行列式练习题(有答案).

行列式练习题(有答案).
行列式练习题(有答案).

线性代数作业一(B 卷)

一、填空题

1、排列134782695

2、设五阶行列式510

02031

4506017000010

8910111

D =, 则5D

3、设四阶行列式412222223

33a

b c b c

a D c a

b b c

c a

a b =+++, 则

4D = 4、若102

3145

x x 中代数余子式121A =-,那么21

A

5、五阶行列式中3125144352a a a a a

~

二、解答题

6、解线性方程组23413412412334523432512

4355

x x x x x x x x x x x x -+=-??-+=-??+-=??+-=?

解:()123424,48,24,24,24,1211D D D D D x ====-==-

~

7、已知齐次线性方程组()()()1232312330204210

x x x x x x x x λλλ-++=??--=??-+-=?有非零解,求λ. <

解:1,3,4λ=-

|

三、证明题

8、设,,a b c 为互异实数,证明行列式2

220a

b c D a b c b c

c a a b ==+++的充分必要条件为0a b c ++=.

解:()()()()D a b c b a c a c b =++---

行列式经典例题及计算方法

行列式的例题 1.已知方程 01125208 42111111154115 21211111154113 21111113 23232=+ + -x x x x x x x x x ,求x 。 解:由行列式的加法性质,原方程可化为 32321 12520842111111154118 4211111x x x x x x + 3 232 2781941321111112793184 211111x x x x x x = = =(2-1)(3-1)(3-2)(x-1)(x-2)(x-3)=0 得x=1或x=2或x=3。 2.计算:(化三角形法) 3.拆行列法 42031 2852 51873 121D =

行列式的计算 (四)升级法(加边法) 112122 1212 ,0 n n n n n n a b a a a a b a D b b b a a a b ++= ≠+ 1 21121221 21 1000n n n n n n n a a a a b a a D a a b a a a a b ++=++ 解:1) 1 21121 1 00(2,31)10010 0n i n a a a b r r i n b b --=+-- 121 (1).n i n i i a b b b b ==+∑ 111 11100 (1,21)00 n i n i i i i n a a a b c b c i n b b =+++ =+∑ 行列式的计算 (二)箭形行列式 0121112 2,0,1,2,3. n n i n n a b b b c a D a i n c a c a +=≠= 解:把所有的第列的倍加到(1,,)i n = i i c a -1i +第1列,得: 11201()n i i n n i i b c D a a a a a +==-∑

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =-L L ,故 011102120 n n n D n n --= --L L M O L 1,1,,2 i i r r i n n --=-= L 0111111 1 1 n ----L L M O L 1,,1 j n c c j n +=-= L 121 1 021 (1)2(1)020 1 n n n n n n ------=----L L L L M O O L M L 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 011102120 n n n D n n --= --L L M O L 11,2,,1 111111120 i i r r i n n n +-=----= --L L L M O L 1 2,,1 0012 01231 j c c j n n n n +=---= ---L L L M O L =1 2(1) 2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+K K M M M M K 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 11 11n x x x -----O O = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n =L = x 1 -n D 1+ a 2x 2 -n +K + a 1-n x + a n =1 11n n n n x a x a x a --++++L 方法2 第2列的x 倍,第3列的x 2倍,K ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 2112 1 010010000n n n n x x x a xa a a x a -----++K K K M M M M K

行列式试题库

一.判断题 (易)1、n 阶行列式 11121212221 2n n n n nn a a a a a a a a a ??????????????是由2n 个数构成的n 行n 列的数表( ). 答案:× (较容易)2、6216 210 0000000λλλ=λλλΛΛ M M M M M ΛΛ. ( ). 答案:× (较容易)3、8218 210 0000000k k k k k k ΛΛ M M M M M ΛΛ=.( ). 答案: √ (较容易)4.若方阵A 的各行元素之和为零,则0A = ( ) 答案: √ 二.填空题 (中等)1.设12345 77733 324523332246523 =A ,313233++=A A A _________,3435+=A A ________ 答案:0,0 (中等)2.1234 243141321432 = D , 求11213141+++A A A A =________ 答案:0 (较容易)3. 5阶行列式D 的第2列元素依次为1,1,0,2,1它们对应的余子式分别为-1,3,-2,0,1,则=D ________. 答案:3 (较容易)4.d b a c d b c a b d c a b d a c = . 答案:0

(较容易)5. y x y x x y x y x y x x y x 323222 +++++= . 答案:)(2y x xy +- (较容易)6. 621 7213424435431014327 427246-= 答案:510294?- (中等)7.已知三阶行列式 9 876543 21 =D ,它的元素ij a 的代数余子式为ij A (3,2,1,3,2,1==j i ), 则与232221cA bA aA ++对应的三阶行列式为 . 答案: 9 873 21 c b a (中等)8. 设行列式3 0402222,07 5 3 22 D = -- 则第四行各元素余子式之和的值为 . 答案:–28 (较容易)9. 1111001 1110 y y y x x x --= . 答案:22 x y (中等)10. 行列式 1 1 1 1 111111111111 --+---+---x x x x = . 答案:4x (较容易)11. 当λ= 或μ= 时,齐次方程组??? ??=+μ+=+μ+=++λ0 200 321 321321x x x x x x x x x 有非零解. 答案:1,0

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

线性代数第1章行列式试卷及答案

第一章 行列式 一、单项选择题 1.行列式D 非零的充分条件是( D ) (A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例 (D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式 1 2 21--k k ≠0的充分必要条件是( C ) A .k ≠-1 B .k ≠3 C .k ≠-1且k ≠3 D .k ≠-1或≠3 3.已知2阶行列式 2 21 1b a b a =m , 2 21 1c b c b =n ,则 2 22 111c a b c a b ++=( B ) +n (m+n ) 4.设行列式==1 11103 4 222,1111304z y x z y x 则行列式( A ) A. 32 D.3 8 5.下列行列式等于零的是(D ) A .100123123- B. 031010300- C . 100003010- D . 2 61422613- 6.行列式 1 1 1 101111011110------第二行第一列元素的代数余子式21A =( B ) A .-2 B .-1 C .1 D .2 8.如果方程组?? ? ??=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B ) 9.(考研题)行列式 0000000a b a b c d c d =( B ) A.()2ad bc - B.() 2ad bc -- C.2222 a d b c - D.22 2 2 b c a d - 二、填空题 1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。 2. 行列式11 1 2 3 44916 中(3, 2 )元素的代数余子式 A 32=___-2___. 3. 设7 3 43690211 1 1 875 1----= D ,则5A 14+A 24+A 44=_______。 解答:5A 14+A 24+A 44= 1501 3430 90211 1 15751-=--- 4.已知行列式01 110321 2=-a ,则数a =____3______. 5.若a ,b 是实数,则当a =___且b =___时,有=---10100 a b b a 0。 解答:0)(1 0100 22=+-=--=---b a a b b a a b b a a =0, b =0 6. 设1 31 2 4321322 )(+--+-+= x x x x f ,则2 x 的系数为 23 。 7. 五阶行列式=6 200357020381002 300031000___________。 解答:4232 1 2 331)1(6 200357020381002 30003100032=?? -=? 8. (考研题)多项式2 1 1 111 )(32 132132 1321+++++= x a a a a x a a a a x a a a a x f 的所有零 点为 01=x ,12-=x ,23-=x 。 9、(考研题)设x d c b d x c b d c x b d c b x x f = )(,则方程0)(=x f 的根为=x 。 【分析】 )(x f 是关于x 的四次多项式,故方程0)(=x f 应有四根,利用行列式的性质知,当d c b x ,,=时,分别会出现两行相等的情况,所以 行列式为零,故d c b x ,,=是方程的三个根。 再将后三列均加到第一列上去可以提取一个公因子为 d c b x +++,所以当)(d c b x ++-=时,满足0)(=x f ,所以得方程的 第四根)(d c b x ++-=。 故方程的四个根分别是:)(,,,d c b d c b ++-。 二、计算题 1、计算000100 0200020120002013000 002014 D = 。 【分析】方法一:此行列式刚好只有n 个非零元素 nn n n n a a a a ,,,,112211--- ,故非零项只有一项: nn n n n t a a a a 112211)1(---- ,其中2 ) 2)(1(--= n n t , 因此 (20141)(20142) 2 (1) 2014!2014!D --=-= 方法二:按行列展开的方法也行。 2、计算行列式 3 214214314324 321= D 。 分析:如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加 法). 解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得

行列式检验测试题(有规范标准答案)

第九讲 行列式单元测试题点评 一、填空题(每小题2分,满分20分) 1.全体3阶排列一共有 6 个,它们是123,132,213,231,312,321; 2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次 对换变为奇排列; 3. 行列式D和它的转置行列式D'有关系式D D' =; 4. 交换一个行列式的两行(或两列),行列式的值改变符号; 5. 如果一个行列式有两行(或两列)的对应元素成比例,则这 个行列式等于零; 6. 一个行列式中某一行(列)所有元素的公因子可以提到 行列式符号的外边; 7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列) 的对应元素上,行列式的值不变; 8. 行列式的某一行(列)的元素与另一行(列)的对应元素的 代数余子式的乘积之和等于零; 9. 11121 222 1122 ; 00 n n nn nn a a a a a a a a a = L L K M M M M L

10.当 k=22 ±时,542k k k =。 二、判断题(每小题3分,满分24分) 1.1)(,)(31221±==k i i i i k i i i n n ΛΛππ则若 (∨) 的符号 的一般项则设n n j i j i j i nn n n n n a a a a a a a a a a a a D ΛΛ M M M M ΛΛ2211D ,.221 2222111211= .)1() (21n j j j Λπ-是 (×) 3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。 (×) 6.若行列式D 的相同元素多于2n n -个,则D=0. (×) 7. 11 121313233321222312 222331 32 33 11 21 31 a a a a a a a a a a a a a a a a a a = (×) 8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。 (×) 三、单项选择题(每小题4分,满分20分) 1.位于n 级排列12111k k n i i i i i -+L L 中的数1与其余数形成的反序个数为( A )

第一章行列式练习题目及答案

第一章 行列式 一、单项选择题 1.=0 001001001001000( ). (A) 0 (B)1- (C) 1 (D) 2 2. =0 001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3. 若2 1 33 32 31 232221 131211 ==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 4.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 5. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 6. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 7. 若2 23 5 00 1 011110403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0

8. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题 1. 行列式=0 100111010100111. 2.行列式 = -0 10000200 0010 n n . 3.行列式 =--0 01) 1(2211)1(111 n n n n a a a a a a . 4.如果M a a a a a a a a a D ==3332 31 232221131211 ,则=---=32 323331 2222232112121311133333 3a a a a a a a a a a a a D . 5.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为 . 6.行列式 = --+---+---111 1 111111111111 x x x x . 7.n 阶行列式=+++λλλ 111 1 11111 . 8.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3, 2, 1,则该行列式的值为 .

行列式习题答案

行列式习题答案

2 线性代数练习题 第一章 行 列 式 系 专业 班 姓名 学号 第一节 n 阶 行 列 式 一.选择题 1.若行列式x 5 22 31521- = 0,则 = x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组? ? ?=+=+4 733 22 1 21 x x x x ,则方程组的解),(2 1 x x = [ C ] (A )(13,5) (B )(13-,5) (C )(13, 5 -) (D )(5,13--) 3 . 方 程 09 3 142112 =x x 根的个数是 [ C ] (A )0 (B )1 (C )2 (D )3

3 4.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315 a a a a a a (B )6553443226 11a a a a a a (C ) 34 6542165321a a a a a a (D ) 26 654413 3251a a a a a a 5.若55 443211) 541() 1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的 值及该项的符号为[ B ] (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负 6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1 2 21 --k k 0 ≠的充分必要条件是 3,1 k k ≠≠- 2.排列36715284的逆序数是 13 3.已知排列397461t s r 为奇排列,则r = 2,8,5 s

行列式-矩阵练习题

行列式 矩阵练习题 一、单项选择题 1. 设行列式D=a 522315 21-=0,则a =( B ). A. 2 B. 3 C. -2 D. -3 2. 设A 是k ×l 矩阵,B 是m ×n 矩阵,如果AC T B 有意义,则矩阵C 的为( B ). A. k ×m B. k ×n C. m ×l D. l ×m 3. 设A 、B 均为n 阶矩阵,下列各式恒成立的是( B ). A. AB=BA B. (AB)T =B T A T C. (A+B)2=A 2+2AB+B 2 D. (A+B)(A-B)=A 2-B 2 4. A 为n 阶方阵,下面各项正确的是( C ). A. |-A|=-|A| B. 若|A|≠0,则AX=0有非零解 C. 若A 2=A,则A=E D. 若秩(A)k B. 秩(A)≥k C. 秩(A)=k D. 秩(A)≤k 6. 设A 、B 为同阶方阵,则下面各项正确的是( A ). A. 若|AB|=0, 则|A|=0或|B|=0 B. 若AB=0, 则A=0或B=0 C. A 2-B 2=(A-B)(A+B) D. 若A 、B 均可逆,则(AB)-1=A -1B -1 7. 当k 满足( A )时,?????=+=++=++0 z 2y -kx 0z ky 2x 0z ky kx 只有零解. A. k=2或k=-2 B. k ≠2 C. k ≠-2 D. k ≠2且k ≠-2 8. 设A 为n 阶可逆阵,则下列( B )恒成立. A.(2A)-1=2A -1 B. (2A -1)T =(2A T )-1 C. [(A -1)-1]T =[(A T )-1]-1 D. [(A T )T ]-1=[(A -1)-1]T 二、填空题

行列式练习题及答案

一、填空题 1.设自然数从小到大为标准次序,则排列1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列1 3 … )12(-n )2(n )22(-n …2的逆序数为 . 2.在6阶行列式中,651456314223a a a a a a 这项的符号为 . 3.所有n 元排列中,奇排列的个数共 个. 二、选择题 1.由定义计算行列式n n 0000000010 020001000 -= ( ). (A )! n (B )!)1(2) 1(n n n -- (C )!) 1(2) 2)(1(n n n --- (D )!)1()1(n n n -- 2.在函数x x x x x x f 2 1 1 23232101)(= 中,3x 的系数是( ). (A )1 (B )-1 (C )2 (D )3 3.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A )4; (B )2; (C )6; (D )8. 三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式: 1. 各项以行标为标准顺序排列; 2. 各项以列标为标准顺序排列; 3. 各项行列标均以任意顺序排列. 四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.

一、填空题 1.若D=._____324324324,133 32 3131 232221211312111113332 31 232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程 2 2913251323 2 213211x x --=0的根为___________ . 二、计算题 1. 8 1 71160451530169 14 4312----- 2. d c b a 100 1100 11001--- 3.a b b b a b b b a D n =

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 1 1 a a 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --1n c c += 1 1 1 a a a +-=n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -+1 1 001 (1) 0n n a a +-- 而 1 1 001 (1) 0n n a a +--最后列展开 = 21 (1)n +-2 n a a -=2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a = 11a a 2 n a a -=n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= + (120n b b b ≠) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 12112122 1 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++升阶 213111 n r r r r r r +---= 12121100 1001 n n a a a b b b --- 11 12,,1 j j c c b j n -+ =+= 1 1121 1 12100000000 n n a a a a a b b b b b + ++ =1 12 1 (1)n n n a a b b b b b + ++ 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +=1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式: 12111 1111 1 1n n a a D a ++= +

行列式典型例题

第二讲 行列式综合训练 第一部分 例2.1 计算行列式,其中对角线上元素都是a ,未写出的元素都是零. n D = 11 a a O 解 这道题可以用多种方法进行求解,充分应用了行列式的各种性质. 方法1 利用性质,将行列式化为上三角行列式. n D 11c n c a -?= 101 a a a a - L O =11()n a a a -- =n a -2n a - 方法2 仍然是利用性质,将行列式化为上三角行列式. n D n 1 r r -= 111 a a a --O 1n c c += 1 1 1 a a a +-O =n a -2 n a - 方法3 利用展开定理,将行列式化成对角行列式. n D 1c 展开 =1 n a a a -O +1 1 001 0(1) 0n n a a +--L O O 而 1 1 01 0(1) 0n n a a +--L O O 最后列展开 =21 (1)n +-2 n a a -O =2 n a -- n D =1n a a -?-2n a -=n a -2n a - 方法4 利用公式 A O O B =A B . 将最后一行逐行换到第2行,共换了2n -次;将最后一列逐列换到第2列,也共换了2n -次.

n D =2(2) (1)n --11a a a O = 11a a 2 n a a -O =n a -2 n a - 方法5 利用公式 A O O B =A B . 例2.2 计算n 阶行列式: 1121221 2 n n n n n a b a a a a b a D a a a b ++= +L L M M M L (120n b b b ≠L ) 解 采用升阶(或加边)法.该行列式的各行含有共同的元素12,,,n a a a L ,可在保持 原行列式值不变的情况下,增加一行一列,适当选择所增行(或列)的元素,使得下一步化简后出现大量的零元素. 121121 221 2 1000 n n n n n n a a a a b a a D a a b a a a a b +=++L L L M M M M L 升阶 213111 n r r r r r r +---= L 12121100100100n n a a a b b b ---L L L M M M M L 11 12,,1 j j c c b j n -+ =+= L 111211 1 2100 00000 n n a a a a a b b b b b + ++L L L L M M M M L =1121(1)n n n a a b b b b b + ++L L 这个题的特殊情形是 12121 2 n n n n a x a a a a x a D a a a x ++= +L L M M M L =1 1 ()n n i i x x a -=+∑ 可作为公式记下来. 例2.3 计算n 阶行列式:

行列式练习题

《线性代数》第一章练习题 一、填空题 1、_____________)631254(=N 2、要使排列(3729m14n5)为偶排列,则m =_______, n =_________ 3、关于x 的多项式x x x x x 22111---中含2 3 ,x x 项的系数分别 是 4、 A 为3阶方阵,2=A ,则__ __________3* =A 5、四阶行列式)det(ij a 的反对角线元素之积(即41 322314a a a a )一项的符号为 6、求行列式的值 (1) 4692469234 1234=_____; (2) 13 14102 4 2 121=____ ; (3) 2005 000200410020030102002 200120001--=_______; (4) 行列式2 4 3 012 321---中元素0的代数余子式的值为 _______ 7、 64 8149712551 = ; 125 2786425941653241111--= 8、设矩阵A 为4阶方阵,且|A |=5,则|A*|=______,|2A |=_____,|1 -A |= 9、 11101110= ; =0 001003102222210 。 10、若方程组 ?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 11、把行列式的某一列的元素乘以同一数后加到 另一列的对应元素上,行列式 。 12、行列式 中 在项的项共有214312344214231144 43 42 41 3433323124 23222114131211,,a a a a a a a a a a a a a a a a a a a a a a a a ,

线性代数习题册行列式-习题详解.doc

行列式的概念 一、选择题 1. 下列选项中错误的是 ( ) a b c d (B) a b d b (A) d a b ; c d c ; c a a 3c b 3d a b a b a b (C) c d c ; (D) c d c . d d 答案: D 2.行列式 D n 不为零,利用行列式的性质对 D n 进行变换后,行 列式的值( ). (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D) 保持相同的正负号. 答案: C 二、填空题 1. log a b 1 =. 1 log b a 解析: log a b 1 log a b log b a 1 1 1 0 . 1 log b a cos sin 2. 3 6 =. sin cos 3 6 cos sin 解析: 3 6 cos cos sin sin cos0 sin cos 3 6 3 6 2 3 6 2x 1 3 3. 函数 f (x) x x 1 中, x 3 的系数为 ; 2 1 x 2x 1 1 g( x) x x x 中, x 3 的系数为. 1 2 x 答案: -2 ; -2.

阶行列式 D n中的n最小值是. 答案: 1. 1 2 3 5.三阶行列式0 2 4 中第2行第1列元素的代数余子式 3 1 1 等于. 答案: 5. 6.若 2x 8 0 ,则x= . 1 2 答案: 2. 7. 在n 阶行列式 D a ij 中,当 i

线性代数行列式经典编辑例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =-L L ,故 011102120 n n n D n n --= --L L M O L 1 ,1,,2 i i r r i n n --=-= L 0111111 1 1 n ----L L M O L 1,,1 j n c c j n +=-= L 121 1 021 (1)2(1)020 1 n n n n n n ------=----L L L L M O O L M L 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 011102120 n n n D n n --= --L L M O L 11,2,,1 111111120 i i r r i n n n +-=----= --L L L M O L 1 2,,1 0012 01231 j c c j n n n n +=---= ---L L L M O L =1 2(1) 2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+K K M M M M K 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 11 11n x x x -----O O = x D 1-n + a n 由于D 1= x + a 1,22 1 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n =L = x 1 -n D 1+ a 2x 2 -n +K + a 1-n x + a n =1 11n n n n x a x a x a --++++L 方法2 第2列的x 倍,第3列的x 2倍,K ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 2112 1 010010000n n n n x x x a xa a a x a -----++K K K M M M M K

高代-行列式测试题

高等代数 《行列式》测 验 一 填空题(2'612'?=) 1. 六阶行列式的展开式共有( )项. (A )120 (B )60 (C) 720 (D) 240 2. 排列1 2345a a a a a 的逆序数为a ,则排列5 4321a a a a a 的逆序数为( ). (A) a - (B) 10a - (C) 10a - (D) 2 a -或a +2 3. 0001002003004 =( ). (A) 24 (B) -24 (C) 0 (D) 12 4. 已知11 121311111212132122232121222223313233313132323341 42 43 4141 42 42 43 , ,a a a b a a b a a a a b a a b a m n a a a b a a b a a a a b a a b a == 则行列式 11121311122122232122313233313241 4243 4142a a a b b a a a b b a a a b b a a a b b ++= ++( ). (A) m n + (B) n m - (C) m n - (D) () m n -+ 5. 已知2 31421,1 1 1 D =- i j A 为D 的元素ij a 的代数余子式,则( ). (A) 1112130 A A A ++= (B) 1121310 A A A ++= (C) (A),(B)都成立 (D) (A),(B)都不成立

6. 0001 00002000 10 n n =- ( ). (A) 1 (1) !n n +- (B) (1) 2 (1) !n n n -- (C) (1) 2 (1) !n n n +- (D)!n 二 填空题(2'816'?=) 1. 2011阶反对称行列式的值为 . 2. 13234425k l a a a a a 为五阶行列式ij D a =中带负号的项,则k = , l = . 3. 排列(1)321n n - 的逆序数为 , 13(21)24(2) n n - 的逆序 数为 . 4. 线性方程组 1212040 x x x x λλ+=?? +=?有唯一解,则λ满足 . 5. 若n 阶行列式D 中等于0的元素个数大于2 n n -,则D = . 6. 2 1 1203101311 112 x x ----的展开式中2 x 的系数为 . 7. 1 1111234149161 8 27 64 = . 8. 已知四阶行列式D 的第3行元素为3,3,1,1--, 其对应的余子式的值 为1,2,5,4, 则行列式D = .

线性代数行列式经典例题

线性代数行列式经典例题 The Standardization Office was revised on the afternoon of December 13, 2020

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =, 1,1, n a n =-,故 0111 02 12 n n n D n n --= --1,1,,2 i i r r i n n --=-= 0111111 1 1 n ----

1,,1 j n c c j n +=-= 1 2 110 2 1 ( 1) 2 (1) 20 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列.

方法2 01110 21 2 n n n D n n --= --11,2,,1 11111 1 12 i i r r i n n n +-=----= -- 12,, 1 00 1 2 0123 1 j c c j n n n n +=---= ---= 1 2 (1) 2 (1) n n n ----

例2.设a, b, c是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式: = 行列式即为y2前的系数. 于是 = 所以的充要条件是a + b + c = 0. 例3计算D n = 121 10 010 n n n x x a a a x a -- - - + 解:方法1 递推法按第1列展开,有

b第一章 行列式测试题

第二章 行列式测试题(A ) 一、单项选择题(每小题2分,共10分) 1.n 级行列式=0 1 00100 1001000 ( ) (A )-1 (B )2 )1() 1(--n n (C )2 )1() 1(+-n n (D )1 2.令(),2 271 32014 321 312------= x x f 那么()x f 的一次项系数为( ) (A ) 1; (B ) 2; (C ) -1; (D ) -2 3.如果行列式=---=33 32 31 23222113 1211 3332 31 232221 13 1211 333222,a a a a a a a a a d a a a a a a a a a 那么( ) (A ) 2d ; (B )3d ; (C )-d ; (D )-6d 4.如果n (n ≥2)级行列式中每个元素都是1或-1,那么该行列式的值为( ) (A )偶数; (B )奇数; (C )1; (D ) -1 5.行列式n 000 20001的主对角线上每个元素与其代数余子式乘积之和为( ) (A ) n !; (B )()211n +; (C ) n .n !; (D ) ()2 12n n + 二、填空题(每小题2分,共10分) ⒈排列()()()112221+-k k k k 的逆序数为( )。 ⒉在4级行列式中,项11342243a a a a 前带的符号为( )。 ⒊ =+++x x x 111111 1 11( )

⒋ 3 2323 24441333122211111=( ) ⒌如果方程组???=++=++010 1dy cx by ax 的系数行列式1=d c b a ,那么它的解为 。 三、判断题(每小题2分,共10分) ⒈ n n a a a a a a 21210 0000 00 -= ( ) ⒉如果n 级行列式中零元素多于n n -2个,那么该行列式的值为0。 ( ) ⒊两个行列式相加,等于对应元素相加。 ( ) ⒋行列式中负对角线上元素的余子式与代数余子式互为相反数。 ( ) ⒌33 32 31 23222113 12113332 31 232221 131211 a a a a a a a a a a a a a a a a a a -=--------- ( ) 四、计算下列行列式的值 ⒈ 2 1 100 2502 0214 214 ⒉ () n a b b a b a b a b a 00000000000000000 000 ⒊ n n n n y x x x x y x x x x y x +++ 222211 1 1 ⒋ 1 1 1 212 221212111n n n n n n n n n a a a a a a a a a ------ ⒌ a ax ax ax ax a ax ax a ax a n n n n 3 2 1 2 010010001------

相关文档
最新文档