扭摆法测定物体转动惯量实验报告模板

扭摆法测定物体转动惯量实验报告模板
扭摆法测定物体转动惯量实验报告模板

南昌大学物理实验报告

学生姓名: 学号: 专业班级: 班级编号:

实验时间:第 周,星期 , 时 分 座位号:

扭摆法测定物体转动惯量

(说明:本模板仅供写实验报告参考使用,与实际实验并不完全相同,切勿

照抄!)

一、实验目的 1、 测定扭摆弹簧的扭转常数K 。

2、

测定几种不同形状物体的转动惯量,并与理论值进行比较。

3、验证转动惯量平行轴定理。

二、实验仪器(实验中实际用到的仪器)

扭摆、转动惯量测试仪、实心塑料圆柱体、空心金属圆筒、木球、金属杆、金属圆柱滑块。 三、实验原理

扭摆的结构如图2.1所示,将物体在水平面内转过一角度? 后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。

根据胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度? 成正比,即 M= ?K ? (2.1) 根据转动定律:M=J ? 得

J

M =

β (2.2)

令J

K

=2

ω,由式(2.1)、(2.2)得:θωθθβ22

2-=-

==

J

K

dt

d

上述方程表示扭摆运动具有角简谐振动的特性,此方程的解为: )t cos(A ?ωθ+=

此谐振动的周期为:K J

T πωπ

22== (2.3) 或 22

T K J =

(2.4)

由(2.3)或(2.4)式可知,只要实验测得物体扭摆的摆动周期,并在

J 和K 中任何一个量已知时即可计算出另一个量。

本实验用一个已知形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出仪器弹簧的K 值。若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(2.3)即可算出该物体绕转动轴的转动惯量。

理论分析证明,若质量为m 的物体绕通过质心轴的转动惯量为J 0,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量变为J 0+mx 2。称为转动惯量的平行轴定理。 四、实验内容 1、 测定扭摆的仪器常数(弹簧的扭转常数)K 。

2、

测定塑料圆柱、金属圆筒、木球与金属细杆的转动惯量。并与理论值

进行比较。 3、

改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。

五、实验步骤 1、

测出塑料圆柱体的外径,金属圆筒的内、外径,木球直径,金属细杆

长度(各测3次);并称出各个物体的质量。

图2.1

2、调整扭摆基座底角螺丝,使水准泡中气泡居中。

3、装上金属载物盘,并调整光电探头的位置使载物盘上挡光杆处于其缺

口中央且能遮住发射、接受红外光线的小孔。测定摆动周期T0。

4、将塑料圆柱体垂直放在载物盘上,测定摆动周期T1。

5、用金属圆筒代替塑料圆柱体,测定摆动周期T2。

6、取下载物金属盘、装上木球,测定摆动周期T3。(在

计算木球的转动惯量时,应扣除支座的转动惯量)。

7、取下木球,装上金属细杆(金属细杆中心必须与转轴

重合),测定摆动周期T4。(在计算金属细杆的转动惯量时,应扣除夹具的转动惯量)。

8、将滑块对称放置在细杆两边的凹槽内(见图1.3),此时滑块质心离转

图2.3 轴的距离分别为5.00,10.00,15.00,20.00,25.00厘米,测定摆动周期T。计算J并与理论值进行比较(计算转动惯量时应扣除夹具的转动惯量)。验证转动惯量的平行轴定理。

六、注意事项

1、由于弹簧的扭转常数K值不是固定常数,摆角在900左右才基本相同。为

了降低实验时由于摆动角度变化过大带来的系统误差,在测定各种物体的摆动周期时摆角不宜过小,摆幅也不宜变化过大。

2、探头宜放置在挡光杆的平衡位置处,挡光杆不能与它相接触,以免增大摩擦力矩。

3、机座应保持水平状态。

4、在安装待测物体时,其支架必须全部套入扭摆主轴,并将止动螺丝旋紧,

否则扭摆不能正常工作。

4、称量金属细杆与木球的质量时,必须将夹具或支座取下,否则会带来

较大误差。

七、数据表格与计算结果

表1 转动惯量测量实验数据记录表

说明:K 值按照此式计算:2

2112

4T T J K -'=π (N ·m -1)

211

8

1D m J ='=9.060?10-4

Kg m 2,2

2112

4T T J K -

'

=3.815?10-2(N/m )

表2 验证转动惯量平行轴定理数据记录表

结论:平行轴定理成立。 八、思考题与误差分析 1、

本实验对摆动角度有什么要求?如果没满足实验要求将带来什么误

差?

答:摆角在900—1200左右扭转常数K 值才基本相同。

若摆角不满足,M= ?K ?就不成立,所以摆动角度变化会给实验带来系统误差。 2、

实验中导致误差的因素有:(自己补充分析、罗

列)。。。。。。。。。。。。。。。。。。。。。

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。

九、附录

金属细杆夹具转动惯量实验值:夹具J =0.232?10—4

2m Kg ?

木球支座转动惯量实验值:支座J =0.179?10

—4

2

m Kg ?

两滑块绕通过质心转轴的转动惯量理论值: ‘5

J =0.809?10

—4

2

m Kg ?

实验值为:5J =0.82?10—42m Kg ?,每一滑块的质量g m 50.239=。

刚体转动惯量数据处理

测量装置的几何尺寸 仪器:米尺cm D =米尺 0.5 卡尺0.02mm D =卡尺 (表格单位:cm ) ⑴塔轮半径 塔轮半径:1 d 2 r = = cm 测量的不确定度:11()(d) 1.32(d)cm 2 2 A A u r u s ==? ()0.683c m B u r =譊=卡尺 ()cm u r 测量结果:()r r u r =? ( )cm 2.角加速度测量 2 rad/s D =仪0.001 m=30g

10b 测量的不确定度2 1010() 1.20()rad/s A u s b b == 210()0.683rad/s B u b =譊=仪 210()rad/s u b 。 20b 测量的不确定度2 2020() 1.20()rad/s A u s b b == 220()0.683rad/s B u b =譊=仪 220()rad/s u b 。 1b 测量的不确定度211() 1.20( )rad/s A u s b b == 21()0.683r a d /s B u b =譊=仪 21()rad/s u b 。 2b 测量的不确定度222() 1.20( )rad/s A u s b b == 22()0.683r a d /s B u b =譊=仪 210()rad/s u b 。 空载转动惯量:22002010 () =kg m mr g r J b b b -= - ⑵圆环的转动惯量2221 () =kg m mr g r J b b b -= -合 圆环的转动惯量实验值: 210kg m J J J =-= 合 圆环的转动惯量理论值:22212111m )kg m 8 J D D =+= 理( 实验值与理论值相对误差:111100%=%r J J E J -= 理理

扭摆法测定物体转动惯量

《扭摆法测定物体转动惯量》实验报告 一、实验目的 1. 熟悉扭摆的构造、使用方法和转动惯量测试仪的使用; 2. 利用塑料圆柱体和扭摆测定不同形状物体的转动惯量I 和扭摆弹簧的扭摆常数K ; 3. 验证转动惯量平行轴定理。 二、实验原理 1. 不规则物体的转动惯量 测量载物盘的摆动周期T 0,得到它的转动惯量: 2002 4T K J π= 塑料圆柱体放在载物盘上测出摆动周期T 1,得到总的转动惯量: 21012 4T K J J π += 塑料圆柱体的转动惯量为 ()221 0'21 2 1 48 T T K J mD π-= = 即可得到K ,再将K 代回第一式和第三式可以得到载物盘的转动惯量为 '2 1002 2 10J T J T T =- 只需测得其它的摆动周期,即可算出该物体绕转动轴的转动惯量: 22 4T K J π= 2. 转动惯量的平行轴定理 若质量为m 的物体绕质心轴的转动惯量为J c 时,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量: '2c J J mx =+ 3. 实验中用到的规则物体的转动惯量理论计算公式 圆柱体的转动惯量: 2222 1 28 D m J r h rdr mD h r ππ=?=?

金属圆筒的转动惯量: ()22 18 J J J m D D =+=+外外内内 木球的转动惯量: ()()22 223 211sin cos 42103 m J R R Rd mD R π π π???π-==? 金属细杆的转动惯量: 2220 1 2212 L m J r dr mL L ==? 三、实验步骤 1. 用游标卡尺、钢尺和高度尺分别测定各物体外形尺寸,用电子天平测出相应质量; 2. 根据扭摆上水泡调整扭摆的底座螺钉使顶面水平; 3. 将金属载物盘卡紧在扭摆垂直轴上,调整挡光杆位置和测试仪光电接收探头中间小 孔,测出其摆动周期T ; 4. 将塑料圆柱体放在载物盘上测出摆动周期T 1。已知塑料圆柱体的转动惯量理论值为 J 1’,根据T 0、T 1可求出K 及金属载物盘的转动惯量J 0。 5. 取下塑料圆柱体,在载物盘上放上金属筒测出摆动周期T 2。 6. 取下载物盘,测定木球及支架的摆动周期T 3。 7. 取下木球,将金属细杆和支架中心固定,测定其摆动周期T 4,外加两滑块卡在细杆 上的凹槽内,在对称时测出各自摆动周期,验证平行轴定理。由于此时周期较长,可将摆动次数减少。 四、注意事项 1. 由于弹簧的扭摆常数K 不是固定常数,与摆角有关,所以实验中测周期时使摆角在 90度左右。 2. 光电门和挡光杆不要接触,以免加大摩擦力。 3. 安装支架要全部套入扭摆主轴,并将止动螺丝锁紧,否则记时会出现错误。 4. 取下支架测量物体质量。处理时支架近似为圆柱体。

实验扭摆法测定体转动惯量

实验扭摆法测定体转动惯量

————————————————————————————————作者:————————————————————————————————日期:

实验2-10 扭摆法测物体的转动惯量 【引言】 转动惯量是刚体转动时惯性大小的量度,是表明刚体特性的一个物理量。刚体相对于某转轴的转动惯量,是组成刚体的各质元质量与它们各自到该转轴距离平方的乘积之和。 刚体的转动惯量与以下因素有关: 刚体的质量:各种形状刚体的转动惯量都与它自身的质量成正比; 转轴的位置:并排的两个刚体的大小、形状和质量都相同,但转轴的位置不同,转动惯量也不同; 质量的分布:质量一定、密度相同的刚体,质量分布不同(即刚体的形状不同)转动惯量也不同。 如果刚体形状简单,且质量分布均匀,可以直接计算出它绕特定转轴的转动惯量。对于形状复杂,质量分布不均匀的刚体,计算将极为复杂,通常采用实验方法来测定,例如机械部件、电动机转子和枪炮的弹丸等。 转动惯量的测量,一般都是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。本实验使物体做扭转摆动,由摆动周期以及其它参数的测定计算出物体的转动惯量。 在国际单位制中,转动惯量的单位是2 m kg ?(千克·米2)。 【实验目的】 1. 测定弹簧的扭转常数 2. 用扭摆测定几种不同形状物体的转动惯量,并与理论值进行比较 3. 验证转动惯量平行轴定理 【实验仪器】 扭摆 附件为塑料圆柱体 金属空心圆筒 实心球体 金属细长杆(两个滑块可在上面自由移动) 数字式定数计时器 数字式电子秤 【实验原理】 扭摆的构造如图2-10-1所示,在垂直轴1上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。在轴的上方可以装上各种待测物体。垂直轴与支座间装有轴承,以降低磨擦力矩。3为水平仪,用来调整系统平衡。 将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。根据虎克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 θK M -= (2-10-1) 式中,K 为弹簧的扭转常数,根据转动定律 βI M = 图2-10-1

测量刚体的转动惯量实验报告及数据处理

测量刚体的转动惯量实验报告及数据处理 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不 变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分 布、形状大小和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12) 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮 半径,3组砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求 平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:J=0.5mR2(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB= 总误差:,ux= m

刚体转动惯量计算方法

刚体绕轴转动惯性的度量。其数值为J=∑ mi*ri^2, 式中mi表示刚体的某个质点的质量,ri表示该质点到转轴的垂直距离。 ;求和号(或积分号)遍及整个刚体。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)无关。规则形状的均质刚体,其转动惯量可直接计得。不规则刚体或非均质刚体的转动惯量,一般用实验法测定。转动惯量应用于刚体各种运动的动力学计算中。 描述刚体绕互相平行诸转轴的转动惯量之间的关系,有如下的平行轴定理:刚体对一轴的转动惯量,等于该刚体对同此轴平行并通过质心之轴的转动惯量加上该刚体的质量同两轴间距离平方的乘积。由于和式的第二项恒大于零,因此刚体绕过质量中心之轴的转动惯量是绕该束平行轴诸转动惯量中的最小者。 还有垂直轴定理:垂直轴定理 一个平面刚体薄板对于垂直它的平面轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。 表达式:Iz=Ix+Iy 刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离,称为刚体绕该轴的回转半径κ,其公式为_____,式中M为刚体质量;I为转动惯量。 转动惯量的量纲为L^2M,在SI单位制中,它的单位是kg·m^2。 刚体绕某一点转动的惯性由更普遍的惯量张量描述。惯量张量是二阶对称张量,它完整地刻画出刚体绕通过该点任一轴的转动惯量的大小。 补充对转动惯量的详细解释及其物理意义: 先说转动惯量的由来,先从动能说起大家都知道动能E=(1/2)mv^2,而且动能的实际物理意义是:物体相对某个系统(选定一个参考系)运动的实际能量,(P势能实际意义则是物体相对某个系统运动的可能转化为运动的实际能量的大小)。 E=(1/2)mv^2 (v^2为v的2次方) 把v=wr代入上式(w是角速度,r是半径,在这里对任何物体来说是把物体微分化分为无数个质点,质点与运动整体的重心的距离为r,而再把不同质点积分化得到实际等效的r) 得到E=(1/2)m(wr)^2 由于某一个对象物体在运动当中的本身属性m和r都是不变的,所以把关于m、r的变量用一个变量K代替, K=mr^2 得到E=(1/2)Kw^2 K就是转动惯量,分析实际情况中的作用相当于牛顿运动平动分析中的质量的作用,都是一般不轻易变的量。 这样分析一个转动问题就可以用能量的角度分析了,而不必拘泥于只从纯运动角度分析转动问题。 为什么变换一下公式就可以从能量角度分析转动问题呢? 1、E=(1/2)Kw^2本身代表研究对象的运动能量 2、之所以用E=(1/2)mv^2不好分析转动物体的问题,是因为其中不包含转动物体的任何转动信息。 3、E=(1/2)mv^2除了不包含转动信息,而且还不包含体现局部运动的信息,因为里面的速度v只代表那个物体的质 心运动情况。 4、E=(1/2)Kw^2之所以利于分析,是因为包含了一个物体的所有转动信息,因为转动惯量K=mr^2本身就是一种积 分得到的数,更细一些讲就是综合了转动物体的转动不变的信息的等效结果K=∑ mr^2 (这里的K和上楼的J一样) 所以,就是因为发现了转动惯量,从能量的角度分析转动问题,就有了价值。 若刚体的质量是连续分布的,则转动惯量的计算公式可写成K=∑ mr^2=∫r^2dm=∫r^2σdV 其中dV表示dm的体积元,σ表示该处的密度,r表示该体积元到转轴的距离。 补充转动惯量的计算公式 转动惯量和质量一样,是回转物体保持其匀速圆周运动或静止的特性,用字母J表示。 对于杆: 当回转轴过杆的中点并垂直于轴时;J=mL^2/12 其中m是杆的质量,L是杆的长度。 当回转轴过杆的端点并垂直于轴时:J=mL^2/3 其中m是杆的质量,L是杆的长度。 对与圆柱体: 当回转轴是圆柱体轴线时;J=mr^2/2 其中m是圆柱体的质量,r是圆柱体的半径。 转动惯量定理:M=Jβ

摆动法测量转动惯量

文案大全 图 4-1单摆原理 实验4 用复摆测量刚体的转动惯量 一、实验目的 1.学习掌握对长度和时间的较精确的测量; 2.掌握重力加速度的方法,并加深对刚体转动理论的理解; 3.学习用作图法处理、分析数据。 二、实验仪器 JD-2物理摆、光电计时器等 三、实验原理 1.单摆 如图4-1(单摆球的质量为m )当球的半径远小于摆长l 时,应用动量矩定理,在角坐标系可得小球自由摆动的微分方程为: 01212=+θθSin l g dt d (4-1) 式中t 为时间,g 为重力加速度,l 为摆长。 当1θ(rad )很小时, 11sin θθ≈ (4-2) 则(4-1)式可简化为: 01212=+θθl g dt d (4-3) 令 l g =2 1ω (4-4) (4-3)式的解为: )sin(1101αωθθ+=t (4-5 ) 式中10θ,α由初值条件所决定。

图4-2 物理摆(复摆) 周期 g l T π 21= (4-6) 2.物理摆 一个可绕固定轴摆动的刚体称为复摆或物理摆。如图4-2,设物理摆的质心为C ,质量为M ,悬点为O ,绕O 点在铅直面内转动的转动惯量为0J ,OC 距离为h ,在重力作用下,由刚体绕定轴转动的转动定律可得微分方程为 θθ sin 220Mgh dt d J -= (4-7) 令 0 2 J Mgh = ω (4-8) 仿单摆,在θ很小时,(4-7)式的解为: )sin(αωθθ+=t (4-9) Mgh J T 0 2π = (4-10) 设摆体沿过质心C 的转动惯量为C J ,由平行轴定理可知: 20Mh J J C += (4-11) 将(4-11)代入(4-10)可得: g h Mgh J T C +=π 2 (4-12) (4-12)式就是物理摆的自由摆动周期T 和(4-13)式右端各参变量之间的关系。实验就是围绕(4-12)式而展开的。 因为对任何C J 都有C J ∝M ,因此(4-13)式的T 与M 无关,仅与M 的分布相关。 令2 Ma J =,a 称为回转半径, 则有 g h gh a T += 2 (4-13)

转动惯量实验报告

转动惯量实验报告 一.实验目的 (1) 学会用落体法转动实验仪测定刚体的转动惯量; (2) 研究刚体的转动惯量与形状、大小及转轴位置的关系。 三.实验仪器描述 本实验所用NNZ-2型刚体转动实验仪由主机和测量仪表与拉线牵引台辅机及待测刚体球、环、盘、棒等组成。主机包括基础转盘和测量传感器;辅机由转数表和计时表、拉线、悬臂及砝码。 四.实验内容 1.测量基础转盘的转动惯量 2.测量圆环(或圆盘)的转动惯量 3.测双球的转动惯量并用球体验证平行移轴定理。 五.测量及实验步骤

1.测量基础转盘的转动惯量: 将主机上的霍尔传感器输出端插头和电磁铁及电插头,插入辅机的对应插口。将砝码托盘上的挂线穿过悬臂上的滑轮并使其一端固定在转轴上。(1)调节好主机和辅机的高度,使拉线与悬臂轴线平行,为此,悬臂上设有两个定位钉,使拉线通过两个定位钉即可。 (2)打开辅机上的电源开关,这时电磁铁会自动将基础转盘锁住。我们已将转数设为16个脉冲,即测量转2周的转动时间。 (3)绕线与测试准备--测试键-完成测试:主机因电磁铁失电而解锁,砝码从静止开始下落,刚体转动2周后,电磁铁自动吸合,重新锁紧转动的刚体,并显示刚体转动2周的下落时间。绕线键-主机解锁,重新绕线,绕线合适位置后完毕按下准备键,仪表全部数据归零,做好测量准备,主机(转动刚体)通过电磁铁被锁紧;按下测试键,再次测试转动2周的时间。 这里要特别强调,绕线到合适位置的含义。因为我们要测出刚体完整转动2周的时间,霍尔传感器给出开始和结束讯号的位置就必须是同一位置,这是减少误差的重要环节。 (4)测试在砝码托盘上放200g砝码,然后点按一下测试键,电磁铁失电,砝码带动刚体作匀加速转动,计时仪表开始计时,当刚体转动2周结束

扭摆法测定物体的转动惯量实验报告

扭摆法测定物体的转动惯量 一、实验目的 1.测定扭摆的仪器常数(弹簧的扭转常数)K 。 2.测定熟料圆柱体、金属圆筒、木球与金属细长杆的转动惯量。 3.验证转动惯量的平行轴定理。 二、实验器材 扭摆、转动惯量测试仪、金属圆筒、实心塑料圆柱体、木球、验证转动惯量平行轴定理用的金属细杆(杆上有两块可以自由移动的金属滑块)、游标卡尺、米尺 托盘天平。 三、实验原理 1.测量物体转动惯量的构思与原理 将物体在水平面内转过以角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。更具胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 M K θ=- 式中K 为弹簧的扭转常数。 若使I 为物体绕转轴的转动惯量,β为角加速度,由转动定律M I β=可得 M K I I βθ= =- 令2K I ω= ,忽略轴承的磨察阻力距,得 222d dt θ βωθ==- 上式表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。方程的解为 cos()A t θω?=+ 式中A 为简谐振动的角振幅,?为初相位角,ω为角速度。谐振动的周期为 22T πω = =由上式可知,只要通过实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另外一个量。 本实验使用一个几何形状规则的小塑料圆柱,它的转动惯量可以根据质量

和几何尺寸用理论公式直接计算得到,将其放在扭摆的金属载物盘上,通过测定其在扭摆仪上摆动时的周期,可算出仪器弹簧的K 值。若要测定其他形状物体的转动惯量,只需将待测物体安放在同一扭摆仪顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。 假设扭摆上只放置金属载物圆盘时的转动惯量为0I ,周期为0T ,则 2 20 04T I K π= 若在载物圆盘上放置已知转动惯量为'1I 的小塑料圆柱后,周期为1T ,由转动惯量的可加性,总的转动惯量为'01I I +,则 222 '2 '1 010144()T I I T I K K ππ=+=+ 解得 ' 2 12 2 104I K T T π=- 以及 '2 1002 2 10 I T I T T =- 若要测量任何一种物体的转动惯量,可将其放在金属载物盘上,测出摆动周期T ,就可算出其转动惯量I ,即 202 4KT I I π =- 本实验测量木球和金属细杆的转动惯量时,没有用金属载物盘,分别用了支架和夹具,则计算转动惯量时需要扣除支架和夹具的转动惯量。 2.验证物体转动惯量的平行轴定理 本实验利用金属细杆和两个对称放置在细杆两边凹槽内的滑块来验证平行轴定理。测量整个系统的转动周期,可得整个系统的转动惯量的实验值为 22 4KT I π= 当滑块在金属细杆上移动的距离为x 时,根据平行轴定理,整个系统对中心轴转动惯量的理论计算公式应为 '2+2+2m I I I I x =+细杆夹具滑块滑块 式中I 滑块为滑块通过滑块质心轴的转动惯量理论值。 如果测量值I 与理论计算值'I 相吻合,则说明平行轴定理得证。

实验2 刚体转动惯量的测定

实验2 刚体转动惯量的测量 [预习思考题] 1.实验中的刚体转动惯量实验仪是由哪几部分组成的? 2.实验中可以通过什么方法改变转动力矩? 3.实验中刚体转动过程的角加速度如何测得? 转动惯量是描述刚体转动中惯性大小的物理量,对于绕定轴转动的刚体,它为一恒量,以J表示,即 ∑= i i i r m J2 式中,m i为刚体上各个质点的质量,r i为各个质点至转轴的距离。由此可见,物体的转动惯量J与刚体的总质量、质量分布及转轴的位置有关。对于几何形状规则、对称和质量分布均匀的刚体,可以通过积分直接计算出它绕某定轴的转动惯量。对于形状复杂或非匀质的任意物体,则一般要通过实验来测定,例如,机械零件、电机的转子、炮弹等。 测定物体的转动惯量有多种实验方法,主要分为扭摆法和恒力矩转动法两类。本实验介绍用塔轮式转动惯量仪测定的方法,是使塔轮以一定形式旋转,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。该方法属于恒力矩转动法。 转动惯量是研究、设计、控制转动物体运动规律的重要参数,实验测定刚体的转动惯量具有十分重要的意义,是高校理工科物理实验教学大纲中的一个重要基本实验。 一、实验目的 1.学习用转动惯量仪测定刚体的转动惯量。 2.研究作用于刚体上的外力矩与角加速度的关系。 3.验证转动定律及平行轴定理。 二、实验仪器 IM-2刚体转动惯量实验仪及其附件(霍尔开关传感器、砝码等)和MS-1型多功能数字毫秒仪。 三、仪器介绍

1.滑轮 2.滑轮高度和方向调节组件 3.挂线 4.塔轮组 5.铝质圆盘承物台 6.样品固定螺母 7.砝码 8.磁钢 9.霍尔开关传感器 10.传感器固定架 11.实验样品水平调节旋钮(共3个) 12.毫秒仪次数预置拨码开关,可预设1-64次 13.次数显示屏 14.时间显示屏 l5.次数+1查阅键 16.毫秒仪复位键 17.+5V 电源接线柱 18.电源GND (地)接线柱 19.INPUT 输入接线柱 20.输入低电平指示 21.次数-1查阅键 图4-3-1 IM-2刚体转动惯量实验仪和MS -1型多功能数字毫秒仪结构示意图 IM-2刚体转动惯量实验仪主要由绕竖直轴转动的铝质圆盘承物台、绕线塔轮、霍尔开关传感器、磁钢、滑轮组件、砝码等组成。 样品放置在铝质圆盘承物台上,承物台上有许多圆孔,可用于改变样品的转轴位置。绕线塔轮是倒置的塔式轮,分为四层,自上往下半径分别为3cm 、2.5cm 、2cm 、1.5cm 。磁钢随转动系统转动,每半圈经过霍尔开关传感器一次,传感器输出低电平,通过连线送到多功能数字毫秒仪。传感器红线接毫秒仪+5V 电源接线柱,黑线接电源GND (地)接线柱,黄线接INPUT 输入接线柱。 MS -1型多功能数字毫秒仪通过预置拨码开关预置实验所需感应次数。每轮实验开始前通过复位键清0,直到输入低电平信号触发计时开始,次数显示屏从0次开始计时,直至达到预置次数停止。计时停止后,方能查阅各次感应时间。 四、实验原理 1. 任意样品的转动惯量测定 设转动惯量仪空载(不加任何样品)时的转动惯量为J 1,称为系统的本底转动惯量,转动惯量仪负载(加上样品)时的转动惯量为J 2,根据转动惯量的可加性,则样品的转动惯量J x 为 21x J J J =- 2. 系统的转动惯量测定 1)刚体的转动定律 刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比,这个关系称为刚体的转动定律。 M J β= 利用转动定律,测得刚体转动时的合外力矩及该力矩作用下的角加速度,则可计算

用扭摆法测定物体转动惯量

用扭摆法测定物体转动惯量 (一)教学基本要求 学会用扭摆法测量物体转动惯量的原理和方法。 了解转动惯量的平行轴定理,理解“对称法”验证平行轴定理的实验思想,学会验证平行轴定理的实验方法。 掌握定标测量思想方法。 学会转动惯量测试仪的使用方法。 学会测量时间的累积放大法。 掌握不确定度的估算方法。 (二)讲课提纲 1.实验简介 转动惯量是表征转动物体惯性大小的物理量,是研究、设计、控制转动物体运动规律的重要工程技术参数。如钟表摆轮、精密电表动圈的体形设计、枪炮的弹丸、电机的转子、机器零件、导弹和卫星的发射等,都不能忽视转动惯量的大小。因此测定物体的转动惯量具有重要的实际意义。刚体的转动惯量与刚体的质量分布、形状和转轴的位置都有关系。对于形状较简单的刚体,可以通过计算求出它绕定轴的转动惯量,但形状较复杂的刚体计算起来非常困难,通常采用实验方法来测定。 2.实验设计思想和实现方法 (1)基本原理 转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。 实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体 摆动周期T 与转动惯量I 的关系 k I T π 2=来测量转动惯量。 (2)间接比较法测量,确定扭转常数K 已知标准物体的转动惯量I 1,被测物体的转动惯量I 0;被测物体的摆动周期T 0,标准物体被测物体的摆动周期T 1。通过间接比较法可测得 202 12 010T T T I I -= 也可以确定出扭转常数K 2 021124T T I k -=π 定出仪器的扭转常数k 值,测出物体的摆动周期T ,就可计算出转动惯量I 。 (3)“对称法”验证平行轴定理 平行轴定理:若质量为m 的物体(小金属滑块)绕通过质心轴的转动惯量为I 0时,当转轴平行移动距离x 时,则此物体的转动惯量变为I 0+mx 2。为了避免相对转轴出现非对称情况,由于重力矩的作用使摆轴不垂直而增大测量误差。实验中采用两个金属滑块辅助金属杆的对称测量法,验证金属滑块的平行轴定理。这样,I 0为两个金属滑块绕通过质心轴的转动惯量,m 为两个金属滑块的质量,杆绕摆轴的转动惯量I 杆,当转轴平行移动距离x 时(实际上移动的是通过质心的轴),测得的转动惯量 I =I 杆+I 0+mx 2 扭摆的构造 1-垂直轴,2-蜗簧,3-水平仪

测量刚体的转动惯量实验报告及数据处理

实验讲义补充: 1.刚体概念:刚体是指在运动中和受力作用后,形状和大小不变,而且内部各点的相对位置不 变的物体。 2.转动惯量概念:转动惯量是刚体转动中惯性大小的量度。它取决于刚体的总质量,质量分布、 形状大小和转轴位置 3.转动定律:合外力矩=转动惯量×角加速度 4.转动惯量叠加: 空盘:(1)阻力矩(2)阻力矩+砝码外力→J1 空盘+被测物体:(1)阻力矩(2)阻力矩+砝码外力→J2 被测物体:J3=J2-J1 5.转动惯量理论公式:圆盘&圆环J=0.5mr2,J=0.5m(r12+r12) 6.转动惯量实验仪器:水准仪;线水平;线与孔不产生摩擦;塔轮选小的半径;至少3个塔轮 半径,3组砝码质量 7.计数器:遮光板半圈π;单电门,多脉冲;空盘15圈,20个值;加上被测物体,8个值; 8.泡沫垫板 9.重力加速度:s^2 10.质量:1次读数,包括砝码,圆盘,圆环,以及两圆柱体; 11.游标卡尺:6次读数,包括圆盘半径,圆环内外半径,塔轮半径,转盘上孔的内外半径(求 平均值) 12.实验目的:测量值与理论值对比 实验计算补充说明: 1.有效数字:质量,故有效数字为3位 2.游标卡尺:,读数最后一位肯定为偶数; 3.误差&不确定度: (1)理论公式计算的误差: 圆盘:J=0.5mR2(注意:直接测量的是直径) 质量m=±;(保留4位有效数字) um=*100%=% 半径R=± 若测6次,x1,x2,x3,x4,x5,x6,i=6,计算x平均值 , 取n=6时的 ,我们处理为0 C=,仪器允差,δB= 总误差:,ux= m

,u rx==% R=± urx=% 计算转动惯量的结果表示: J=0.5mR2,总误差:uJ=√[(0.5R2u m)2+(mRu R)2],相对不确定=uJ/J 圆环:J=0.5m(R12+R22),同上. (2)实验测量计算的误差: J=mR(g?Rβ2)β2?β1 根据,,对R(塔轮半径),m(砝码质量),β2和β1求导, ?J ?m=R(g?Rβ2)β2?β1 ?J ?R=mg?2Rβ2β2?β1 ?J ?β2=?mR2(β2?β1)?mR(g?Rβ2) (β2?β1)^2 ?J ?β1= mR(g?Rβ2) (β2?β1)^2

刚体转动惯量的测定_实验报告

实验三刚体转动惯量的测定 转动惯量是刚体转动中惯性大小的量度。它与刚体的质量、形状大小和转轴的位置有关。形状简单的刚体,可以通过数学计算求得其绕定轴的转动惯量;而形状复杂的刚体的转动惯量,则大都采用实验方法测定。下面介绍一种用刚体转动实验仪测定刚体的转动惯量的方法。 实验目的: 1、理解并掌握根据转动定律测转动惯量的方法; 2、熟悉电子毫秒计的使用。 实验仪器: 刚体转动惯量实验仪、通用电脑式毫秒计。 仪器描述: 刚体转动惯量实验仪如图一,转动体系由十字型承物台、绕线塔轮、遮光细棒等(含小滑轮)组成。遮光棒随体系转动,依次通过光电门,每π弧度(半圈)遮光电门一次的光以计数、计时。塔轮上有五个不同半径(r)的绕线轮。砝码钩上可以放置不同数量的砝码,以获得不同的外力矩。 实验原理: 空实验台(仅有承物台)对于中垂轴OO’的转动惯量用J o表示,加上试样(被测物体)后的总转动惯量用J表示,则试样的转动惯量J1: J1 = J –J o (1) 由刚体的转动定律可知:

T r – M r = J α (2) 其中M r 为摩擦力矩。 而 T = m(g -r α) (3) 其中 m —— 砝码质量 g —— 重力加速度 α —— 角加速度 T —— 张力 1. 测量承物台的转动惯量J o 未加试件,未加外力(m=0 , T=0) 令其转动后,在M r 的作用下,体系将作匀减速转动,α=α1,有 -M r1 = J o α1 (4) 加外力后,令α =α2 m(g –r α2)r –M r1 = J o α2 (5) (4)(5)式联立得 J o = 21 2212mr mgr ααααα--- (6) 测出α1 , α2,由(6)式即可得J o 。 2. 测量承物台放上试样后的总转动惯量J ,原理与1.相似。加试样后,有 -M r2=J α3 (7) m(g –r α4)r –Mr 2= J α4 (8) ∴ J = 23 4434mr mgr ααααα--- (9) 注意:α1 , α3值实为负,因此(6)、(9)式中的分母实为相加。 3. 测量的原理 设转动体系的初角速度为ωo ,t = 0 时θ= 0 ∵ θ=ωo t + 2 2 1t α (10) 测得与θ1 , θ2相应的时间t 1 , t 2 由 θ1=ωo t 1 + 2121t α (11) θ2=ωo t 2 + 2 22 1t α (12) 得 22112 22112) (2t t t t t t --= θθα (13) ∵ t = 0时,计时次数k=1(θ=л时,k = 2) ∴ []2 2 11222112)1()1(2t t t t t k t k ----= πα (14) k 的取值不局限于固定的k 1 , k 2两个,一般取k =1 , 2 , 3 , …,30,…

摆动法测量转动惯量

. 实验4 用复摆测量刚体的转动惯量 一、实验目的 1.学习掌握对长度和时间的较精确的测量; 2.掌握重力加速度的方法,并加深对刚体转动理论的理解; 3.学习用作图法处理、分析数据。 二、实验仪器 JD-2物理摆、光电计时器等 三、实验原理 1.单摆 l时,应用动量矩定理,在角)当球的半径远小于摆长4-1(单摆球的质量为m如图坐标系可得 小球自由摆动的微分方程为: 2?gd?1?0?Sin(4-1) 12dtl l为摆长。为重力加速度,当t为时间,g式中?(rad)很小1时, ???sin(4-2) 11单摆原理4-1图则()式可简化为:4-1专业资料. ––60 基础物理实验Ⅲ 2?gd?10??)(4-3 12ldtg2令??(4-4)

1l(4-3 )式的解为:????)sin(??t) (4-5 1101式中??由初值条件所决定。,10l?2T?)(4-6 周期1g 2.物理摆,质,设物理摆的质心为C一个可绕固定轴摆动的刚体称为复摆或物理摆。如图4-2点在铅直面内转动的转动惯量为,悬点为MO,绕O 量为 J h,在重力作用下,由刚体绕定轴转动的转,OC距离为0动定律可得微分方程为 2?d?sin??MghJ(4-7) 02dtMgh2?? 4-8)(令J0)复摆4-2 物理摆(图?仿单摆,在(很小时,4-7)式的解为: ????)sin(?t?(4-9) J0?2T?(4-10) hgM. . 的转动惯量为设摆体沿过质心C J,由平行轴定理可知:C2MhJ?J? (4-11) C0 4-10)可得:将(4-11)代入( Jh C??2T?)(4-12 gMgh)式右端各参变量之间的关系。实验4-13式就是物理摆的自由摆动周期T和((4-12) )式而展开的。就是围绕(4-12因为对任何JJ M的分布相关。无关,仅与M4-13)式的T都有与∝M,因此(CC2令aMa?J称为回转半径,,

大学物理仿真刚体的转动惯量实验报告

大学物理仿真实验——刚体转动惯量的测量 班级: 姓名: 学号:

实验名称:刚体转动惯量的测量 一、实验目的 在研究摆的重心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。 本实验将学习测量刚体转动惯量的基本方法,目的如下: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2.观察刚体的转动惯量与质量分布的关系 3.学习作图的曲线改直法,并由作图法处理实验数据。 二、实验原理 1.刚体的转动定律 具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律: M = Iβ (1) 利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。 2.应用转动定律求转动惯量 如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。 设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a 下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at2/2。刚体受到

张力的力矩为T r 和轴摩擦力力矩M f 。由转动定律可得到刚体的转动运动方程:T r - M f = Iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到: m(g - a)r - M f = 2hI/rt2 (2) M f 与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<

刚体转动惯量的测量_评分标准

“用刚体转动惯量仪测定刚体转动惯量”评分标准 第一部分:预习报告(20分) 一.实验目的 1.掌握使用转动惯量仪检验刚体的刚体转动定律。 2.学会测定圆盘的转动惯量和摩擦力矩。 3.学会一种处理实验数据的方法-作图法(曲线改直法)。 二.实验仪器 刚体转动惯量仪、通用电脑毫秒计、水准仪、 游标尺、 砝码等 三.实验原理 1.转动定律 2.单角度设置法)0(0=w ,测量刚体的转动惯量和摩擦力矩,曲线改直法应用; * 3.双角度设置法,测量刚体的转动惯量和摩擦力矩; * 4.验证平行轴定理 四.实验内容及步骤 1.单角度设置法)0(0=w ,测量刚体的转动惯量和摩擦力矩; 2.双角度设置法,测量刚体的转动惯量和摩擦力矩。 第二部分:数据采集与实验操作(40分) 有较好的动手能力,能够很好解决实验过程中出现的问题,数据采集记录完整准确,操作过程无误(35-40分); 有一定的动手能力,能够解决实验过程中出现的一般问题, 数据采集记录完整,操作过程无大的违规(35-20); 动手能力较差,难以解决实验过程中出现的一般问题,数据采集与记录不完整、有偏差,有违规操作(0-20分)。 操作要点: 1. 拉线要与绕线塔轮水平,且相切。 2. 单角度设置法中要确保初角速度为零,即00=w ; 第三部分:数据记录与数据处理(30分) 数据处理要求: 1.原始数据需重新抄入实验报告数据处理部分的正文中,再进行具体处理,注意各测量量的单位; 2.测量塔轮半径r ,刚体圆盘质量M 盘,刚体圆盘直径R 盘;设置系统转动角度θ;

3.使用作图法(曲线改直)处理单角度设置法的数据: 1)作图时要有清楚标注,如空载图还是载荷图,坐标轴是否有标注,数据是否齐全,比例是否合适等; 2)由图可得,空载时的截距0C 和斜率0K ;载荷时的截距C 和斜率K ; 3)计算空载时系统的0J ,载荷时系统的J ,得到刚体圆盘转动惯量x J ; 4)计算刚体圆盘理论值理x J ,并与上述实验值作比较; 5)计算系统空载和载荷时的摩擦力矩0μM 、μM ,并作比较。 4.根据公式处理双角度设置法的数据: 1)根据公式,计算系统空载时0β、' 0β,以及载荷时的β、'β; β为有恒外力矩(绕线上挂有固定质量砝码)时的角加速度, 'β为无外力矩(绕线上没有挂砝码)时的角加速度; 2)根据公式,计算空载时系统的0J ,载荷时系统的J ,得到刚体圆盘转动惯量x J ; 3)计算刚体圆盘理论值理x J ,并与上述实验值作比较; 4)计算系统相应的摩擦力矩μM 。 测量结果参考值: 1.基本数据测量: 铝质圆盘直径:D 盘 =(240.00±0.05)mm 砝码质量:(5.00±0.05)g 圆盘质量:M 盘 = 482g 2.单角度设置法数据记录与处理: 1)空载数据记录: )6(102)1(==-=N N 取ππθ , cm r 000.3= , 0=盘M

扭摆法测定物体转动惯量

物理实验报告 一、【实验名称】 扭摆法测定物体转动惯量 二、【实验目的】 1、 测定扭摆弹簧的扭转常数K 。 2、 测定几种不同形状物体的转动惯量,并与理论值进行比较。 3、改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。 三、【实验原理】 扭摆的结构如图2.1所示,将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下,物体就开始绕垂直轴作往返扭转运动。 根据胡克定律,弹簧受扭转而产生的恢复力矩M 与所转过的角度θ成正比,即 M= -K θ (2.1) 根据转动定律:M=J β 得 I M = β(2.2) 令I K = 2 ω,由式(2.1)、(2.2)得:θωθθβ2 22 -=-==I K dt d 上述方程表示扭摆运动具有角简谐振动的特性,此方程的解为: )t cos(A ?ωθ+= 此谐振动的周期为: K I T π ω π 22== (2.3) 2 24T K I π = (2.4) 由(2.3)或(2.4)式可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一 个量已知时即可计算出另一个量。 本实验用一个已知形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出仪器弹簧的K 值。 如先测载物盘转动的周期T 0,有 T=2K I 0 π (4-5) 再测载物盘加塑料圆柱(大)的转动周期T 1,有 K I I T 1 012'+=π (4-6) 图2.1

图2 TH -2型转动惯量测量仪面板示意图 1I '为塑料圆柱转动惯量理论计算值 1I '=22 1 mr (4-7) 由式(4-5)和式(4-6)可得 K=42 211 2 T T I -'π (4-8) 若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,由公式(2.3)即可算出该物体绕转动轴的转动惯量。 理论分析证明,若质量为m 的物体绕通过质心轴的转动惯量为I 0,当转轴平行移动距离x 时,则此物体对新轴线的转动惯量变为I 0+mx 2。称为转动惯量的平行轴定理。 四、【仪器用具】 1.扭摆及几种待测转动惯量的物体 金属圆筒、实心塑料圆柱体(一长一短)、实心塑料球、验证转动惯量平行轴定理用的细金属杆(杆上有两块可自由移动的金属滑块)。 2.TH -2型转动惯量测量仪 由主机和光电传感器两部分组成。 主机采用新型的单片机作控制系统,用于测量物体转动和摆动的周期,以及旋转体的转速,能自动记录、存储多组实验数据并能够准确地计算多组实验数据的平均值。 光电传感器主要由红外接收管组成,将光信号转换为脉冲电信号,送入主机工作。因人眼无法直接观察仪器工作是否正常,可用遮光物体往返遮挡光电探头发射光束通路,检查计时器是否开始计数。为防止过强光线对光电探头的影响,光电探头不能置放在强光下,实验时采用窗帘遮光,确保计时准确。 3.仪器使用方法 TH -2型转动惯量测量仪面板如图2所示。 (1)调节光电传感器在固定支架上的高度,使被测物体上的挡光杆能自由地通过光电门,再将光电传感器的信号传输线插入主机输入端(位于测试仪背面)。 (2)开启主机电源,“摆动”指示灯亮,参量指示为“P1”、数据显示为“- - - -”。 (3)本机设定扭摆的周期数为10,如要更改,可按“置数”键,显示“n=10”,按“上

大学物理刚体的转动惯量的研究实验报告

大学物理仿真实验报告 电子3班 实验名称:刚体得转动惯量得研究 实验简介 在研究摆得重心升降问题时,惠更斯发现了物体系得重心与后来欧勒称之为转动惯量得量。转动惯量就是表征刚体转动惯性大小得物理量,它与刚体得质量、质量相对于转轴得分布有关。 本实验将学习测量刚体转动惯量得基本方法,目得如下: 1.用实验方法验证刚体转动定律,并求其转动惯量; 2。观察刚体得转动惯量与质量分布得关系 3.学习作图得曲线改直法,并由作图法处理实验数据。 实验原理 1。刚体得转动定律 具有确定转轴得刚体,在外力矩得作用下,将获得角加速度β,其值与外力矩成正比,与刚体得转动惯量成反比,即有刚体得转动定律: M= Iβ(1) 利用转动定律,通过实验得方法,可求得难以用计算方法得到得转动惯量。 2.应用转动定律求转动惯量 如图所示,待测刚体由塔轮,伸杆及杆上得配重物组成。刚体将在砝码得拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力与细线得张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落得高度为h=at2/2。刚体受到张力得力矩为T r与轴摩擦力力矩Mf。由转动定律可得到刚体得转动运动方程:T r—Mf= Iβ。绳与塔轮间无相对滑动时有a= rβ,上述四个方程得到: m(g - a)r - Mf = 2hI/rt2(2) M f与张力矩相比可以忽略,砝码质量m比刚体得质量小得多时有a<<g, 所以可得到近似表达式: mgr = 2hI/ rt2(3) 式中r、h、t可直接测量到,m就是试验中任意选定得。因此可根据(3)用实验得方法求得转动惯量I。 3.验证转动定律,求转动惯量 从(3)出发,考虑用以下两种方法: A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r与砝码下落高度h,(3)式变为: M = K1/ t2(4) 式中K1= 2hI/ gr2为常量。上式表明:所用砝码得质量与下落时间t得平方成反比。实验中选用一系列得砝码质量,可测得一组m与1/t2得数据,将其在直角坐标系上作图,应就是直线.即若所作得图就是直线,便验证了转动定律。 从m–1/t2图中测得斜率K1,并用已知得h、r、g值,由K1= 2hI/ gr2求得刚体得I. B.作r – 1/t图法:配重物得位置不变,即选定一个刚体,取砝码m与下落高度h为固定值。将式(3)写为:

相关文档
最新文档