连铸漏钢原因分析与控制措施

连铸漏钢原因分析与控制措施
连铸漏钢原因分析与控制措施

连铸漏钢原因分析与控制措施

毛宏观

介绍连铸是用来表示铸造过程的一个术语,涉及用液态金属连续大量生产横断面一定的固体金属型材。铸件质量、等级和形状会影响产品的最终使用,即随后精轧机的轧制。全世界90.5%的粗钢都要经过连铸,它因可提高炼钢的产量、质量、生产率和经济隋况而获得广泛应用。依据预期年产量、钢水利用率和预期处理时间,设计连铸机的流数和拉速,以匹配炼钢车间钢液的供给。温度和化学成分均匀是连铸用钢的基本要求。钢水出钢后倒入钢包,进行各种处理包括合金化和脱气。之后,钢包被运送到连铸车间进行吹氩处理,调整到连铸需要的温度后,放置在旋转台上。打开钢包滑动门,钢水通过耐火砖套流人中间包。中间包内装有各种控流装置如坝、堰、挡板和冲击垫,这些装置可增强夹杂物分离并确保钢水平稳地流进结晶器。包内钢水通过用塞棒和计量水口控制的注流孔注入结晶器。在大方坯连铸机/板坯连铸机的中间包和结晶器之间的浸入式水口有助于避免钢流的再氧化。为启动连铸机,结晶器底部用一引锭杆密封,引锭杆由拉矫机在喷雾室以液压方式控制,以防止钢液从结晶器底流出。流入结晶器的钢水部分凝固成硬化坯壳和液芯。为抑制钢水的湍流和控制液面波动,在现代连铸机上安装带有放射源或浮子装置的结晶器液面自动控制器。结晶器配有振动器,通过调整频率、行程和模式,改变结晶器振动周期,防止坯壳粘结到结晶器上。启用负速拉坯行程模式,该周期的下一行程能使结晶器振动的比断面拉速更快,才能提高坯壳强度。坯壳和结晶器之间的摩擦可通过使用结晶器润滑剂如油或粉状熔剂来减小。一旦坯壳厚度足够,拉矫机开始启动,通过引锭杆抽出部分凝固铸流,中间包内钢水连续流入结晶器。拉速视钢的横断面、等级和质量而定。离开结晶器后,形成坚固坯壳的铸流进入铸辊密封区和二次冷却室。结晶器下面的支撑辊刚性强,辊隙窄,使钢水静压力造成的鼓肚减至最小,防止产生裂纹和偏析。因此,要用水或者水一气混合物(气雾)喷射冷却凝固铸流,促进凝固,这样可保持铸形的完整f生和产品质量。铸辊密封区是以铸造产品的横断面为基础,断面越大,铸辊密封区越长。铸流完全凝固后,通过拉矫机断开引锭杆。之后,按照定尺长度用乙炔氧切割机或飞剪切割铸坯。连铸机的可靠性(就其有效性和利用率而言)是改进产量和提高生产率的关键。连铸时任何操作故障都可导致铸机停机,影响其有效性。因此,必须重视连铸操作故障的排除,以加强铸机的有效性。漏钢一影响铸机有效性连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间,因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。漏钢的影响因素影响漏钢发生的因素有:温度和拉速不一致—铝习水过热度越高,坯壳厚度越薄。由于结晶器中钢水施加的静压力,导致坯壳发生膨胀。当坯壳强度不够时,容易发生漏钢。不一致和不均匀的温度对漏钢的产生有很大影响。当拉速增大时,较易发生漏钢,因为结晶器不够润滑,从弯月面到坯壳/结晶器壁面,结晶器保护渣流动性较差,而且增大拉速会导致总放热量减少。漏钢常常是由于拉速太高造成的,当坯壳没有足够时间凝固到需要厚度时,或者金属太热,这意味着最终凝固正好发生在矫直辊下方,因矫直时施加应力,坯壳撕裂。对于钢中碳含量一定时,温度高且拉速快容易发生漏钢。在振动设置上所作的任何改变都会促使漏钢发生,因为通过提高振动频率来减少振痕的做法会增加结晶器速率,从而增加交界面处的摩擦力。结晶器和坯壳之间润滑不良——如果使用质量较差的保护渣,弯月面下方的钢水容易夹渣,导致结晶器和坯壳粘结,拉坯中断,造成悬挂漏钢。方坯连铸时,因润滑不良或不均,坯壳粘结到结晶器上,影响传热,造成粘结漏钢。结晶器中无效水流——减少进入结晶器的水流会导致传热降低,致使形成薄坯壳,最终导致漏钢。进出口的水温、压力和流速的不同直接影响结晶器的冷却。结晶器冷却系统堵塞导致压力增加,流速减小,影响传热,易发生漏钢。因而进出口水温(高温)

的巨大差异导致结晶器与坯壳粘结,容易发生拉断漏钢。结晶器几何形状不当——为增加钢水一结晶器接触面,调节结晶器锥度,以适应钢的凝固收缩,从而增加结晶器的传热,增加坯壳厚度。对于高速方坯连铸机上带线性锥度的传统结晶器而言,弯月面处的热传递迅速使铸流凝固成一固体外壳,随着外壳的收缩,角部脱离结晶器,停止热传递。因此,在结晶器底部,除了角部有再熔化之外,坯壳继续生长。当坯壳离开结晶器时,坯壳温度变化较大,此时增加拉速可能导致漏钢。如果调节的锥度不合要求,结晶器和坯壳之间就会产生气隙,当空气对结晶器中热量传递的阻力达到最大时,它将严重妨碍所需厚度的坯壳形成,最终导致漏钢。磨损和变形造成的结晶器锥度损耗会导致角部纵裂显著增加,这是由于角部再加热的结果。就结晶器变形而言,产生原因是结晶器铜板厚度较薄,不足以支持铜板的热膨胀。还可能是在引锭杆插入结晶器时,导致结晶器下部损坏而造成结晶器变形。结晶器锥度过大会增加拉坯阻力,导致结晶器磨损加大。倒锥度加上热缩造成气隙厚度增加,进而加大角部磨损,因此,要降低使表面温度升高的传热。此现象始终伴随着钢水静压力,这会诱发角部表面产生拉伸应变,从而引发裂纹。这种裂纹会以固定方式大大降低坯壳厚度,可能最终导致漏钢。结晶器圆角半径越大,气隙就越大。该气隙阻碍了热传递,致使形成薄坯壳,容易漏钢。在板坯/大方坯连铸机中,4个分离的铜板被固定,形成空穴环绕在其之间。如果2个铜板之间的接合处有气隙,初始金属就会渗入气隙并开始凝固,在后期造成悬挂,导致漏钢。因而,结晶器调整的不合适就会影响热传递机理,造成漏钢。结晶器中钢液面高度不适——连铸期间,结晶器中的钢液面需要维持在结晶器高度的70%~80%。如果钢液面降到浸入式水口以下,那么随后加入的钢水形成的凝固坯壳较薄,容易漏钢。在换水口、换中间包或中间包水口堵塞期间可能发生钢液面下降。当限制钢水从中间包流进结晶器时,如果不调整拉速,可能发生漏钢。因此,如果塞棒控制不合适导致转动而造成钢水溢流,粘结到结晶器顶部,造成悬挂,拉坯受阻,导致漏钢。钢液面的降低还会造成夹渣。如果有充足时间使塞棒关闭浸入式水口,钢液面可降低到允许极限以下。如果浇注再次开始,钢水会抑制结晶器保护渣,造成夹渣。因此,在全连铸换钢包时,中间包钢液面下降,如果操作不当,中间包渣可通过浸入式水口进入结晶器内的钢水中。钢流的氧化产物、不当的脱氧产物、方坯结晶器中铝丝喷加不当造成Al2O3偏高而形成的高粘度渣,都可能渗入坯壳形成夹渣,局部抑制坯壳形成,降低坯壳和结晶器间的润滑度,易粘结,导致拉坯中断,发生漏钢。中间包浇注流偏心——中间包浇注流偏心导致传热不均,造成凝固坯壳厚薄不均,坯壳薄弱处强度降低,难以承受钢水静压力,因而漏钢。气雾冷却喷嘴堵塞——足辊区设在结晶器下方,在此水经喷嘴直接喷于坯壳上。坯壳受到辊子的压力,使坯壳更光滑。此时,传递的热量最大,便于形成更厚的坯壳。如果喷嘴堵塞,坯壳厚度将变薄,易造成漏钢。万一堵塞,需要靠拉辊施加外力,如果超过极限,就会造成坯壳表面破裂,漏钢。引锭杆不规则性——钢水一旦在结晶器引锭杆上方凝固,形成足够厚度的坯壳,就将引锭杆慢慢拉出。如果不按规律拉出引锭杆,则易发生漏钢。同样地,引锭杆装配不牢固会使钢水从结晶器流出,导致漏钢。如果引锭杆在引锭杆头提升前从坯壳中过早的分离出来,易导致漏钢。漏钢类型根据漏钢坯壳的外观,大致把漏钢分成以下几类:悬挂或粘结引起漏钢——钢水粘结到结晶器上,因而称为粘结或悬挂。这可能是由结晶器和坯壳之间润滑不适或者结晶器调节不当引起的,而润滑不适可能是由质量较差的保护渣、结晶器中坯壳夹渣、结晶器钢水溢流、结晶器角缝、方坯连铸机润减不良/不均等原因造成的。裂纹引起漏钢——坯壳角部纵裂和宽面纵向裂纹都会造成漏钢发生。如果纵向裂纹引起漏钢,则保护渣流动不均,结晶器传热不均导致坯壳厚度不均,保护渣选择不当和结晶器冷却不均造成冷却时坯壳破裂。对角部纵裂引起漏钢来说,沿结晶器窄面凝固厚度不够的坯壳因收缩时受到拉伸应力而破裂,拉伸应力是由结晶器窄面锥度减小和窄面传热不均造成的。夹渣漏钢——坯壳夹带保护渣或大粒夹杂物导致传热减少,形成薄坯壳而漏钢。方坯连铸时,二次氧化产物、低碳钢冶炼时高粘性渣中不当的脱氧产物,结晶器中铝丝喷加不当造成Al2O3偏高,这些都促使坯壳夹渣,抑制坯壳生长,造成漏钢。薄壳漏钢——观察方坯连铸机中这类漏钢

是由结晶器中坯壳厚度不均造成的,原因可能是结晶器中浇注流偏心,或结晶器冷却管严重变形。停止浇注引起漏钢——连铸过程中发生中断而未能断开停止浇注,如果衔接点不能承受重新浇铸施加的拉力,则整炉钢都会溢漏。控制漏钢的措施考虑到漏钢对连铸机利用率和有效性的影响,须采取必要措施控制漏钢的发生。●仅在浇注平台吹氩后进行测温,确保温度的均匀性。根据钢的化学成分,浇注流温度必须保持过热约60℃,才能把钢包放置在回转台上,以确保钢水在中间包内过热25~35℃。●根据在钢包中监测的温度控制拉速。钢中的碳含量一一定时,确保温度随拉速减小而升高,拉速随温度降低而增大。因此,要依据钢的温度和碳含量正确调整拉速。逐步增加拉速,通过一定的拉速来保持稳态连铸。连铸中的任何中断都要降低拉速。●任何保护渣都有有效期,因此过期后不应使用。保护渣只有在铸造期间才能打开,放在高瓦数灯泡下使其干燥。再次铸造时不能使用敞开袋的保护渣。按照规定的钢化学成分选择合适的保护渣。铸造开始时,要用粘性低和熔点低的初始保护渣。对于方坯连铸机,要确保结晶器中亚麻籽油分布均匀。●对于板坯/大方坯连铸机,测量熔渣池厚度,以判断渣池厚度是否超过10mm及由附着于钢板上的钢、铜和铝丝组成的设备行程,这有助于避免夹渣、坯壳润滑均匀。●对于高速方坯连铸机,可使用多种锥度的结晶器,代替传统线性锥度结晶器。要检查结晶器的变形情况(如果有)。选择合适的结晶器锥度并根据钢韵等级和其在板坯/大方坯连铸机上的凝固方式,调节锥度以适应窄面。●在连铸开始前,通过测量水压的增加,检查结晶器中的水流量,查明堵塞情况(如果有)。总的说来,检查进出口水温、压力和流量的差异,还有流量设备。水质也要检查。根据钢的等级和其凝固方式,调整结晶器冷却模式,即水流量(1/min),以适应各种结晶器表面。为控制粘结,使用热电偶检测结晶器壁温变化,并降低拉速,以使坯壳继续均匀生长。对于给定的连铸机,要确保进出口水温之间的差异不能在连铸期间超过规定值。●保证沿铜板的圆角半径最大值是0.2mm。如果角缝存在于铜板接合处,在开始连铸前要用石膏或石灰填充角缝。●在连铸机上安装结晶器液面自动控制器,以保持结晶器的钢液面。为区别结晶器中的钢水和炉渣,并检查夹渣情况,在结晶器上安装电磁传感器。●在铸造前,要调整中间包水口,进行对中。处理中间包水口堵塞,把钢包放置在回转台上之前,要确保Ca—Si芯的金属丝喷入,符合高铝钢的要求,以便形成低熔点铝酸钙。使用冷冻器避免塞棒转动。●通过使用中间包金属保护性熔剂和在钢包和中间包之间使用屏蔽板,确保脱氧产物适当,防止二次氧化产物生成,对于方坯连铸机要维持Mn/Si>3。●用石棉绳密封引锭杆头,使用激冷箱,保证铸造前激冷箱的正确分布。●为确定堵塞情况(如果有),检查喷雾冷却喷嘴和水流量。

天然气管道阀门管道更换方案讲课稿

天然气管道置换方案 为做好天然气管道球阀更换工作,确保更换工作能够安全有序开展,做到统一指挥、协调置换过程中各种问题,明确分工,责任到人,特制定天然气置换方案。 一、成立天然气置换工作领导小组 组长:*** 副组长:*** 组员:********* 组长职责:负责天然气置换工作全面指导、监督。 副组长职责:负责天然气置换工作总体安排、协调,保障天然气置换工作安全进行。组员职责: *****职责:负责氧化锌11#放散口处50米范围内进行检查,设置警戒线及时制止无关人员、车辆等流动明火现象。 *****:负责南大餐厅2#放散口处50米范围内进行检查,设置警戒线及时制止无关人员、车辆等流动明火现象。 *********:负责关闭、开启10#、11#、12#阀门;断开、连接11#阀门,检测天然气浓度。 ******:负责关闭、开启1#、2#、4#阀门,确认3#阀门处于关闭状态;断开、连接2#阀门,检测天然气浓度。 *******:负责关闭、开启5#、7#阀门;观察18#压力表指示。 ********:负责开启、关闭13#、14#、16#、17#阀门,并负责氮气置换天然气过程中开启15#阀门;天然气置换氮气过程中开启13#阀门。 *****:负责更换9#阀门。 二、管线基本情况

该趟管线管道全长1200m,管径DN150mm。管道起点为澡堂东中裕总表,地埋至110kv站内,经过精炼厂调压柜,在制氧厂西路口广告牌处分为两路,一路至直炼厂熔炼工段南16#球阀处,一路至氧化锌桥头12#阀门处。 三、施工前工作准备及安全注意事项 (一)前一天下午16:00点需完成以下准备工作: 1.测试15#氮气置换开启阀门是否能够正常使用。 2.检测前需准备施工材料:5瓶肥皂水、2台测漏仪、梅花扳3套、开口扳3套、活扳22”3个、各法兰固定螺丝、警戒线或者红绳、常用工具等准备到位。 3.开始前用肥皂水确认各法兰连接处无泄漏。 4.检测人员需提前一天对测漏仪进行渗漏实验,打火机在熄火状态下进行泄漏实验,确保测漏仪处于完好状态。管网班对检测人员进行测漏仪使用操作培训。 5.检查更换阀门管道是否有良好接地,如没有重新打好接地线,确保接地电阻值在4Ω及以下。提前检查法兰及阀门的金属跨接线是否完好,阻值应不大于0.03Ω。 6. 完成检测方案编制及审批,完成天然气检测示意图绘制和准备测绘部位测点示意图绘制。 7.和生产部、设备部沟通告知置换工作需要时间,确定第二天检测开始的确切时间。 8.组织所有参与工作人员展开动员会,明确任务分工进行安全技术交底。 9.管网班提前检查所需断开连接的法兰螺栓是否锈蚀严重,对锈蚀严重的螺栓,提前进行逐一更换,更换过程中确保不漏气。 10.参与2#、9#、11#阀门相关工作人员,工作时不得携带手机,由下方人员进行沟通。 (二)施工当天8:00前必须将全部材料拉到位,人员到各自工作地点听候指挥。(三)置换工作开始前,对参加置换作业人员进行方案交底,参加作业人员必须佩

板坯连铸机粘结漏钢的原因分析及预防 刘雷锋

板坯连铸机粘结漏钢的原因分析及预防刘雷锋 发表时间:2018-01-02T16:54:15.037Z 来源:《基层建设》2017年第28期作者:刘雷锋 [导读] 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。 宁波钢铁有限公司浙江宁波 315807 摘要:随着连铸技术的发展和广泛应用,连铸坯的质量和品质受到了人们的广泛关注,提高连铸坯的质量成为连铸生产中重点关注的问题之一。连铸过程开始广泛运用于有色金属行业,尤其是铜和铝。连铸技术迅速发展起来。本文对此进行了分析研究。 关键词:坯;连铸;连铸工艺 连铸漏钢是个常见现象。钢水在结晶器内形成坯壳,连铸坯出结晶器后,薄弱的坯壳抵抗不住钢水静压力,出现断裂而漏钢。对于薄板坯连铸来说更易发生漏钢事故。漏钢对连铸生产危害很大。即影响了连铸车间的产量,又影响了连铸坯的质量,更危及操作者的安全。因此,降低薄板坯连铸漏钢率是提高生产效率,提高产量,提高产品质量,降低成本的重要途径。现对某厂自2008~2013年薄板坯漏钢率进行统计。2008年漏钢率达0.56%;2009年漏钢率达0.19%;2010年漏钢率达0.19%;2011年漏钢率达0.19%;2012年漏钢率达0.15%;2013年漏钢率达0.07。 1 工艺流程 某厂第一钢轧厂工艺流程为:鱼雷罐供应铁水/混铁炉供应铁水→铁水预处理→转炉炼钢→氩站→精炼→薄板坯连铸 2 薄板坯漏钢类型 某厂薄板坯连铸漏钢主要有:粘结漏钢、裂纹漏钢、卷渣漏钢、开浇漏钢、鼓肚漏钢五个类型。 3 薄板坯漏钢特征、原因及预防措施 3.1 粘结漏钢 粘结漏钢是指钢水直接与结晶器铜板接触形成粘结点,粘结点处坯壳与结晶器壁之间发生粘结,此处在结晶器振动和拉坯的双重作用下被撕裂,并向下和两侧扩展,形成倒“V”形破裂线,钢水补充后又形成新的粘结点,这一过程反复进行,粘结点随坯壳运动不断下移,此处坯壳较薄,出结晶器后,坯壳不能承受上部钢水的静压力,便会发生漏钢事故。据统计,粘结漏钢发生率最高,高达50%以上。 (1)铸坯粘结漏钢后特征。粘结漏钢后铸坯特征。坯壳呈“V”字型或“倒三角”状,粘结点明显。 (2)粘结漏钢的原因: 1)保护渣性能不好。保护渣在结晶器铜板与凝固坯壳之间起润滑的效果。保护渣的性能好坏直接影响凝固坯壳的质量,保护渣的粘度是一个重要指标,它决定渣膜的薄厚,保护渣粘度高,不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。2)钢水纯净度低。钢水中[O]含量高,使得钢水中A12O3含量升高,进而结晶器保护渣中A12O3含量高,保护渣性能发生变化,渣粘度增大、不易流入坯壳与铜板之间形成润滑渣膜,使得钢水和结晶器铜板之间易发生粘结。3)结晶器振动参数不合适。合适的振动形式和振动参数可以降低结晶器铜板与凝固坯壳之间的摩擦力和减小振痕深度,改善铸坯表面的质量。若结晶器振动参数不合适,负滑脱时间过长造成凝固坯壳上的振痕过深,使坯壳容易在应力的作用下断裂产生粘结。4)浸入式水口烘烤不符合标准。如果浸入式水口烘烤温度不够,连铸开浇时水口与结晶器内外弧间的保护渣产生搭桥现象,保护渣不易熔化,进而流入到坯壳和结晶器之间的保护渣减少,渣膜变薄,润滑效果变差,容易粘结漏钢。5)钢水温度过低。钢水温度过低,保护渣粘度大,润滑效果不好,易粘结漏钢。 3.2 卷渣漏钢 定義:由于结晶器液面波动会将渣卷入初生坯壳,这些渣子附着在坯壳表面,由于其导热性差,卷渣处的坯壳较薄,铸坯出结晶器后,渣子在钢水静压力作用下脱落产生漏钢。 在结晶器内的固态或半熔融的夹渣物随着浇注钢流的运动,被推向结晶器壁;或在更换中间包长水口时,中间包内钢液面下降后,中间包内钢渣易随钢流进入结晶器,最后被初生坯壳捕捉; (1)卷渣漏钢后特征。卷渣漏钢主要特征表现为:漏钢部位有“孔洞或结渣”,漏钢部位一般发生在结晶器出口位置。 (2)卷渣漏钢原因: 1)残留在钢中的大型夹杂物较多造成卷渣现象;2)较大的结晶器液面波动造成卷渣现象;3)捞渣不及时或捞不净造成的卷渣现象。 3.3开浇漏钢 开浇漏钢是指铸机开浇或者换中间包时,由于连接不好而造成的漏钢。 (1)开浇漏钢后铸坯特征。开浇漏钢铸坯特征为:漏钢一般发生在开浇起步期间,引锭头刚拉出结晶器就发生漏钢。(2)开浇漏钢原因:引锭头未扎好,包括石棉绳没扎紧;开浇起步过快,凝固时间不够开拉,坯头强度不够,将引锭头处拉裂漏钢。 4 薄板坯漏钢的预防措施 4.1 优化结晶器保护渣性能 通过优化保护渣碱度、熔点、熔速、粘度等指标,有效地减少了粘结、卷渣、裂纹漏钢等生产事故。 4.2 恒温恒拉速浇注 恒温恒拉速浇注是降低薄板坯漏钢率的主要因素。 4.3 优化连铸工艺参数 对不同钢种、不同断面的连铸相关参数(结晶器水流量、结晶器初始锥度、二冷水各段分配比例及比水量、扇形段压下终点位置等)进行优化调整,并固化使用。 4.4 连铸耐材优化与管理 (1)加强水口的烘烤操作。(2)优化中间包结构。中间包控流装置由“单挡渣坝”式改为“一挡墙+两挡坝”组合结构,将钢包下渣完全挡在冲击区内,产生的流场有利于钢液中夹杂物的充分上浮,有利于钢液成分、温度的均匀,提高了钢水质量,降低了漏钢事故。(3)加

钻孔灌注桩漏浆处理措施

浅谈钻孔灌注桩卵石层漏浆处理措施 XXX 摘要:泥浆护壁成孔灌注桩施工噪音小、适应能力强、机械化程度高便于操作、工艺成熟、施工过程安全可靠等优点成为现今桩基施工的主要方式之一。但该工艺为隐蔽工程,施工质量控制难度大,在卵石层钻进过程中容易发生漏浆,本文结合XXX 银行大厦工程钻孔灌注桩施工过程实际施工情况,对在卵石层发生漏浆的原因及所采取的处理措施进行分析。 关键词:灌注桩、卵石层、漏浆 1、工程概况 温州XXX银行大厦工程,位于浙江省温州市鹿城区,瓯江南畔。本工程设计桩孔设计深度在46m~51m之间,该区域地质条件如下: ①1 杂填土(ml) 褐黄、灰黄、褐灰等色,为新近回填土;由碎石、块石、砖块、砼块等建筑垃圾和少量生活垃圾等组成,不均匀,局部为砼地面;主要由粉细砂、少量粘性土、碎石等组成;稍湿~饱和,松散~稍密,中~高压缩性;层厚0.70~5.70m;。 ①2 粘土(l Q43) 灰褐色,含少量腐殖质及黄褐色铁质氧化斑;可~软塑,中~高压缩性;层厚0.80~1.70m、层底埋深2.10~2.70m。 ②1 淤泥质粉质粘土(m Q42) 流塑、高压缩性、高灵敏度;层厚1.20~5.20m、层底埋深5.10~7.40、层底高程-0.72~-2.99m。 ②2 中砂夹淤泥(al-m Q42) 灰色,土层不均匀;以松散状中砂、部分位置为粉细砂为主、不均匀夹15~40%淤泥;层厚5.80~8.70m、层底埋深12.80~14.80m、层底高程-7.36~-9.58m。

②3 淤泥夹粉砂(m-al Q42) 灰色;土层不均匀,以淤泥为主,不 均匀的夹少量粉砂,土层具流塑、高压缩 性;层厚 1.10~2.20、层底埋深14.50~ 16.10m、层底高程-8.96~-11.16m。 ②4 中砂夹淤泥(al-m Q42) 灰色,土层不均匀;以松散~稍密状 中砂、部分位置为粉细砂为主、不均匀夹 10~30%淤泥,层厚2.10~4.10m、层底 埋深17.00~18.60m、层底高程-12.72~ -13.48m。 ②5 淤泥(m Q42) 青灰色;流塑、高压缩性、高灵敏度; 层厚 6.60~8.10、层底埋深24.50~ 26.30m、层底高程-19.63~-21.36m。 ③1 淤泥质粘土(m Q41) 灰色;含少量腐殖物及贝壳碎片,不 均匀的夹少量粉细砂;流塑、高压缩性、 高灵敏度;层厚8.00~9.60m、层底埋深 32.80~34.90m、层底高程-28.39~ -29.76m。 ③2中砂夹淤泥质粘土(al-m Q41) 灰色,土层不均匀;以中密状中砂、 部分位置为粉细砂为主、不均匀夹10~30%淤泥质粘土,局部淤泥质粘土含量达40%;层厚4.90~6.30m、层底埋深38.50~40.30m、层底高程-34.05~-35.37m。 ③3 粘土(m Q41) 灰色;含少量腐殖物及粉砂,软塑、高压缩性;层厚0.90~2.10m、层底埋深39.60~41.90m、层底高程-35.05~-36.47m。 ③4 中砂夹淤泥质粘土(al-m Q41)

连铸机漏钢的原因及防范措施

漏钢 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间,因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 漏钢的影响因素影响漏钢发生的因素有: 温度和拉速不一致——钢水过热度越高,坯壳厚度越薄。由于结晶器中钢水施加的静压力,导致坯壳发生膨胀。当坯壳强度不够时,容易发生漏钢。不一致和不均匀的温度对漏钢的产生有很大影响。当拉速增大时,较易发生漏钢,因为结晶器不够润滑,从弯月面到坯壳 /结晶器壁面,结晶器保护渣流动性较差,而且增大拉速会导致总放热量减少。漏钢常常是由于拉速太高造成的,当坯壳没有足够时间凝固到需要厚度时,或者金属太热,这意味着最终凝固正好发生在矫直辊下方,因矫直时施加应力,坯壳撕裂。对于钢中碳含量一定时,温度高且拉速快容易发生漏钢。在振动设置上所作的任何改变都会促使漏钢发生,因为通过提高振动频率来减少振痕的做法会增加结晶器速率,从而增加交界面处的摩擦力。 结晶器和坯壳之间润滑不良——如果使用质量较差的保护渣,弯月面下方的钢水容易夹渣,导致结晶器和坯壳粘结,拉坯中断,造成悬挂漏钢。

方坯连铸时,因润滑不良或不均,坯壳粘结到结晶器上,影响传热,造成粘结漏钢。 保护渣加入方式不正确——由于现场工人操作习惯,一次性加入过多,且主要集中在内弧,呈斜坡状,会造成液渣不均匀填充,影响结晶器与坯壳间的润滑与均匀传热。在正常浇注情况下,小渣条没必要捞出,且应禁止用捞渣棒试探结晶器内是否形成渣条,会破坏弯月面初始坯壳的均匀形成。 结晶器中无效水流——减少进入结晶器的水流会导致传热降低,致使形成薄坯壳,最终导致漏钢。进出口的水温、压力和流速的不同直接影响结晶器的冷却。结晶器冷却系统堵塞导致压力增加,流速减小,影响传热,易发生漏钢。因而进出口水温(高温)的巨大差异导致结晶器与坯壳粘结,容易发生拉断漏钢。 结晶器几何形状不当——为增加钢水一结晶器接触面,调节结晶器锥度,以适应钢的凝固收缩,从而增加结晶器的传热,增加坯壳厚度。对于高速方坯连铸机上带线性锥度的传统结晶器而言,弯月面处的热传递迅速使铸流凝固成一固体外壳,随着外壳的收缩,角部脱离结晶器,停止热传递。因此,在结晶器底部,除了角部有再熔化之外,坯壳继续生长。当坯壳离开结晶器时,坯壳温度变化较大,此时增加拉速可能导致漏钢。如果调节的锥度不合要求,结晶器和坯壳之间就会产生气隙,当空气对结晶器中热量传递的阻力达到最大时,它将严重妨碍所需厚度的坯壳形成,最终导致漏钢。磨损和变形造成的结晶器锥度损耗会导致角部纵裂显著增加,这是由于角部再加热的结果。就结晶器变形而言,产生原因是结晶器铜板

内漏阀门更换施工方案

兰成渝线漏阀门更换项目 施工方案

一、工程概况 (一)工程概况 该项目分为2段进行施工,包括陇西站收球筒前后2台阀门以及水击泄压阀前后2台阀门更换;成县站14台进口排污阀更换。 (二)工程容 1、工程名称:兰成渝线漏阀门更换项目 2、建设单位: 3、工程容:陇西站收球筒前后2台阀门以及水击泄压阀前后2台阀门更换;成县站14台进口排污阀更换。 4、工程质量等级:工程质量达到合格标准。 5、工期要求:总工期为20日历天。 二、编制依据 1、该项目相关设计资料。 2、与该项目有关的、行业及地方施工验收规、标准。 《现场设备、工业管道焊接工程施工及验收规》GB50236-98 《工业金属管道工程施工及验收规》(GB50235-97) 《石油天然气钢质管道无损检测》(SY/T4109-2005) 《涂装前钢材表面预处理规》(SY/T0407-97)

《钢质管道焊接及验收规》(SY/T4103-2006) 《石油天然气站工艺管道工程施工及验收规》(SY0402-2000)《阀门的检查与安装规》(SY/T4102-95) 《石油天然气站建设工程施工质量工程验收规站工艺管道工程》(SY4203-2007) 《油气田管线和设备涂色规》(SY/T0043-2006) 《工业金属管道工程质量检验评定标准》GB50184-93 《石油天然气管道安全规程》(SY6186-1996) 《石油工业动火作业安全规程》(SY585-2004) 《输油气管道动火管理规》(Q/SY64-2007) 《建筑施工安全检查标准》JGJ59-99 《施工现场临时用电安全技术规》GBJ46-88 《建设工程文件归档整理规》GB/T50238-2001 三、主要工程量 (一)更换阀门明细 更换漏阀门表

漏钢统计情况

漏钢统计情况 摘要:本文分析了某某钢二炼钢厂板坯连铸机漏钢事故产生产的原因及防止板坯连铸机漏钢的措施。采取 相应控制措施之后,目前某某钢二炼钢厂常规板坯连铸机频繁漏钢的势头得到了明显的控制。 关键词:板坯粘结漏钢保护渣水口浸入深度 The reason and countermeasure of slab caster breakout Yang Xiao qiang ( The second steelmaking plant, JISCO,735100) Abstract: In this presentation, the breakout reason of slab cater of the second steelmaking plant was analyzed, and corresponding precautions were adopted. Since then, the breakout event was under controlled obviously. keywords: slab caster sticking breakout mould powder immerge depth of mould nozzle 1 前言 某某钢第二炼钢厂常规板坯连铸机自2005年4月18日投产以来,铸机漏钢问题始终困绕着二炼钢厂的正常生产,对二炼钢厂的正常生产造成了重大的冲击,连铸机的漏钢问题成为制约二炼钢厂生产的瓶颈环节。频繁的漏钢事故使连铸机设备的劣化趋势明显加剧,铸机检修质量无法保证。为降低连铸机漏钢事故,二炼钢厂成立了攻关组,经过对漏钢事故的原因进行分析,采取了相应的措施,板坯连铸机结晶器漏钢事故得到了明显的控制。 2 某某钢第二炼钢厂常规板坯连铸机参数及漏钢相关情况简介 2.1某某钢第二炼钢厂常规板坯连铸机的主要工艺参数 表1 主要工艺参数 序号项目单位技术指标 铸机产量万吨/年 2 生产钢种四大类二十多个品种 3 连铸坯厚度mm 160,220 4 连铸坯宽度mm 850~1600 5 铸机半径m 9.5 6 连铸机型式立弯式(连续弯曲,连续矫直) 7 连铸机冶金长度m 31.9 8 铸机正常拉速m/min 1.0~1.4 9 结晶器长度mm 950 10 振动方式液压(正弦,非正弦) 11 二冷方式气水冷却(十四个控制回路) 2.2漏钢统计情况 从某某钢二炼钢厂常规板坯连铸机从2004年4月18日正式投产以来,共发生各种漏钢事故17次。其中粘结漏钢14次,占到所有漏钢的82%。其它三次漏钢为卷渣漏钢,裂纹漏钢,尾坯漏钢。板坯连铸机漏钢事故成为制约全厂正常生产的瓶颈环节。 3 某某钢二炼钢厂常规板坯连铸机漏钢原因分析 3.1粘结漏钢 结晶器粘结漏钢形成的过程如图1所示。

框架柱烂根和阳角漏浆的处理及预防措施

一、框架柱烂根处理及预防措施 1.原因分析 目前工程部分单体工程框架柱出现了不同程度的烂根”现象,其主要原因有:①框架柱混凝土浇筑时,混凝土振捣不到位,振捣时间不够,导致混凝土不密实;②框架 柱混凝土浇筑之前,柱子根部未浇筑水泥砂浆,导致柱子根部出现烂根现象;③框架 柱根部有杂物未清理干净;④框架柱根部模板不严密,混凝土浇筑时出现漏浆;⑤管理人员、施工人员责任心差,没有严格按要求进行施工。 2.烂根处理 为了不影响到主体结构整体受力性能,针对该工程框架柱的烂根应及时采取措施进行修补,具体处理措施的流程如下:柱子根部烂根处混凝土剔凿T用清水冲洗T柱 子箍筋恢复T模板支设T浇灌C40微膨胀细石混凝土T养护。 具体的处理工艺如下所示。①剔凿:为确保新旧混凝土具有良好的粘结,应采用人工配合机械将柱子根部已烂根的混凝土凿除,使基底露出坚硬、牢固的混凝土面,务必彻底全面。混凝土剔凿时应重点保护好柱子主筋。②冲洗和饱和:对凿除的混凝 土表面,采用高压水枪(采用自来水)将碎屑、灰尘冲洗干净,并连续、均匀地喷洒,使表层混凝土达到饱和状态,且表面无明水。③柱子箍筋恢复:在进行柱子根部混凝 土剔凿时,或多或少会对柱子箍筋造成一定的破损,因此待混凝土剔凿完毕后,应重新恢复好柱子根部钢筋,若箍筋破损较为严重的需重新更换。④模板支设:为了便于 柱子根部灌浆密实,应在柱子根部重新支设模板,模板应高出柱子烂根部分100mm , 且根部重新支设的模板尺寸应扩大,柱子模板应距离柱子表面100mm。⑤C40微膨 胀细石混凝土搅拌:按照配合比进行搅拌机搅拌,细石为5-10mm瓜子石,水泥同该 框架柱砼所用的水泥,为袋装水泥,搅拌时应控制好细石混凝土的和易性。⑥浇灌C40 微膨胀细石混凝土:待混凝土面清洗后,手摸混凝土表面时,感觉到湿润,应立即进行浇灌。浇灌前2h,用饮用水冲洗待修补部位,使混凝土表面处于饱和状态,但表面不能有明水。浇灌时,可采用小

连铸生产漏钢事故的分析

连铸生产漏钢事故分析 摘要:通过对连铸漏钢时结晶器内坯壳的剖析和工艺分析,查明漏钢的分类、原因和解决办法和如何避免事故的发生,如何提前预报漏钢。 关键词:连铸漏钢保护渣预报漏钢 一、漏钢的危害 漏钢—影响铸机有效性 连铸中遇到的主要操作故障之一是“漏钢”。当铸流坯壳破裂时,坯壳内静止的熔融钢水溢出,堵塞机器,需要付出昂贵的停机代价。为拉出漏钢坯壳,就要再延长漏钢引起的停机时间。因为它可能会堵塞导辊或足辊,需要用气割清理堵塞,拉出坯壳。当漏钢坯壳温度降低时,需要把它切成小块,用矫直机从机器中取出,而矫直机设计成能在稳定阶段逐步地矫直曲冷坯壳,上轧辊可提供足够的提升重力,弄出不太长的弯曲铸流。因此,漏钢对铸机的有效性有重大影响——影响生产率和生产成本。 二、漏钢的分类 根据漏钢坯壳的外观,大致把漏钢分成以下几类: 悬挂或粘结引起漏钢--钢水粘结到结晶器上,因而称为粘结或悬挂。这可能是由结晶器和坯壳之间润滑不适或者结晶器调节不当引起的,而润滑不适可能是由质量较差的保护渣、结晶器中坯壳夹渣、结晶器钢水溢流、结晶器角缝、方坯连铸机润滑不良、不均等原因造成的。 1、裂纹引起漏钢--坯壳角部纵裂和宽面纵向裂纹都会造成漏钢发生。如果纵向裂纹引起漏钢,则保护渣流动不均,结晶器传热不均导致坯壳厚度不均,保护渣选择不当和结晶器冷却不均造成冷却时坯壳破裂。对角部纵裂引起漏钢来说,沿结晶器窄面凝固厚度不够的坯壳因收缩时受到拉伸应力而破裂,拉伸应力是由结晶器窄面锥度减小和窄面传热不均造成的。 2、夹渣漏钢--坯壳夹带保护渣或大粒夹杂物导致传热减少,形成薄坯壳而漏钢。方坯连铸时,二次氧化产物、低碳钢冶炼时高粘性渣中不当的脱氧产物, 1

内漏阀门更换施工方案

兰成渝线内漏阀门更换项目 施工方案

一、工程概况 (一)工程概况 该项目分为2段进行施工,包括陇西站收球筒前后2台阀门以与水击泄压阀前后2台阀门更换;成县站14台进口排污阀更换。(二)工程内容 1、工程名称:兰成渝线内漏阀门更换项目 2、建设单位: 3、工程内容:陇西站收球筒前后2台阀门以与水击泄压阀前后2台阀门更换;成县站14台进口排污阀更换。 4、工程质量等级:工程质量达到合格标准。 5、工期要求:总工期为20日历天。 二、编制依据 1、该项目相关设计资料。 2、与该项目有关的国家、行业与地方施工验收规范、标准。 《现场设备、工业管道焊接工程施工与验收规范》50236-98 《工业金属管道工程施工与验收规范》(50235-97) 《石油天然气钢质管道无损检测》(4109-2005) 《涂装前钢材表面预处理规范》(0407-97) 《钢质管道焊接与验收规范》(4103-2006) 《石油天然气站内工艺管道工程施工与验收规范》(0402-2000) 《阀门的检查与安装规范》(4102-95) 《石油天然气站内建设工程施工质量工程验收规范站内工艺管道工程》(4203-2007) 《油气田管线和设备涂色规范》(0043-2006)

《工业金属管道工程质量检验评定标准》 50184-93 《石油天然气管道安全规程》(6186-1996) 《石油工业动火作业安全规程》(585-2004) 《输油气管道动火管理规范》(64-2007) 《建筑施工安全检查标准》 59-99 《施工现场临时用电安全技术规范》 46-88 《建设工程文件归档整理规范》 50238-2001 三、主要工程量 (一)更换阀门明细 更换内漏阀门表

板坯连铸机漏钢事故的原因分析及防止 精品

板坯连铸机漏钢事故的原因分析及防止 摘要:本文分析了某某钢二炼钢厂板坯连铸机漏钢事故产生产的原因及防止板坯连铸机漏钢的措施。采取 相应控制措施之后,目前某某钢二炼钢厂常规板坯连铸机频繁漏钢的势头得到了明显的控制。 关键词:板坯粘结漏钢保护渣水口浸入深度 1 前言 某某钢第二炼钢厂常规板坯连铸机自2005年4月18日投产以来,铸机漏钢问题始终困绕着二炼钢厂的正常生产,对二炼钢厂的正常生产造成了重大的冲击,连铸机的漏钢问题成为制约二炼钢厂生产的瓶颈环节。频繁的漏钢事故使连铸机设备的劣化趋势明显加剧,铸机检修质量无法保证。为降低连铸机漏钢事故,二炼钢厂成立了攻关组,经过对漏钢事故的原因进行分析,采取了相应的措施,板坯连铸机结晶器漏钢事故得到了明显的控制。 2 某某钢第二炼钢厂常规板坯连铸机参数及漏钢相关情况简介 2.1某某钢第二炼钢厂常规板坯连铸机的主要工艺参数 表1 主要工艺参数 铸机产量万吨/年 2 生产钢种四大类二十多个品种 3 连铸坯厚度mm 160,220 4 连铸坯宽度mm 850~1600 5 铸机半径m 9.5 6 连铸机型式立弯式(连续弯曲,连续矫直) 7 连铸机冶金长度m 31.9 8 铸机正常拉速m/min 1.0~1.4 9 结晶器长度mm 950 10 振动方式液压(正弦,非正弦) 11 二冷方式气水冷却(十四个控制回路) 2.2漏钢统计情况 从某某钢二炼钢厂常规板坯连铸机从2004年4月18日正式投产以来,共发生各种漏钢事故17次。其中粘结漏钢14次,占到所有漏钢的82%。其它三次漏钢为卷渣漏钢,裂纹漏钢,尾坯漏钢。板坯连铸机漏钢事故成为制约全厂正常生产的瓶颈环节。 3 某某钢二炼钢厂常规板坯连铸机漏钢原因分析 3.1粘结漏钢 结晶器粘结漏钢形成的过程如图1所示。

2021年冲击钻孔桩钻孔漏浆的补充方案

1、原冲击钻孔方案简要描述 欧阳光明(2021.03.07) 原冲击钻孔方案是对旋挖钻机、循环钻机、冲击钻机钻孔施工以及人工挖孔几种方案充分对比后,最终确定下来的最切实可行的方案。原方案中冲击钻孔的简要描述如下: 钢护筒测量就位后,四周用粘土回填夯实,回填时注意保持筒体垂直,并测量其标高,以便检查孔底高程。 1.1泥浆的配制 在粘土层段可采用自然造浆的方式进行护壁,淤泥或砂类土层段采用抛填粘土造浆。冲击钻孔施工前,必须备有足够数量的粘土或膨润土,掏渣后应及时补浆。浆液的比重、粘度、胶体率等指标经现场试验以符合该地层护壁要求。 为保证易坍塌地层的成孔质量和最终能将孔底清理干净,对泥浆的比重与粘度制定严格指标。泥浆的好坏是成孔质量的重要保证之一,高质量的泥浆,在长期停钻的情况下,沉积物很少,此外,优质的泥浆可使孔壁形成一层粘性好、密度大渗透性差的泥皮,这层泥皮可防止孔内泥浆外渗,大大减缓孔内水头降低的速度,这也是使孔壁稳定的有效措施。 1.2冲击钻孔施工 (1)开始钻进时,应采用小冲程开孔,待钻进深度超过钻头全高加

正常冲程后方可进行正常冲击钻孔。松散地层应采用中小冲程,岩层应采用中、大冲程。 (2)钻进过程中,必须勤抽渣,使钻头经常冲击新鲜地层。每次松绳量,应根据地质情况、钻头形式、钻头质量决定。 (3)在易坍地层中钻进时,应适当加大泥浆比重,控制冲击速度。(4)钻进中应经常注意土层变化,在土层变化处均应捞取渣样,以判断土层,并做好记录,与设计地层作核对。钻进过程中应认真填写钻进记录,详细记录地层变化情况,当发现地层异常孔内有变化时,应及时通知现场技术人员及监理人员。 (5)当钻孔进入弱风化岩层时,应立即通知监理工程师到达现场确认,作为入岩深度的起始依据。第一根桩应通知业主、设计、监理单位到现场确认,以作为后续工程的控制依据。当地质条件与勘察报告有明显出入时,应即刻通知监理、业主、设计单位到现场解决。(6)本工程终孔标准为入岩深度、标高双控制。终孔前钻进速度放慢以便及时排出钻渣,当钻孔距设计标高1m时,注意控制钻进速度和深度,防止超钻,并核实地质资料,判定是否进入要求的持力层。当桩孔达到设计深度时,自查入岩深度是否满足要求,若满足,即刻通知监理工程师到达现场确认。确认满足终孔条件后采用测绳校核孔深,以保证桩底标高符合要求。 (7)钻孔时经常清碴,并及时补给泥浆,钻孔作业应连续进行,不得中断。 (8)采用多台钻机施工时,在砼刚刚浇注完毕的临桩成孔施工安全距离不宜小于4d,为防止冲击振动使邻孔孔壁坍塌或影响邻孔已浇

内漏阀门更换施工方案要点

A2+598--CC+89段施工方案,施工组织设计,施工工艺 兰成渝线内漏阀门更换项目 施工方案 一、工程概况

(一)工程概况 该项目分为2段进行施工,包括陇西站收球筒前后2台阀门以及水击泄压阀前后2台阀门更换;成县站14台进口排污阀更换。 (二)工程内容 1、工程名称:兰成渝线内漏阀门更换项目 2、建设单位: 3、工程内容:陇西站收球筒前后2台阀门以及水击泄压阀前后2台阀门更换;成县站14台进口排污阀更换。 4、工程质量等级:工程质量达到合格标准。 5、工期要求:总工期为20日历天。 二、编制依据 1、该项目相关设计资料。 2、与该项目有关的国家、行业及地方施工验收规范、标准。 《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 《工业金属管道工程施工及验收规范》(GB50235-97) 《石油天然气钢质管道无损检测》(SY/T4109-2005) 《涂装前钢材表面预处理规范》(SY/T0407-97) 《钢质管道焊接及验收规范》(SY/T4103-2006) 《石油天然气站内工艺管道工程施工及验收规范》(SY0402-2000) 《阀门的检查与安装规范》(SY/T4102-95) 《石油天然气站内建设工程施工质量工程验收规范站内工艺管道工程》(SY4203-2007) 《油气田管线和设备涂色规范》(SY/T0043-2006) 《工业金属管道工程质量检验评定标准》 GB50184-93 《石油天然气管道安全规程》(SY6186-1996) 《石油工业动火作业安全规程》(SY585-2004)

《建筑施工安全检查标准》 JGJ59-99 《施工现场临时用电安全技术规范》 GBJ46-88 《建设工程文件归档整理规范》 GB/T50238-2001 三、主要工程量 (一)更换阀门明细 更换内漏阀门表

钻孔灌注桩漏浆处理措施

钻孔灌注桩漏浆处理措 施 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

浅谈钻孔灌注桩卵石层漏浆处理措施 XXX 摘要:泥浆护壁成孔灌注桩施工噪音小、适应能力强、机械化程度高便于操作、工艺成 熟、施工过程安全可靠等优点成为现今桩基施工的主要方式之一。但该工艺为隐蔽工程,施工质量控制难度大,在卵石层钻进过程中容易发生漏浆,本文结合XXX银行大厦工程钻孔灌注桩施工过程实际施工情况,对在卵石层发生漏浆的原因及所采取的处理措施进行分析。 关键词:灌注桩、卵石层、漏浆 1、工程概况 温州XXX银行大厦工程,位于浙江省温州市鹿城区,瓯江南畔。本工程设计桩孔设计深度在46m~51m之间,该区域地质条件如下: ①1 杂填土(ml) 褐黄、灰黄、褐灰等色,为新近回填土;由碎石、块石、砖块、砼块等建筑垃圾和少量生活垃圾等组成,不均匀,局部为砼地面;主要由粉细砂、少量粘性土、碎石等组成;稍湿~饱和,松散~稍密,中~高压缩性;层厚~;。 ①2 粘土(l Q43) 灰褐色,含少量腐殖质及黄褐色铁质氧化斑;可~软塑,中~高压缩性;层厚~、层底埋深~。 ②1 淤泥质粉质粘土(m Q42) 流塑、高压缩性、高灵敏度;层厚~、层底埋深~、层底高程~。 ②2 中砂夹淤泥(al-m Q42) 灰色,土层不均匀;以松散状中砂、部分位置为粉细砂为主、不均匀夹15~40%淤泥;层厚~、层底埋深~、层底高程~。

②3 淤泥夹粉砂(m-al Q42) 灰色;土层不均匀,以淤泥为主,不均匀的夹少量粉砂,土层具流塑、高压缩性;层厚~、层底埋深~、层底高程~。 ②4 中砂夹淤泥(al-m Q42) 灰色,土层不均匀;以松散~稍密状中砂、部分位置为粉细砂为主、不均匀夹10~30%淤泥,层厚~、层底埋深~、层底高程~。 ②5 淤泥(m Q42) 青灰色;流塑、高压缩性、高灵敏度;层厚~、层底埋深~、层底高程~。 ③1 淤泥质粘土(m Q41) 灰色;含少量腐殖物及贝壳碎片,不均匀的夹少量粉细砂;流塑、高压缩性、高灵敏度;层厚~、层底埋深~、层底高程~。 ③2 中砂夹淤泥质粘土(al-m Q41) 灰色,土层不均匀;以中密状中砂、部分位置为粉细砂为主、不均匀夹10~30%淤泥质粘土,局部淤泥质粘土含量达40%;层厚~、层底埋深~、层底高程~。 ③3 粘土(m Q41)

连铸漏钢事故分为哪几类

连铸漏钢事故分为哪几类?其产生的主要原因有哪些? 所谓漏钢是指连铸初期或浇注过程中,铸坯坯壳凝固情况不好或因其他外力作用引起坯壳断裂或破漏使内部钢水流出的现象。漏钢是连铸生产中恶性事故之一,严重的漏钢事故不仅影响连铸机的正常生产,降低作业率,而且还会破坏铸机设备,造成设备损坏。漏钢事故因发生的时间不同及发生在铸机上的位置不同分为多种形式,其产生的原因也各不相同,主要分为以下几点: ⑴开浇漏钢:开浇起步不好而造成漏钢。 ⑵悬挂漏钢:结晶器角缝大,角垫板凹陷或铜板划伤,致使在结晶器中拉坯阻力增大,极易发生起步悬挂漏钢。 ⑶裂纹漏钢:在结晶器坯壳产生严重纵裂、角裂或脱方,出结晶器后造成漏钢。 ⑷夹渣漏钢:由于结晶器渣块或异物裹入凝固壳局部区域,使坯壳厚度太薄而造成漏钢。 ⑸切断漏钢:当拉速过快,二次冷却水太弱,使液相穴过长,铸坯切割后,中心液体流出。 ⑹粘结漏钢:铸坯粘结在结晶器壁而拉断造成的漏钢。 某厂生产500万吨板坯的统计表明,各类漏钢所占比例:开浇9.1%,夹渣2.3%,粘结54.5%,裂纹22.7%,鼓肚4.6%,水口凝钢2.3%,其他4.5%。 开浇时发生漏钢的原因有哪些?如何防止? 开浇时发生漏钢的原因主要有以下几点: ⑴结晶器内冷料放的不好,引锭头没有塞实。 ⑵起步早,起步拉速快,或拉速增长太快。 为防止开浇漏钢,开浇前应做好充分的准备和检查,重点应注意以下几点: ⑴检查引锭头密实和冷料堆放情况; ⑵检查水口与结晶器对中情况; ⑶检查结晶器铜板有无冷钢,锥度是否合适; ⑷检查二冷喷嘴是否畅通完好; ⑸了解钢水的流动性、钢水温度状态,中间包和水口是烘烤状态,保护渣的质量。 ⑹要根据铸坯断面决定注流大小和钢水在结晶器停留时间。 ⑺起步拉速一般保持为0.5m/min,增速要慢(0.15 m/min),防止结晶器液面波动过大。 浇注过程中发生漏钢的原因有哪些?如何防止? 浇注过程中发生漏钢的根本原因在于铸坯出结晶器后局部凝固壳过薄,承受不住钢水静压力而破裂导致漏钢。因而,为防止浇注过程中的漏钢事故发生,需找出凝固壳局部过薄的影响因素,其主要有以下几方面: ⑴设备因素:结晶器严重破损而失去锥度,铸坯脱方严重;结晶器与二次冷却段对弧不准;铸流与结晶器不对中等。此外,结晶器铜管变形、内壁划伤严重,液膜润滑中断等,也会造成坯壳悬挂而撕裂。 ⑵工艺操作因素:如拉速过快,注温过高,水口不对中、注流偏斜,结晶器液面波动太大,注流下渣,出结晶器冷却强度不足等。 ⑶异物或冷钢咬入凝固壳:如液面波动太大时,结晶器中未熔渣块卷入凝固壳,中间包水口内堵塞物随钢流落到结晶器液相穴,被凝固前沿捕捉而导致漏钢。 综上所述,为防止浇注过程中漏钢,在设备维护方面,应定期检查结晶器的使用情况,保证结晶器的倒锥度,结晶器应与二冷导向段保持对中,避免铸坯在拉钢过程中受到机械力的作用而发生坯壳变形破裂等引起拉漏。 在结晶器润滑方面,应保证结晶器润滑均匀,避免因润滑不好造成结晶器与坯壳的粘附漏钢和悬挂拉漏。 在工艺操作方面,应注意操作稳定,减少拉速的变动次数和变动量,保持结晶器内液面稳定,避免出现过大或过频繁的波动。同时应控制中间包内液面不能太低,避免大量的非金属夹杂物或钢渣卷入结

阀室内ESDV阀门更换方案改

目录第一章.编制依据2 第二章.工程概况3 第三章.作业流程3 第四章.施工方案4 4.1无焊口作业施工方案4 4.2有焊口作业施工方案11 第五章.施工组织安排及职责12 5.1组织机构12 5.2 职责13 5.3拟采用人员、设备、机具计划13 第六章.质量要求17 第七章.HSE施工技术措施18 7.1生产单位安全技术措施18 7.2施工单位一般安全技术措施18 7.3本次施工安全技术措施19 附件:风险评估、削减措施及应急预案22

第一章.编制依据 1、《中华人民XX国环境保护法》主席令第22 号(1989),自1989年12月26日起实施。 2、《中华人民XX国水土保持法》主席令第49 号(1991),自1991年实施。 3、《建设项目环境保护管理条例》国务院令第253 号(1998),自1998年实施。 4、《石油天然气管道保护条例》(中华人民XX国国务院令第313号),自2001年8月2日起施行。 5、《输气管道工程设计规X》(GB50251-2003),自2003年10月1日起施行。 6、《石油天然气工程设计防火规X》(GB50183-2004),自2005年3月1日起实施。 7、《石油天然气金属管道焊接工艺评定》(SY/T0452-2002),自2002年5月28日发布,2002年8月21日实施。 8、《XX重特大事件应急预案(2005)》(XX安[2005]651号),自2005年11月28日发布。 9、《石油化工股份XX天然气分公司重大突发事件应急预案(2006)》,(天然气[2006]250号),自2006年12月31日发布。 10、《天然气钢制管道无损检测》(SY/T4109-2005),自2005年11月1日实施。 11、《下向焊接工艺规程》(SY/T4071-93),自1993年9月9日发布,1994年3月1日实施。 12、《管道焊接及验收》(SY/T4103-2006),自2006年发布,2007年1月1日实施。 13、《中华人民XX国安全生产法》(中华人民XX国主席令第70号),自2002年11月1日起施行。

连铸机的辊子装配的检测与维修

连铸机的辊子装配的检测与维修 一、连铸机的介绍 1.连铸机的功能 把高温钢水连续不断地浇铸成具有一定断面形状和一定尺寸规格铸坯的生产工艺过程叫做连续铸钢。 完成这一过程所需的设备叫连铸成套设备。浇钢设备、连铸机本体设备、切割区域设备、引锭杆收集及输送设备的机电液一体化构成了连续铸钢核心部位设备,习惯上称为连铸机。 连铸机是一种用模具进行连续浇注钢水的大型生产线。生产出的钢坯经轧制,成为成品销售。提高连铸自动化水平,对保证铸坯质量、提高连铸机的劳动生产率、增加连铸机的金属收得率起着至关重要的作用。 2.连铸机的组成(如图a) (1)钢包回转台:钢包回转台是现代连铸中应用最普遍的运载和承托钢包进行浇注 的设备,通常设置于钢水接收跨与浇注跨柱列之间。所设计的钢包旋转半径,使得浇钢时钢包水口处于中间包上面的规定位置。用钢水接收跨一侧的吊车将钢包放在回转台上,通过回转台回转,使钢包停在中间包上方供给其钢水。浇注完的空包则通过回转台回转,再运回钢水接收跨。钢包回转台是连铸机的关键设备之起着连接上下两道工序的重要作用。 (2)中间包:中间包是短流程炼钢中用到的一个耐火材料容器,首先接受从钢包浇下来的钢水,然后再由中间包水口分配到各个结晶器中去,并且有着分流作用。对于多流连铸机,由多水口中间包对钢液进行分流。 连浇作用。在多炉连浇时,中间包存储的钢液在换盛钢桶时起到衔接的作用。减压作用。盛钢桶内液面高度有5~6m,冲击力很大,在浇铸过程中变化幅度也很大。中间包液面高度比盛钢桶低,变化幅度也小得多,因此可用来稳定钢液浇铸过程,减小钢流对结晶器凝固坯壳的冲刷。 保护作用。通过中间包液面的覆盖剂,长水口以及其他保护装置,减少中间包中的钢液受外界的污染。 清除杂质作用。中间包作为钢液凝固之前所经过的最后一个耐火材料容器,对钢的质量有着重要的影响,应该尽可能使钢中非金属夹杂物的颗粒在处于液体状态时排除掉。 (3)结晶器:结晶器承接从中间包注入的钢水并使之按规定断面形状凝固成坚固 坯壳的连续铸钢设备。它是连铸机最关键的部件,其结构、材质和性能参数对铸坯质量和铸机生产能力起着决定性作用。开浇时引锭杆头部即是结晶器的活动内底,钢水注入结晶器逐渐冷凝成一定厚度坯壳并被连续拉出,此时,结晶器内壁承受着高温钢水的静压力及与坯壳相对运动的摩擦力等产生的机械应力和热应力的综合作用,其工作条件极为恶劣。 (4)扇形段:通过夹辊和侧导辊对带有液心的坯壳起支撑和导向作用,使其沿着预 定的轨道前进,并限制它发生鼓肚变形;扇形段是连铸过程中主要设备之一,扇形段制造水平的高低,将直接影响到被轧制板坯厚度的均匀性,对其质量起着十分重要的作用。

剪力墙柱脚漏浆分析及处理方案

########工程柱砼根部 烂根、漏振分析及处理方案 一、报事经过:#####春森彼岸一期工程的柱砼根部均出现烂根、露 筋、麻面以及局部漏振的情况。经#####业主工程师、监理工程师、施工单位现场仔细查看与分析认为该柱砼根部出现烂根、露筋、麻面以及局部漏振为施工质量问题。 二、原因分析:柱砼根部出现局部烂根以及漏振,原因如下: 1)模板根部未进行压枋; 2)模板拼缝不密实,拼缝处未用双面胶进行粘贴; 3)浇筑砼前柱根部模板未用砂浆进行封闭; 4)浇筑砼前未对模板充分的润湿; 5)浇筑砼时一次性砼浇筑过高; 6)浇筑砼时振动棒未插入底部以及振捣时间不够; 7)浇筑砼时振动棒的振捣间距过大;柱砼根部局部烂根和漏振为 质量通病,无安全隐患,但应进行封闭处理。。 三、处理方案: 1. 工艺流程:剔打砼—冲洗砼—关模板和润湿砼—素水泥浆满刷砼 —用提高一级砼标号浇筑砼—养护、拆模—打磨—养护。 注意事项: 1)剔打砼:对不密实、松动砼和石子剔打,剔打到砼到密实 为止; 2)冲洗砼:把砼渣冲洗干净;

3)关模板和润湿砼:模板关出比砼剔打面高约50mm~100mm (即把模板关成牛腿) ,浇筑砼前用水对砼、模板进行充分的湿润; 4)素水泥浆满刷砼:在浇筑砼前用素水泥浆对剔打的砼进行满刷; 5)用提高一级砼标号浇筑砼:用比柱砼标号高一等级的砼浇筑并振捣密实; 6)养护拆模:浇筑砼6d 后进行养护,养护时间不小于7d,砼浇筑12d 后再拆模; 7)打磨砼:砼浇筑24d 后对“牛腿”等进行剔打,用磨光机进行打磨平原砼面。 2. 质量控制以及责任 1)模板根部未进行压枋;模板拼缝不密实,拼缝处未用双面 胶进行粘贴; 质量控制:模板根部进行压枋;模板拼缝密实,拼缝处用双面胶进行粘贴牢固; 责任人: 2)##### 3)浇筑砼前柱根部模板未用砂浆进行封闭;浇筑砼前未对模板 充分的润湿;浇筑砼时一次性砼浇筑过高;浇筑砼时振动棒未插入底部以及震动时间不够;浇筑砼时振动棒的振动间距过大; 质量控制:浇筑砼前柱根部模板用砂浆进行封闭,不得有遗漏; 浇筑砼前对模板进行充分的润湿;浇筑砼时控制砼浇筑高度:第一次浇筑柱的1/3 高,经振动棒振捣后再浇筑上面部分;浇筑砼时振动

相关文档
最新文档