (18) 2.4 电磁波理论的短波长极限——几何光学理论 (22) 2.4.1 几何光学的基本方程——eikonal方程 (22) 2.4.2 光线传播的路径方程 (24) 2.4.3 路径方程解的两个特例 (25) 2.4.4 折射定律与反射定律 (28)

第1章 绪论 1.1 光通信技术 光通信的主要优势表现在以下几个方面: (1) 巨大的传输带宽 石英光纤的工作频率为0.8~1.65m μ ,单根光纤的可用频带几乎达到了200THz 。即便是在1.55m μ 附近的低损耗窗口,其带宽也超过了15THz 。 (2) 极低的传输损耗 目前工业制造的光纤载1.3m μ 附近,其损耗在0.3~0.4dB/km 范围以内,在 1.55m μ波段已降至0.2/dB km 以下。 (3) 光纤通信可抗强电磁干扰,不向外辐射电磁波,这样就提高了这种通信手 段的保密性,同时也不会产生电磁污染。 1.2 光通信的发展过程

光波导练习题

光波导练习题 1. 光波导的光场纵向分量与横向分量具有如下关系,试用纵向场分量表示横向场分量,并证明光波导中不存在TEM 模。(P7和P13) ???? ????? -=?+??=?+??-=??=??t t t t 0t t t t 0t t j ?j ? j j E H z H H E z E E H H E ωε??ωμ??ωεωμz z z z z z 2. 从Maxwell 方程得出Helmholtz 方程。P6 3. 在什么情况下,不宜使用高斯近似法?这时可选用的方法有哪些?P107 4. 用高斯近似法,从公式()0d d 1d d 2222222=??????--++y y y e r m r n k r e r r e β 出发,导出平方律圆非均匀光波导基模模式场的模斑尺寸。 其折射率的分布为()()[]???≥≤?+=a r n a r r f n r n a a 222 21 其中 ()22202a a n n n -=?,()21?? ? ??-=a r r f p109 5. 试说明正规光波导模式的含义及其特点。P8,9什么是模式?模式共分几种?P12为什么正规光波导中才存在模式的概念? 6. 正规光波导中模式的传输常数实质指什么?P10 7. 试说明正规光波导辐射模的含义及其特点。P123 8. 简述矢量法求解模式场的思路。P35 9. 什么是简并度?P3(自己找的百度) 10. 什么是模式截止?模式截止的条件是什么?什么是单模传输?P26圆光纤中TE 01和TM 01模式的截止频率是多少?P40 11. 请简述两层圆均匀阶跃光波导中单模传输条件是什么?P43单模传输时光波导中有几个模式? 12. 若一个二层圆均匀光波导,它的芯半径为m 5μ=a ,46.12=n ,如果单模传输的截止波长为m 29.1μλ=,求它的最大的相对折射率差。P43

光波导理论与技术

光波导 1.集成光学:1)按集成的方式划分:个数集成和功能集成;2)按集成的类型划分:光子集成回路(PIC )和光电子集成回路(OEIC );3)按集成的技术途径划分:单片集成和混合集成;按研究内容划分:导波光学和集成光路。 2.纤维光学(圆波导)和集成光学(平板波导、条形波导)是导波光学的两大分支。 3.传播常数β和有效折射率N=β/k 0=n 1sinθ是研究平板波导的重要参数。 4.平板波导的两种基本模式:TE 模:E y ,H x ,H z ;TM 模:H y ,E x ,E z 。 5.对称平板光波导中,基模无论如何都不截止;非对称的基模可能截止。 6.对于非对称波导,随着波长的增大,波导层厚度的减小,同阶数的TM 模先截止;对于对称波导,同阶数的TE 和TM 模一起截止。 7、一个平板光波导的波导层、衬底层和覆盖层折射率分别为1n 、2n 和3n ,若在波长λ下保持单模传输,波导层的厚度d 应在什么范围内选取? 答案:单模传输的前提条件是非对称波导。 截止厚度计算式()()TE TE c TM TM c m d n n m d n n 22122212arctan 2arctan 2παλππαλπ???+???=?-?????+? ??=?-? 其中TE TM n n n n n n n n n n 2223221242223122312αα?-=?-????-?= ??-??? 所以TE c n n n n d n n 0222322122212arctan 2λπ??- ? ?-??=-,TE c n n n n d n n 1222322122212 arctan 2λππ????-??+ ? ?-??????=-, TM c n n n n n n d n n 0222231223122212 arctan 2λπ????-?? ?-??????=- 单模传输条件TE TE c c TM c d d d d d 01 0?<

相关文档
最新文档