各种晶闸管可控硅的检测方法完整版

各种晶闸管可控硅的检测方法完整版
各种晶闸管可控硅的检测方法完整版

各种晶闸管可控硅的检

测方法

HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

各种晶闸管(可控硅)的检测方法

1.单向晶闸管的检测

(1)判别各电极:根据普通晶闸管的结构可知,其门极G与阴极K极之间为一个PN结,具有单向导电特性,而阳极A与门极之间有两个反极性串联的PN结。因此,通过用万用表的R×100或R×1 k Q档测量普通晶闸管各引脚之间的电阻值,即能确定三个电极。

具体方法是:将万用表黑表笔任接晶闸管某一极,红表笔依次去触碰另外两个电极。若测量结果有一次阻值为几千欧姆(kΩ),而另一次阻值为几百欧姆(Ω),则可判定黑表笔接的是门极G。在阻值为几百欧姆的测量中,红表笔接的是阴极K,而在阻值为几千欧姆的那次测量中,红表笔接的是阳极A,若两次测出的阻值均很大,则说明黑表笔接的不是门极G,应用同样方法改测其他电极,直到找出三个电极为止。

也可以测任两脚之间的正、反向电阻,若正、反向电阻均接近无穷大,则两极即为阳极A 和阴极K,而另一脚即为门极G。

普通晶闸管也可以根据其封装形式来判断出各电极。

例如:螺栓形普通晶闸管的螺栓一端为阳极A,较细的引线端为门极G,较粗的引线端为阴极K。

平板形普通晶闸管的引出线端为门极G,平面端为阳极A,另一端为阴极K。

金属壳封装(T0—3)的普通晶闸管,其外壳为阳极A。

塑封(T0—220)的普通晶闸管的中间引脚为阳极A,且多与自带散热片相连。

图1为几种普通晶闸管的引脚排列。

(2)判断其好坏:用万用表R×1 kΩ档测量普通晶闸管阳极A与阴极K之间的正、反向电阻,正常时均应为无穷大(∞);若测得A、K之间的正、反向电阻值为零或阻值均较小,则说明晶闸管内部击穿短路或漏电。

测量门极G与阴极K之间的正、反向电阻值,正常时应有类似二极管的正、反向电阻值(实际测量结果要较普通二极管的正、反向电阻值小一些),即正向电阻值较小(小于2

kΩ),反向电阻值较大(大于80 kΩ)。若两次测量的电阻值均很大或均很小,则说明该晶闸管G、K极之间开路或短路。若正、反电阻值均相等或接近,则说明该晶闸管已失效,其G、K极问PN结已失去单向导电作用。

测量阳极A与门极G之间的正、反向电阻,正常时两个阻值均应为几百千欧姆(kΩ)或无穷大,若出现正、反向电阻值不一样(有类似二极管的单向导电)。则是G、A极之间反向串联的两个PN结中的一个已击穿短路。

(3)触发能力检测:对于小功率(工作电流为5 A以下)的普通晶闸管,可用万用表R×1档测量。测量时黑表笔接阳极A,红表笔接阴极K,此时表针不动,显示阻值为无穷大(∞)。用镊子或导线将晶闸管的阳极A与门极短路(见图2),相当于给G极加上正向触发电压,此时若电阻值为几欧姆至几十欧姆(具体阻值根据晶闸管的型号不同会有所差异),

则表明晶闸管因正向触发而导通。再断开A极与G极的连接(A、K极上的表笔不动,只将G极的触发电压断掉)。若表针示值仍保持在几欧姆至几十欧姆的位置不动,则说明此晶闸管的触发性能良好。

对于工作电流在5 A以上的中、大功率普通晶闸管,因其通态压降VT维持电流IH及门极触发电压Vo均相对较大,万用表R×1 kΩ档所提供的电流偏低,晶闸管不能完全导通,故检测时可在黑表笔端串接一只200 Ω可调电阻和1~3节1.5 V干电池(视被测晶闸管的容量而定,其工作电流大于100 A的,应用3节1.5 V干电池),如图3所示。

也可以用图4中的测试电路测试普通晶闸管的触发能力。电路中,vT为被测晶闸管,HL 为6.3 V指示灯(手电筒中的小电珠),GB为6 V电源(可使用4节1.5 V干电池或6 V 稳压电源),S为按钮,R为限流电阻。

当按钮S未接通时,晶闸管VT处于阻断状态,指示灯HL不亮(若此时HL

亮,则是vT击穿或漏电损坏)。按动一下按钮S后(使S接通一下,为晶闸管VT的门极G 提供触发电压),若指示灯HL一直点亮,则说明晶闸管的触发能力良好。若指示灯亮度偏低,则表明晶闸管性能不良、导通压降大(正常时导通压降应为1 v左右)。若按钮S接通时,指示灯亮,而按钮S断开时,指示灯熄灭,则说明晶闸管已损坏,触发性能不良。

2.双向晶闸管的检测

(1)判别各电极:用万用表R×1或R×10档分别测量双向晶闸管三个引脚间的正、反向电阻值,若测得某一管脚与其他两脚均不通,则此脚便是主电极T2。

找出T2极之后,剩下的两脚便是主电极Tl和门极G3。测量这两脚之间的正、反向电阻值,会测得两个均较小的电阻值。在电阻值较小(约几十欧姆)的一次测量中,黑表笔接的是主电极T1,红表笔接的是门极G。

螺栓形双向晶闸管的螺栓一端为主电极T2,较细的引线端为门极G,较粗的引线端为主电极T1。

金属封装(To—3)双向晶闸管的外壳为主电极T2。

塑封(TO—220)双向晶闸管的中间引脚为主电极T2,该极通常与自带小散热片相连。

图5是几种双向晶闸管的引脚排列。

?

(2)判别其好坏:用万用表R×1或R×10档测量双向晶闸管的主电极T1与主电极T2之间、主电极T2与门极G之间的正、反向电阻值,正常时均应接近无穷大。若测得电阻值均很小,则说明该晶闸管电极问已击穿或漏电短路。

测量主电极T1与门极G之问的正、反向电阻值,正常时均应在几十欧姆(Ω)至一百欧姆(Ω)之间(黑表笔接T1极,红表笔接G极时,测得的正向电阻值较反向电阻值略小一些)。若测得T1极与G极之间的正、反向电阻值均为无穷大,则说明该晶闸管已开路损坏。

(3)触发能力检测:对于工作电流为8 A以下的小功率双向晶闸管,可用万用表R×1档直接测量。测量时先将黑表笔接主电极T2,红表笔接主电极T1,然后用镊子将T2极与门极G短路,给G极加上正极性触发信号,若此时测得的电阻值由无穷大变为十几欧姆(Ω),则说明该晶闸管已被触发导通,导通方向为T2→T1。

再将黑表笔接主电极T1,红表笔接主电极T2,用镊子将T2极与门极G之间短路,给G极加上负极性触发信号时,测得的电阻值应由无穷大变为十几欧姆,则说明该晶闸管已被触发导通,导通方向为T1→T2。

若在晶闸管被触发导通后断开G极,T2、T1极间不能维持低阻导通状态而阻值变为无穷大,则说明该双向晶闸管性能不良或已经损坏。若给G极加上正(或负)极性触发信号后,晶闸管仍不导通(T1与T2间的正、反向电阻值仍为无穷大),则说明该晶闸管已损坏,无触发导通能力。

对于工作电流在8 A以上的中、大功率双向晶闸管,在测量其触发能力时,可先在万用表的某支表笔上串接1~3节1.5 V干电池,然后再用R×1档按上述方法测量。

对于耐压为400 V以上的双向晶闸管,也可以用220 V交流电压来测试其触发能力及性能好坏。

图6是双向晶闸管的测试电路。电路中,FL为60 W/220 V白炽灯泡,VT为被测双向晶闸管,R为100Ω限流电阻,S为按钮。

将电源插头接入市电后,双向晶闸管处于截止状态,灯泡不亮(若此时灯泡正常发光,则说明被测晶闸管的T1、T2极之间已击穿短路;若灯泡微亮,则说明被测晶闸管漏电损坏)。按动一下按钮S,为晶闸管的门极G提供触发电压信号,正常时晶闸管应立即被触发导通,灯泡正常发光。若灯泡不能发光,则说明被测晶闸管内部开路损坏。若按动按钮s时灯泡点亮,松手后灯泡又熄灭,则表明被测晶闸管的触发性能不良。

3.门极关断晶闸管的检测

1)判别各电极:门极关断晶闸管三个电极的判别方法与普通晶闸管相同,即用万用表的R×100档,找出具有二极管特性的两个电极,其中一次为低阻值(几百欧姆),另一次阻值较大。在阻值小的那一次测量中,红表笔接的是阴极K,黑表笔接的是门极G,剩下的一只引脚即为阳极A。

(2)触发能力和关断能力的检测:可关断晶闸管触发能力的检测方法与普通晶闸管相同。检测门极关断晶闸管的关断能力时,可先按检测触发能力的方法使晶闸管处于导通状态,

即用万用表R×1档,黑表笔接阳极A,红表笔接阴极K,测得电阻值为无穷大。再将A极与门极G短路,给G极加上正向触发信号时,晶闸管被触发导通,其A、K极间电阻值由无穷大变为低阻状态。断开A极与G极的短路点后,晶闸管维持低阻导通状

态,说明其触发能力正常。再在晶闸管的门极G与阳极A之间加上反向触发信号,若此时A极与K极间电阻值由低阻值变为无穷大,则说明晶闸管的关断能力正常,图7是关断能力的检测示意图。

也可以用图8所示电路来检测门极关断晶闸管的触发能力和关断能力。电路中,EL为6.3 V指示灯(小电珠),S为转换开关,VT为被测晶闸管。当开关S关断时,晶闸管不导通,指示灯不亮。将开关S的K1触点接通时,为G极加上正向触发信号,指示灯亮,说明晶闸管已被触发导通。若将开关S断开,指示灯维持发光,则说明晶闸管的触发能力正常。若将开关s的K2触点接通,为G极加上反向触发信号,指示灯熄灭,则说明晶闸管的关断能力正常。

4.温控晶闸管的检测

(1)判别各电极:温控晶闸管的内部结构与普通晶闸管相似,因此也可以用判别普通晶闸管电极的方法来找出温控晶闸管的各电极。

(2)性能检测:温控晶闸管的好坏也可以用万用表大致测出来,具体方法可参考普通晶闸管的检测方法。

图9是温控晶闸管的测试电路。电路中,R是分流电阻,用来设定晶闸管VT的开关温度,其阻值越小,开关温度设置值就越高。c为抗干扰电容,可防止晶闸管 vT误触发。HL为6.3 v指示灯(小电珠),S为电源开关。

接通电源开关s后,晶闸管VT不导通,指示灯HL不亮。用电吹风“热风档”给晶闸管VT加温,当其温度达到设定温度值时,指示灯亮,说明晶闸管VT已被触发导通。若再用电吹风“冷风”档给晶闸管VT降温(或待其自然冷却)至一定温度值时,指示灯能熄灭,则说明该晶闸管性能良好。若接通电源开关后指示灯即亮或给晶闸管加温后指示灯不亮,或给晶闸管降温后指示灯不熄灭,则是被测晶闸管击穿或性能不良。

?

5.光控晶闸管检测

用万用表检测小功率光控晶闸管时,可将万用表置于R×1档,在黑表笔上串接1~3节1.5 V干电池,测量两引脚之间的正、反向电阻值,正常时均应为无穷大。然后再用小手电筒或激光笔照射光控晶闸管的受光窗口,此时应能测出一个较小的正向电阻值,但反向电阻值仍为无穷大。在较小电阻值的一次测量中,黑表笔接的是阳极A,红表笔接的是阴极K。

也可用图lO中电路对光控晶闸管进行测量。接通电源开关S,用手电筒照射晶闸管VT的受光窗口。为其加上触发光源(大功率光控晶闸管自带光源,只要将其光缆中的发光二极

管或半导体激光器加上工作电压即可,不用外加光源)后,指示灯EL应点亮,撤离光源后指示灯EL应维持发光。

若接通电源开关S后(尚未加光源),指示灯FL即点亮,则说明被测晶闸管已击穿短路。若接通电源开关、并加上触发光源后,指示灯EL仍不亮,在被测晶闸管电极连接正确的情况下,则是该晶闸管内部损坏。若加上触发光源后,指示灯发光,但取消光源后指示灯即熄灭,则说明该晶闸管触发性能不良。

6.BTG晶闸管的检测

(1)判别各电极:根据BTG晶闸管的内部结构可知,其阳极A、阴极K之间和门极G、阴极K之间均包含有多个正、反向串联的PN结,而阳极A与门极G之问却只有一个PN结。因此,只要用万用表测出A极和G极即可。

将万用表置于R×1 kΩ档,两表笔任接被测晶闸管的某两个引脚(测其正、反向电阻值),若测出某对引脚为低阻值时,则黑表笔接的阳极A,而红表笔接的是门极G,另外一个引脚即是阴极K。

(2)判断其好坏:用万用表R×1 kΩ档测量BTG晶闸管各电极之间的正、反向电阻值。正常时,阳极A与阴极K之间的正、反向电阻均为无穷大;阳极A与门极G之间的正向电阻值(指黑表笔接A极时)为几百欧姆至几千欧姆,反向电阻值为无穷大。若测得某两极之间的正、反向电阻值均很小,则说明该晶闸管已短路损坏。

(3)触发能力检测:将万用表置于R×1 Ω档,黑表笔接阳极A,红表笔接阴极K,测得阻值应为无穷大。然后用手指触摸门极G,给其加一个人体感应信号,若此时A、K极之间的电阻值由无穷大变为低阻值(数欧姆),则说明晶闸管的触发能力良好。否则说明此晶闸管的性能不良。

(完整版)晶闸管直流调速系统参数和环节特性的测定

晶闸管直流调速系统参数和环节特性的测定一、实验目的 (1)熟悉晶闸管直流调速系统的组成及其基本结构。 (2)掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发动机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管直流调速试验系统原理图

三、实验内容 (1) 测定晶闸管直流调速系统主电路总电阻值R 。 (2) 测定晶闸管直流调速系统主电路电感值L 。 (3) 测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD 2。 (4) 测定晶闸管直流调速系统主电路电磁时间常数T d 。 (5) 测定直流电动机电势常数C e 和转矩常数C M 。 (6) 测定晶闸管直流调速系统机电时间常数T M 。 (7) 测定晶闸管触发及整流装置特性()ct d U f U =。 (8) 测定测速发电机特性()n f U TG =。 四、实验仿真 晶体管直流调速实验系统原理图如图1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。下面介绍各部分的建模与参数设置过程。 4.1 系统的建模和模型参数设置 系统的建模包括主电路的建模与控制电路的建模两部分。 (1)主电路的建模与参数设置 由图2可见,开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以将触发器归到主电路进行建模。 ①三相对称交流电压源的建模和参数设置。首先从电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并用模块标题名称修改方法将模块标签分别改为“A 相”、“B 相”、“C 相”,然后从元件模块

可控硅调压器电路的安装及运用

万州职教中心电子专业实训手册 电子装配 项目六 可控硅调压器电路的安装及运用 (教学时间2课时) 重庆市万州职教中心幸益佳 一、实训目的: 理论:掌握可控硅和双向触发二极管的特点,熟悉可控硅调压器的电路结构,理解可控硅调压器电路的电路原理; 操作:练习可控硅的检测,正确区分可控硅的电极。完成单向可控硅和双向可控硅调压器电路的安装。 价值观:人的生命比什么都重要,珍惜自己的生命是对家人、朋友的热爱。 培养团结友爱的协作精神; 培养认真细致的工作作风; 二、实训内容: 完成单向可控硅和双向可控硅两种调压器电路的安装。 三、实训电路: 图一:使用单向可控硅的调压器电路。 图二:使用双向可控硅的调压器电路。 四、实训器材: 1、工具仪表类:MF47型万用表一块,常用工具如电烙铁、尖嘴钳、切线钳以及多种型号的螺丝刀等。 2、常用电工材料类:松香、焊锡丝、连接导线、万能电路板等; 3、本次实训涉及到的电子元器件: 附:元器件清单及参数 图一:4只1N4007的整流二极管。 1只1A电流的单向可控硅如MCR100-6等。 1只1M带绝缘手柄的电位器。

1支1/4W10K电阻。 2颗0.01微法400V耐压的无极性的涤纶电容器。 图二:1只1A电流的双向可控硅。 1只双向触发二极管,如DB3等。 1只100K带绝缘手柄的电位器。 1支1/4W15K电阻。 2颗0.01微法400V耐压的无极性的涤纶电容器。 图一、图二共同要使用的220V,40—60W白炽灯。 五、实训过程: 1、复习教材上有关单向可控硅和双向可控硅以及触发二极管的万用表检测方法,同一组的两个同学分别完成对元器件的检测,区分出相应的电极来。 需要说明的是,对于小功率的可控硅来说,不论是单向可控硅还是双向可控硅,其外观都与常用的塑封小功率三极管一模一样。所以我们不能仅凭外观去判断一个元器件的种类,而应该客观地去辨认清楚它的型号,更可靠的使用一起、仪表去检测,尊重检测的结果。 有关单向可控硅和双向可控硅,触发二极管的检测方面的知识,由于内容较多,在此不便列出,请复习教材,更多的可以通过上网学习。 2、简介电路功能和工作原理: 图一调压器电路由于使用的是只能让电流但方向流动的单向可控硅。而单向可控硅的情况与二极管很类似,可以理解为就是一个带有控制电极的特殊二极管。所以使用单向可控硅的调压器电路中给可控硅提供直流工作电压。这就好使用到图中的那四只整流二极管组成的全桥。可控硅的触发信号就由RC电路构成,调整RP的大小,就可以改变触发脉冲的宽度,从而改变加到白炽灯两端的交流电压高低的目的,实现白炽灯的调光。 图二电路使用的双向可控硅,交流电的正负半周都能通过可控硅并受到调控故图二电路去掉了用于整流的四个二极管,但增加了一只触发二极管。工作原理的其他情况与图一差不多。 总之可控硅调压器电路还是简单的,元器件不多,原理也不复杂。市场上

可控硅-晶闸管的几种典型应用电路

可控硅-晶闸管的几种典型应用电路 描述: SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。晶闸管,又称可控硅(单向SCR、双向BCR)是一种4层的(PNPN)三端器件。在电子技术和工业控制中,被派作整流和电子开关等用场。在这里,笔者介绍它们的基本特性和几种典型应用电路。 1.锁存器电路。图1是一种由继电器J、电源(+12V)、开关K1和微动开关K2组成的锁存器电路。当电源开关K1闭合时,因J回路中的开关K2和其触点J-1是断开的,继电器J不工作,其触点J-2也未闭合,所以电珠L不亮。一旦人工触动一下K2,J得电激活,对应的触点J-1、J-2闭合,L点亮。此时微动开关K2不再起作用(已自锁)。要使电珠L熄灭,只有断开电源开关K1使继电器释放,电珠L才会熄灭。所以该电路具有锁存器(J-1自锁)的功能。 图2电路是用单向可控硅SCR代替图1中的继电器J,仍可完成图1的锁存器功能,即开关K1闭合时,电路不工作,电珠L不亮。当触动一下微动开关K2时,SCR因电源电压通过R1对门极加电而被触发导通且自锁,L点亮,此时K2不再起作用,要使L熄灭,只有断开K1。由此可见,图2电路也具有锁存器的功能。图2与图1虽然都具有锁存器功能,但它们的工作条件仍有区别:(1)图1的锁存功能是利用继电器触点的闭合维持其J线圈和L的电流,但图2中,是利用SCR自身导通完成锁存功能。(2)图1的J与控制器件L完全处于隔离状态,但图2中的SCR与L不能隔离。所以在实际应用电路中,常把图1和图2电路混合使用,完成所需的锁存器功能。 2.单向可控硅SCR振荡器。图3电路是利用SCR的锁存性制作的低频振荡器电路。图中的扬声器LS(8Ω/0.5W)作为振荡器的负载。当电路接上电源时,由于电源通过R1对C1充电,初始时,C1电压很低,A、B端的电位器W的分压不能触发SCR,SCR不导通。当C1充得电压达到一定值时,A、B端电压升高,SCR被触发而导通。一旦SCR导通,电容器C1通过SCR和LS放电,结果A、B端的电压又下降,当A、B端电压下降到很低时,又使SCR截止,一旦SCR截止,电容器C1又通过R1充电,这种充放电过程反复进行形成电路的振荡,此时LS发出响声。电路中的W可用来调节SCR门极电压的大小,以达到控制振荡器的频率变化。按图中元件数据,C1取值为0.22~4μF,电路均可正常工作。 3.SCR半波整流稳压电源。如图4电路,是一种输出电压为+12V的稳压电源。该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。电容器C1起滤波和储能作用。在输出CD端可获得约+12V的稳压。电路工作时,当A点低压交流为正半周时,SCR导通对C1充电。当充电电压接近C点电压或交流输入负半周时,SCR截止,所以C1上充得电压(即输出端CD)不会高于C点的稳压值。只有储能电容C1输出端对负载放电,其电压低于C点电压时,在A点的正半周电压才会给C1即时补充充电,以维持输出电压的稳定。图4电路与电池配合已成功用于某设备作后备电源。该稳压电源,按图中参数其输出电流可达2~3A。

晶闸管的基本检测方法

晶闸管的基本检测方法 1.判别单向晶闸管的阳极、阴极和控制极 脱开电路板的单向晶闸管,阳极、阴极和控制极3个引脚一般没有特殊的标注,识别各个脚主要是通过检测各个引脚之间的正、负电阻值来进行的。晶闸管各个引脚之间的阻值都较大,当检测出现唯一一个小阻值时,此时黑表笔接的是控制极(G),红表笔接的是阴极(K),另外一个引脚就是阳极(A)。 2.判别单向晶闸管的好坏 脱开电路板的单向晶闸管,阳极(A)、阴极(K)和控制极(G)明确标示;正常的单向闸管,阳极(A)、阴极(K)两个引脚之间的正、反向电阻,阳极(A)、控制极(G)两个引脚之间的正、反向电阻的阻值应该都很大,阴极(K)、控制极(G)两个引脚之间的正向电阻应该远小于反向电阻。并且阳极(A)、阴极(K)两个引脚之间的正向电阻越大,单向晶闸管阳极的正向阻断特性越好;反向电阻越大,单向晶闸管阳极的反向阻断特性越好。 3.判别双向晶闸管的好坏 脱开电路板的双向晶闸管,第一电极(T1)、第二电极(T2)、控制极(G)明确。判断双向晶闸管的好坏,主要是看短路前第二电极(T2)和第一电极(T1)之间阻值接近无穷大,第二电极(T2)与控制极(G)引脚短路,短路后晶闸管触发导通,第二电极(T2)·和第一电极(T1)之间的电阻变小,有固定值。可以断定该双向晶闸管具备双向触发能力,性能基本良好。 4.晶闸管的代换原则 晶闸管的品种繁多,不同的电子设备与不同的电子电路,采用不同类型的晶闸管。选用与代换晶闸管时,主要应考虑其额定峰值电压、额定电流、正向压降、门极触发电流及触发电压、开关速度等参数,额定峰值电压和额定电流均应高于工作电路的最大工作电压和最大工作电流1.5~2倍,代换时最好选用同类型、同特性、同外形的晶闸管替换。 普通晶闸管一般被用于交直流电压控制、可控整流、交流调压、逆变电源,开关电源保护等电路。 双向晶闸管一般被用于交流开关、交流调压、交流电动机线性凋速、灯具线性调光及固态继电器、固态接触器等电路。 逆导晶闸管一般被用于电磁灶、电子镇流器、超声波电路、超导磁能贮存系统及开关电源等电路。 光控晶闸管一般被用于光电耀合器、光探测器、光报警器、光计数器、光电逻辑电路及自动生产线的运行监控电路等。 BTC晶体管一般被用于锯齿波发生器、长时间延时器、过电压保护器及大功率晶体管触发电路等。 门极关断晶闸管一般被用于交流电动机变频调速、斩波器、逆变电源及各种电子开关电路等。

可控硅控制交流电的使用方法

可控硅控制交流电的使用方法 时间:2009-10-14 08:00:13 来源:作者: 一、概述 在日常的控制应用中我们都通常会遇到需要开关交流电的应用,一般控制交流电的时候,我们会使用很多种方法,如: 1、使用继电器来控制,如电饭煲,洗衣机的水阀: 2、使用大功率的三极管或IGBT来控制: 3、使用整流桥加三极管:

4、使用两个SCR来控制: 5、使用一个Triac来控制: 晶闸管(Thyristor)又叫可控硅,按照其工作特性又可分单向可控硅(SCR)、双向可控硅(TRIAC)。其中双向可控硅又分四象限双向可控硅和三象限双向可控硅。同时可控硅又有绝缘与非绝缘两大类,如ST的可控硅用BT名称后的“A”、与“B”来区分绝缘与非绝缘。 单向可控硅SCR:全称Semiconductor Controlled Rectifier(半导体整流控制器)

双向可控硅TRIAC:全称Triode ACSemiconductor Switch(三端双向可控硅开关),也有厂商使用Bi-directional Controlled Rectifier(BCR)来表示双向可控硅。

请注意上述两图中的红紫箭头方向! 可控硅的结构原理我就不提了。 二、可控硅的控制模式 现在我们来看一看通常的可控硅控制模式1、On/Off 控制:

对于这样的一个电路,当通过控制信号来开关Triac时,我们可以看到如下的电流波形 通常对于一个典型的阻性的负载使用该控制方法时,可以看到控制信号、电流、相电压的关联。

2、相角控制: 也叫导通角控制,其目的是通过触发可控硅的导通时间来实现对电流的控制,在简单的马达与调光系统中多可以看到这种控制方法 在典型的阻性负载中,通过控制触发导通角a在0~180之间变化,从而实现控制电流的大小

可控硅好坏如何测量修订稿

可控硅好坏如何测量 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、可控硅的特性 可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极K、控制极G三个引出脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。 只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极 A与阴极K间压降约1V。单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G 和阴极K间有重新加上正向触发电压方可导通。单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。 双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极 A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。此时A1、A2间压降也约为1V。双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。 二、可控硅的管脚判别 晶闸管管脚的判别可用下述方法:先用万用表R*1K挡测量三脚之间的阻值,阻值小的两脚分别为控制极和阴极,所剩的一脚为阳极。再将万用表置于

可控硅的使用及其方法

可控硅的使用及其方法 可控硅作为一种电子开关,广泛地应用在自动化设备和各种控制电路中,可控硅既有单项也有双向的,在使用中会经常遇到一些问题。文章根据实际工作情况,介绍一些经验以供参考。 标签:自动化设备;控制回路;研究分析 1 选购可控硅 可控硅的电参数很多,在选购时要考虑的是:额定平均电流IT、正反向峰值电压VDRM(VRRM)、控制极触发电压与触发电流IGT这几个参数。由于手册或产品合格证上给定的可控硅的上述参数值都是在规定的条件下测定的,而实际使用环境往往与规定条件不同,并且极有可能发生突发事故超过管子承受能力的现象。所以为了管子在安全的电压下工作,特别是交流220V的情况下,应该按额定为实际电压的2~3倍值来选管子。例如:外加电压为220V,则至少应选择400V以上的管子最好为600V,为了保证管子避免电流过大而烧毁,并考虑到管子的发热情况与电流的有效值,应选择平均电流的有效值的1.2~2倍,需要指出的是。IT对单项可控硅而言是IT(A V)指允许流过SCR的最大有效值电流。例如:8A SCR(单向)的有效值IT(RMS)=12.6A,因此用8A的BCR代替8A的SCR是不允许的,为了使管子的触发电压与触发电流要比实际应用中的数值要小。例如:实际使用的触发电压为3V,则可选触发电压为2V的管子。同样,管子的触发电流亦应选择小些以保证可靠触发,一般常用的集成电路输出电流均很小(除555电路例外,TTL比CMOS要大),所以可在其输出端加一级晶体管放大电路,以提供足够大的驱动电路来保证管子可靠地触发导通。 2 可控硅的具体接法 2.1 直流电路 首先,单向可控硅SCR有三个电极,即阳极A,阴极K,控制极G,SCR 在直流控制电路中使用时,要注意施加工作电压与控制触发电压的极性。A,K 之间是加正向电压但控正向的接法是图1,只有A,K之间接正向电压,控制极G亦接正向电压,SCR才能导通。SCR一旦触发导通后,即使降低控制极电压,甚至撤除控制极电源,SCR亦不阻断而是继续导通。要使SCR阻断,只有降低其阳极电压或将阳极,阴极断开一下,即使阳极与阴极电压为零即可所以有时候可以在SCR的A极与电源之间串了一个常闭开关,按一下即可将SCR阻断。 图1是双向可控硅BCR的接法。BCR是由两个SCR反向并联构成的,共用一个控制极。因此BCR与SCR接法有很大不同,无论在阳、阴两个电极之间接何种极性的电压,只要在其控制极加上一个触发脉冲,而不管这个脉冲是什么极性的,都可以使BCR导通。

晶闸管的结构以及工作原理

一、晶闸管的基本结构 晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

晶闸管(Thyristor)

晶闸管(Thyristor)是晶体闸流管的简称,又可称做可控硅整流器,以前被简称为可控硅;1957年美国通用电器公司开发出世界上第一款晶闸管产品,并于1958年将其商业化。晶闸管(Thyristor)是一种包含3个或3个以上PN结,它有三个极:阳极,阴极和门极,能从断态转入通态,或由通态转入断态的双稳态电力电子器件。它泛指所有PNPN类型的开关管,也可表示这类开关管中的任一器件。晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。 自1957年美国贝尔电话实验室将第一只晶闸管用于工业领域以来,由于它的优异性能,很快受到各国重视。随着新材料的出现,新工艺的采用,单只晶闸管的电流容量从几安发展到几千安,耐压等级从几百伏提高到几千伏,工作频率大大提高,器件的动态参数也有很大改进。80年代普通晶闸管的耐压等级和通流能力达到3500A/6500V,可关断晶闸管达3000A/4500V。随着应用领域的拓展,晶闸管正沿着高电压、大电流、快速、模块化、功率集成化、廉价的方向发展。 其派生器件有:快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管等。它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。

晶闸管在工作过程中,它的阳极(A)和阴极(K)与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和阴极K与控制晶闸管的装置连接,组成晶闸管的控制电路。 晶闸管为半控型电力电子器件,它的工作条件如下: 1.晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于反向阻断状态。 2.晶闸管承受正向阳极电压时,仅在门极承受正向电压的情况下晶闸管才导通。这时 晶闸管处于正向导通状态,这就是晶闸管的闸流特性,即可控特性。 3.晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保 持导通,即晶闸管导通后,门极失去作用。门极只起触发作用。 4.晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。

可控硅应用十规则

Philips Semiconductors

Application Note 闸流管和双向可控硅 - 成功应用的十条黄金规则 AN1012 Author Nick Ham Number of pages : 12 Date: 2002 Jan 11 ? 2002 Koninklijke Philips Electronics N.V. All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

这篇技术文献的目标是提供有趣的、描述性的、实际的介绍,帮助读者在功率控制方面成功应用闸流管和双向可控硅,提出指导工作的十条黄金规则。 闸流管 闸流管是一种可控制的整流管,由门极向阴极送出微小信号电流即可触发单向电流自阳极流向阴极。 导通 让门极相对阴极成正极性,使产生门极电流,闸流管立即导通。当门极电压达到阀值电压V GT,并导致门极电流达到阀值I GT,经过很短时间t gt(称作门极控制导通时间)负载电流从正极流向阴极。假如门极电流由很窄的脉冲构成,比方说1μs,它的峰值应增大,以保证触发。 当负载电流达到闸流管的闩锁电流值I L时,即使断开门极电流,负载电流将维持不变。只要有足够的电流继续流动,闸流管将继续在没有门极电流的条件下导通。这种状态称作闩锁状态。 注意,V GT,I GT和I L参数的值都是25℃下的数据。在低温下这些值将增大,所以驱动电路必须提供足够的电压、电流振幅和持续时间,按可能遇到的、最低的运行温度考虑。 规则1 为了导通闸流管(或双向可控硅),必须有门极电流≧I GT ,直至负载电流达到≧I L。这条 件必须满足,并按可能遇到的最低温度考虑。 灵敏的门极控制闸流管,如BT150,容易在高温下因阳极至阴极的漏电而导通。假如结温T j高于T jmax ,将达到一种状态,此时漏电流足以触发灵敏的闸流管门极。闸流管将丧失维持截止状态的能力,没有门极电流触发已处于导通。 要避免这种自发导通,可采用下列解决办法中的一种或几种: 1. 确保温度不超过T jmax。 2. 采用门极灵敏度较低的闸流管,如BT151,或在 门极和阴极间串入1kΩ或阻值更小的电阻,降低已有闸流管的灵敏度。 3. 若由于电路要求,不能选用低灵敏度的闸流管, 可在截止周期采用较小的门极反向偏流。这措施能增大I L。应用负门极电流时,特别要注意降低门极的功率耗散。 截止(换向) 要断开闸流管的电流,需把负载电流降到维持电流I H之下,并历经必要时间,让所有的载流子撤出结。在直流电路中可用“强迫换向”,而在交流电路 中则在导通半周终点实现。(负载电路使负载电流降 到零,导致闸流管断开,称作强迫换向。)然后,闸 流管将回复至完全截止的状态。 假如负载电流不能维持在I H之下足够长的时间,在阳极和阴极之间电压再度上升之前,闸流管不能回复至完全截止的状态。它可能在没有外部门极电流作用的情况下,回到导通状态。 注意,I H亦在室温下定义,和I L一样,温度高时其值减小。所以,为保证成功的切换,电路应充许有足够时间,让负载电流降到I H之下,并考虑可能遇到的最高运行温度。 规则2.要断开(切换)闸流管(或双向可控硅),负载电流必须

晶闸管(可控硅)的结构与工作原理

一、晶闸管的基本结构 晶闸管(Semi co ndu cto rC ont roll ed Re ctifier 简称SCR)是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。它有三个引出电极,即阳极(A )、阴极(K)和门极(G)。其符号表示法和器件剖面图如图1所示。 图1 符号表示法和器件剖面图 普通晶闸管是在N 型硅片中双向扩散P型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。 图2、晶闸管载流子分布 二、晶闸管的伏安特性 晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定

的。通常用伏安特性曲线来描述它们之间的关系,如图3所示。 图3 晶闸管的伏安特性曲线 当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。晶闸管流过由负载决定的通态电流T I ,器件压降为1V左右,特性曲线CD段对应的状态称为导通状态。通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。 当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。 当晶闸管的阳极相对于阴极为负,只要RO AK V V <, A I 很小,且与G I 基本无关。但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。

第九章使用万用表检测晶闸管.doc

第九章使用万用表检测晶闸管本章主要介绍数字万用表的检测晶闸管,通过图形带你认识万用表来检测晶闸管。 9.1 晶闸管的特点与分类 9.1.1 晶闸管的特点 晶闸管(Thyristor )是晶体闸流管的简称,又称做可控硅。晶闸管具有硅整流器件的特 性,能在高电压、大电流条件下工作,且其工作过程可以控制。被广泛应用于可控整流、交 流调压、无触点电子开关、逆变及变频等电子电路中。 9.1.2 晶闸管的分类 晶闸管有多种分类方法。 (一)按关断、导通及控制方式分类 晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶闸管、门极关断晶闸管(GTO )、BTG 晶闸管、温控晶闸管和光控晶闸管等多种。如图9.1 所示。 图9-1 双向晶闸管 (二)按引脚和极性分类 晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。 (三)按封装形式分类 晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。 其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散 热片型和不带散热片型两种。如图9.2 所示。 图9-2 金属封装晶闸管(螺旋形)

(四)按电流容量分类 晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。通常, 大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。如图9.3 所示。 图9-3 大功率晶闸管 (五)按关断速度分类 晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管。如图9.4 所示。 图9-4 高频(快速)晶闸管 9.2 单向晶闸管的检测 9.2.1 检测单向晶闸管的操作方法 方法一 (1) 将数字万用表置于电阻20kΩ挡, 红表笔接阳极A, 黑表笔接阴极K, 把控制极G悬空, 此时晶闸管截止, 万用表显示溢出符号“1”, 如图9.5 所示。 图9-5 欧姆档 (2) 然后在红表笔与阳极 A 保持接触的同时, 用它的笔尖接触一下控制极G(将A极与G 极短接一下), 给晶闸管加上正触发电压, 晶闸管立即导通, 显示值减小到几百欧至几千欧, 若显示值不变, 说明晶闸管已损坏。 方法二

可控硅的测试方法

可控硅的测试方法 This model paper was revised by the Standardization Office on December 10, 2020

可控硅的测试方法 双向可控硅的极性判断方法:T1(A1)为第一阳极,T2(A2)为第二阳极,G为控制极。 测试结果为:T2与其他2个脚均不导通,通常T2极和可控硅背部的散热片是导通的,其余的两个引脚则为T1极与G极,用指针万用表的R×1或R×10档测量这两个引脚;在正反测量阻值较小的那次中,红表笔接的为可控硅G极,黑表笔接的为T1极。 将黑表笔接T2极,红表笔接T1极,此时万用表指针应该不发生偏转,阻值为无穷大,再用短接线将T2极与G极瞬间短接,这样做的目的是给G极加上正向触发电压,T1(A1)、T2(A2)两极之间阻值由无穷大变为导通,随后断开T2极与G极之间的短接线,万用表指针仍然停留在原来偏转位置,即撤掉可控硅的触发电压后,可控硅仍然维持导通。 然后互换表笔接线,红表笔接T2极,黑表笔接T1极,同样的读数为无穷大,此时将T2极与G极瞬间短接,T1极与T2极之间的阻值将一样会维持导通,(除非T1与T2断开) 单向可控硅的三个引脚分别是阳极(A)、阴极(K)和控制极(G) 用指针式万用表电阻档R×1或R×10档,找出正反电阻有差别的两极,这时候测得电阻阻值读数较小的那次中,黑表笔接的为该单向可控硅的控制极(G)极,红表笔接的为阴极(K)极,另外的一个脚即为阳极(A)极。(如果三个脚之间的电阻值都很小,几乎接近0欧姆,那么这只管子已击穿损坏),如果阳极(A)接黑表笔,阴极(K)接红表笔,万用表指针产生偏转的话,同样的这只管子已损坏。

可控硅元件的工作原理及基本特性

可控硅元件的工作原理及基本特性 1、工作原理 可控硅是P1N1P2N2四层三端结构元件,共有三个PN结,分析原理时,可以把它看作由一个PNP管和一个NPN管所组成,其等效图解如图1所示 图1 可控硅等效图解图 当阳极A加上正向电压时,BG1和BG2管均处于放大状态。此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。这个电流又流回到BG2的基极,表成正反馈,使ib2不断增大,如此正向馈循环的结果,两个管子的电流剧增,可控硅使饱和导通。 由于BG1和BG2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极G的电流消失了,可控硅仍然能够维持导通状态,由于触发信号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。 由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化,此条件见表1 状态条件说明 从关断到导通1、阳极电位高于是阴极电位 2、控制极有足够的正向电压和电流 两者缺一不可 维持导通1、阳极电位高于阴极电位 2、阳极电流大于维持电流 两者缺一不可 从导通到关断1、阳极电位低于阴极电位 2、阳极电流小于维持电流 任一条件即可 2 可控硅的基本伏安特性见图2 图2 可控硅基本伏安特性 (1)反向特性 当控制极开路,阳极加上反向电压时(见图3),J2结正偏,但J1、J2结反偏。此时只能流过很小的反向饱和电流,当电压进一步提高到J1结的雪崩击穿电压后,接差J3结也击穿,电流迅速增加,图3的特性开始弯曲,如特性OR段所示,弯曲处的电压URO叫“反向转折电压”。此时,可控硅会发生永久性反向击穿。

各种规格型号可控硅晶闸管

KK200A/600V, KK200A/800V, KK200A/1000V, KK200A/1200V, KK200A/1400V, KK200A/1600V, KK200A/1800V, KK200A/2000V, KK200A/2500V, KK200A/3000V, KK300A/600V, KK300A/800V, KK300A/1000V, KK300A/1200V, KK300A/1400V, KK300A/1600V, KK300A/1800V, KK300A/2000V, KK300A/2500V, KK300A/3000V, KK500A/600V, KK500A/800V, KK500A/1000V, KK500A/1200V, KK500A/1400V, KK500A/1600V, KK500A/1800V, KK500A/2000V, KK500A/2500V, KK500A/3000V,KK800A/600V, KK800A/800V, KK800A/1000V, KK800A/1200V, KK800A/1400V, KK800A/1600V, KK800A/1800V, KK800A/2000V, KK800A/2500V, KK800A/3000V, KK1000A/600V, KK1000A/800V, KK1000A/1000V, KK1000A/1200V, KK1000A/1400V, KK1000A/1600V, KK1000A/1800V, KK1000A/2000V, KK1000A/2500V, KK1000A/3000V, KK1000A/3300V, KK1000A/3800V, KK1000A/4000V, KK1200A/600V, KK1200A/800V, KK1200A/1000V, KK1200A/1200V, KK1200A/1400V, KK1200A/1600V, KK1200A/1800V, KK1200A/2000V, KK1200A/2500V, KK1200A/3000V, KK1200A/3300V, KK200A/600V, KK200A/800V, KK200A/1000V, KK200A/1200V, KK200A/1400V, KK200A/1600V, KK200A/1800V, KK200A/2000V, KK200A/2500V, KK200A/3000V, KK300A/600V, KK300A/800V, KK300A/1000V, KK300A/1200V, KK300A/1400V, KK300A/1600V, KK300A/1800V, KK300A/2000V, KK300A/2500V, KK300A/3000V, KK500A/600V, KK500A/800V, KK500A/1000V, KK500A/1200V, KK500A/1400V, KK500A/1600V, KK500A/1800V, KK500A/2000V, KK500A/2500V, KK500A/3000V,KK800A/600V, KK800A/800V, KK800A/1000V, KK800A/1200V, KK800A/1400V, KK800A/1600V, KK800A/1800V, KK800A/2000V, KK800A/2500V, KK800A/3000V, KK1000A/600V, KK1000A/800V, KK1000A/1000V, KK1000A/1200V, KK1000A/1400V, KK1000A/1600V, KK1200A/1600V, KK1200A/1800V, KK1200A/2000V, KK1200A/2500V, KK1200A/3000V, KK1200A/3300V, KK1200A/3800V, KK1200A/4000V, KK1500A/600V, KK1500A/800V, KK1500A/2000V,KK1500A/2500V KK1500A/1000V, KK1500A/1200V, KK1500A/1400V, KK1500A/1600V, KK1500A/1800V, KK1500A/2000V, KK1500A/2500V, KK1500A/3000V, KK1500A/3300V, KK1500A/3800V, KK1500A/4000V, KK1600A/600V, KK1600A/800V, KK1600A/1000V, KK1600A/1200V, KK1600A/1400V, KK1600A/1600V, KK1600A/1800V, KK1600A/2000V, KK1600A/2500V, KK1600A/3000V, KK1600A/3300V, KK1600A/3800V, KK1600A/4000V, KK2000A/600V, KK2000A/800V, KK2000A/1000V, KK2000A/1200V, KK2000A/1400V, KK2000A/1600V, KK2000A/1800V, KK2000A/2000V, KK2000A/2500V, KK2000A/3000V, KK2000A/3300V, KK2000A/3800V, KK2000A/4000V, KK2500A/600V, KK2500A/800V, KK2500A/1000V, KK2500A/1200V, KK2500A/1400V, KK2500A/1600V, KK2500A/1800V, KK2500A/2000V, KK2500A/2500V, KK2500A/3000V, KK2500A/3300V, KK2500A/3800V, KK2500A/4000V, KK3000A/600V, KK3000A/800V, KP3000A/1000V, KK3000A/1200V, KK3000A/1400V, KK3000A/1600V, KK3000A/1800V, KK3000A/2000V, KK3000A/2500V, KK3000A/3000V KK3000A/3500V,KK3500A/3000V,KK3000A/4000V,KK3500A/3000V,KK3500A/3500V,KK3500A/4000V KK3500A/4500V,KK3500A/5000V,KK3500A/5500V,KK3500A/6000V,KK4000A/3000V,KK4000A/3500V KK4000A/4000V,KK4000A/4500V,KK4000A/5000V,KK4000A/5500V,KK4000A/6000V,KK4000A/6500V KK5000A/3000V,KK5000A/3500V,KK5000A/4000V,KK5000A/4500V,KK5000A/5000V,KK5000A/5500V KP5000A/6000V,KP5000A/6500V,KP5500A/3000V,KP5500A/4000V,KP5500A/4500V,KP5500A/5000V KK5000A/6000V,KK5000A/6500V,KK5500A/3000V,KK5500A/4000V,KK5500A/4500V,KK5500A/5000V KP1000A/1800V, KP1000A/2000V, KP1000A/2500V, KP1000A/3000V, KP1000A/3300V, KP1000A/3800V, KP1000A/4000V, KP1200A/600V, KP1200A/800V, KP1200A/1000V, KP1200A/1200V, KP1200A/1400V, KP1200A/1600V, KP1200A/1800V, KP1200A/2000V, KP1200A/2500V, KP1200A/3000V, KP1200A/3300V, KP1200A/3800V, KP1200A/4000V, KP1500A/600V, KP1500A/800V, KP1500A/2000V,KP1500A/2500V KP1500A/1000V, KP1500A/1200V, KP1500A/1400V, KP1500A/1600V, KP1500A/1800V, KP1500A/2000V, KP1500A/2500V, KP1500A/3000V, KP1500A/3300V, KP1500A/3800V, KP1500A/4000V, KP1600A/600V, KP1600A/800V, KP1600A/1000V, KP1600A/1200V, KP1600A/1400V, KP1600A/1600V, KP1600A/1800V,

相关文档
最新文档