Linux进程间通信实验报告

Linux进程间通信实验报告
Linux进程间通信实验报告

实验六:Linux进程间通信(2)(4课时)

实验目的:

理解进程通信原理;掌握进程中信号量、共享内存、消息队列相关的函数的使用。实验原理:

Linux下进程通信相关函数除上次实验所用的几个还有:

信号量

信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是前一节的共享内存方式的进程间通信。要调用的第一个函数是semget,用以获得一个信号量ID。

int semget(key_t key, int nsems, int flag);

key是IPC结构的关键字,flag将来决定是创建新的信号量集合,还是引用一个现有的信号量集合。nsems是该集合中的信号量数。如果是创建新集合(一般在服务器中),则必须指定nsems;如果是引用一个现有的信号量集合(一般在客户机中)则将nsems指定为0。

semctl函数用来对信号量进行操作。

int semctl(int semid, int semnum, int cmd, union semun arg);

不同的操作是通过cmd参数来实现的,在头文件sem.h中定义了7种不同的操作,实际编程时可以参照使用。

semop函数自动执行信号量集合上的操作数组。

int semop(int semid, struct sembuf semoparray[], size_t nops);

semoparray是一个指针,它指向一个信号量操作数组。nops规定该数组中操作的数量。

ftok原型如下:

key_t ftok( char * fname, int id )

fname就是指定的文件名(该文件必须是存在而且可以访问的),id是子序号,虽然为int,但是只有8个比特被使用(0-255)。

当成功执行的时候,一个key_t值将会被返回,否则 -1 被返回。

共享内存

共享内存是运行在同一台机器上的进程间通信最快的方式,因为数据不需要在不同的进程间复制。通常由一个进程创建一块共享内存区,其余进程对这块内存区进行读写。首先要用的函数是shmget,它获得一个共享存储标识符。

#include

#include

#include

int shmget(key_t key, int size, int flag);

当共享内存创建后,其余进程可以调用shmat()将其连接到自身的地址空间中。

void *shmat(int shmid, void *addr, int flag);

shmid为shmget函数返回的共享存储标识符,addr和flag参数决定了以什么方式来确定连接的地址,函数的返回值即是该进程数据段所连接的实际地址,

进程可以对此进程进行读写操作。

断开共享内存连接:

与shmat函数相反,shmdt是用来断开与共享内存附加点的地址,禁止本进程访问此片共享内存

函数原型

int shmdt(const void *shmaddr)

函数传入值

shmaddr:连接的共享内存的起始地址

函数返回值

成功:0

出错:-1,错误原因存于error中

附加说明

本函数调用并不删除所指定的共享内存区,而只是将先前用shmat函数连接(attach)好的共享内存脱离(detach)目前的进程

错误代码

EINVAL:无效的参数shmaddr。

消息队列

消息队列就是一个消息的链表。可以把消息看作一个记录,具有特定的格式以及特定的优先级。

1.创建新消息队列或取得已存在消息队列

原型:int msgget(key_t key, int msgflg);

参数:

key:键值,可以指定,也可以由函数ftok生成。

msgflg:IPC_CREAT值,若没有该队列,则创建一个并返回新标识符;若已存在,则返回原标识符。

IPC_EXCL值,若没有该队列,则返回-1;若已存在,则返回0。

2.向队列读/写消息

原型:

msgrcv从队列中取用消息:

ssize_t msgrcv(int msqid, void *msgp, size_t msgsz, long msgtyp, int msgflg);

msgsnd将数据放到消息队列中:

int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

参数:

msqid:消息队列的标识码

msgp:指向消息缓冲区的指针,此位置用来暂时存储发送和接收的消息

msgsz:消息的大小。

msgtyp:从消息队列内读取的消息形态。如果值为零,则表示消息队列中的所有消息都会被读取。

msgflg:用来指明核心程序在队列没有数据的情况下所应采取的行动。

3.设置消息队列属性

原型:int msgctl ( int msgqid, int cmd, struct msqid_ds *buf );

参数:msgctl 系统调用对 msgqid 标识的消息队列执行 cmd 操作,系统定义了

3 种 cmd 操作: IPC_STAT , IPC_SET , IPC_RMID

IPC_STAT : 该命令用来获取消息队列对应的 msqid_ds 数据结构,并将其保存到 buf 指定的地址空间。

IPC_SET : 该命令用来设置消息队列的属性,要设置的属性存储在buf 中。

IPC_RMID : 从内核中删除 msqid 标识的消息队列。

实验内容:

1、完成教材上信号量实例,想一下ftok函数的作用?修改例子,创建2个进程

完成原来父子进程对应的操作。

子进程代码:

#include

#include

#include

#include

#include

#include

#include

#define DELAY_TIME 3

union semun

{

int val;

struct semid_ds *buf;

unsigned short *array;

};

int init_sem(int sem_id,int init_value)

{

union semun sem_union;

sem_union.val = init_value;

if(semctl(sem_id,0, SETVAL,sem_union)==-1)

{

perror("Initialize semaphore");

return -1;

}

return 0;

}

int del_sem(int sem_id)

{

union semun sem_union;

if(semctl(sem_id,0,IPC_RMID,sem_union)==-1) {

perror("Delete semaphore");

return -1;

}

}

int sem_p(int sem_id)

{

struct sembuf sem_b;

sem_b.sem_num =0 ;

sem_b.sem_op =-1;

sem_b.sem_flg=SEM_UNDO;

if(semop(sem_id,&sem_b,1)==-1)

{

perror("P operation");

return -1;

}

return 0;

}

int sem_v(int sem_id)

{

struct sembuf sem_b;

sem_b.sem_num =0 ;

sem_b.sem_op =1;

sem_b.sem_flg=SEM_UNDO;

if(semop(sem_id,&sem_b,1)==-1)

{

perror("V operation");

return -1;

}

return 0;

}

int main()

{

pid_t result;

int sem_id;

sem_id =semget(ftok(".",'a'),1,0666|IPC_CREAT);

init_sem(sem_id,0);

printf("Child process will wait for some seconds...\n");

sleep(DELAY_TIME);

printf("The returned valud is %d in the child process(PID = %d)\n",result,getpid());

sem_v(sem_id);

}

等待进程:

#include

#include

#include

#include

#include

#include

#include

#define DELAY_TIME 3

union semun{

int val;

struct semid_ds *buf;

unsigned short *array;

};

int init_sem(int sem_id,int init_value){

union semun sem_union;

sem_union.val = init_value;

if(semctl(sem_id,0, SETVAL,sem_union)==-1){

perror("Initialize semaphore");

return -1;

}

return 0;

}

int del_sem(int sem_id){

union semun sem_union;

if(semctl(sem_id,0,IPC_RMID,sem_union)==-1){

perror("Delete semaphore");

return -1;

}

}

int sem_p(int sem_id){

struct sembuf sem_b;

sem_b.sem_num =0 ;

sem_b.sem_op =-1;

sem_b.sem_flg=SEM_UNDO;

if(semop(sem_id,&sem_b,1)==-1){

perror("P operation");

return -1;

}

return 0;

}

int sem_v(int sem_id){

struct sembuf sem_b;

sem_b.sem_num =0 ;

sem_b.sem_op =1;

sem_b.sem_flg=SEM_UNDO;

if(semop(sem_id,&sem_b,1)==-1){

perror("V operation");

return -1;

}

return 0;

}

int main(){

pid_t result;

int sem_id;

sem_id =semget(ftok(".",'a'),1,0666|IPC_CREAT);

init_sem(sem_id,0);

sem_p(sem_id);

printf("The returned value is %d in the father process (PID =%d)\n",result,getpid());

sem_v(sem_id);

del_sem(sem_id);

}

2、完成教材上共享内存实例,查看运行情况。然后修改ftok函数的参数,并编

写两个进程完成实例原来的工作。

代码:

#include

#include

#include

#include

#include

#include

#define BUFFER_SIZE 2048

int main(){

pid_t pid;

int shmid;

char *shm_addr;

char flag[]= "WROTE";

char buff[BUFFER_SIZE];

if((shmid = shmget(IPC_PRIVATE,BUFFER_SIZE,0666))<0){ perror("shmget");

exit(1);

}

else{

printf("Create shared-memory: %d \n",shmid);

}

system("ipcs -m");

pid = fork();

if(pid==-1){

perror("fork");

exit(1);

}else if(pid == 0){

if((shm_addr = shmat(shmid,0,0))==(void*)-1){

perror("Child: shmat");

exit(1);

}

else{

printf("Child:Attach shared-memory: %p\n",shm_addr);

}

system("ipcs -m");

while(strncmp(shm_addr,flag,strlen(flag))){

printf("Child: Wait for enable data ... \n");

sleep(5);

}

strcpy(buff,shm_addr+strlen(flag));

printf("Chil: Shared-memory:%s\n",buff);

if((shmdt(shm_addr))<0){

perror("shmdt");

exit(1);

}

else{

printf("Child: Deattach shared-memory\n");

}

system("ipcs -m");

if(shmctl(shmid,IPC_RMID,NULL)== -1){

perror("Child : shmctl(IPC_RMID)\n");

exit(1);

}

else{

printf("Delete shared-memory\n");

}

system("ipcs -m");

}

else{

if((shm_addr=shmat(shmid,0,0))==(void*)-1){

perror("Parent: shmat");

exit(1);

}

else{

printf("Parent: Attach shared-memory: %p\n",shm_addr);

}

sleep(1);

printf("\n Input some string :\n");

fgets(buff,BUFFER_SIZE,stdin);

strncpy(shm_addr+strlen (flag),buff,strlen(buff));

strncpy(shm_addr,flag,strlen(flag));

if((shmdt(shm_addr))<0){

perror("Parent: shmdt");

exit(1);

}

else{

printf("Parent: Deattach shared-memory\n");

}

system("ipcs -m");

waitpid(pid,NULL,0);

printf("Finished\n");

}

exit(0);

}

实验总结:

自己写

自己写

自己写

Linux进程间通信(2)实验报告

实验六:Linux进程间通信(2)(4课时) 实验目的: 理解进程通信原理;掌握进程中信号量、共享内存、消息队列相关的函数的使用。实验原理: Linux下进程通信相关函数除上次实验所用的几个还有: 信号量 信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是前一节的共享内存方式的进程间通信。要调用的第一个函数是semget,用以获得一个信号量ID。 int semget(key_t key, int nsems, int flag); key是IPC结构的关键字,flag将来决定是创建新的信号量集合,还是引用一个现有的信号量集合。nsems是该集合中的信号量数。如果是创建新集合(一般在服务器中),则必须指定nsems;如果是引用一个现有的信号量集合(一般在客户机中)则将nsems指定为0。 semctl函数用来对信号量进行操作。 int semctl(int semid, int semnum, int cmd, union semun arg); 不同的操作是通过cmd参数来实现的,在头文件sem.h中定义了7种不同的操作,实际编程时可以参照使用。 semop函数自动执行信号量集合上的操作数组。 int semop(int semid, struct sembuf semoparray[], size_t nops); semoparray是一个指针,它指向一个信号量操作数组。nops规定该数组中操作的数量。 ftok原型如下: key_t ftok( char * fname, int id ) fname就是指定的文件名(该文件必须是存在而且可以访问的),id是子序号,虽然为int,但是只有8个比特被使用(0-255)。 当成功执行的时候,一个key_t值将会被返回,否则-1 被返回。 共享内存 共享内存是运行在同一台机器上的进程间通信最快的方式,因为数据不需要在不同的进程间复制。通常由一个进程创建一块共享内存区,其余进程对这块内存区进行读写。首先要用的函数是shmget,它获得一个共享存储标识符。 #include #include #include int shmget(key_t key, int size, int flag); 当共享内存创建后,其余进程可以调用shmat()将其连接到自身的地址空间中。 void *shmat(int shmid, void *addr, int flag); shmid为shmget函数返回的共享存储标识符,addr和flag参数决定了以什么方式来确定连接的地址,函数的返回值即是该进程数据段所连接的实际地

线程实现邮箱通信-实验报告

进程通信实验报告 一、实验名称:进程通信 二、实验目的:掌握用邮箱方式进行进程通信的方法,并通过设计实现简单邮箱理解进程通信中的同步问题以及解决该问题的方法。 三、实验原理:邮箱机制类似于日常使用的信箱。对于用户而言使用起来比较方便,用户只需使用send ()向对方邮箱发邮件 receive ()从自己邮箱取邮件, send ()和 receive ()的内部操作用户无需关心。因为邮箱在内存中实现,其空间有大小限制。其实send ()和 receive ()的内部实现主要还是要解决生产者与消费者问题。 四、实验内容:进程通信的邮箱方式由操作系统提供形如send ()和receive ()的系统调用来支持,本实验要求学生首先查找资料了解所选用操作系统平台上用于进程通信的系统调用具体形式,然后使用该系统调用编写程序进行进程间的通信,要求程序运行结果可以直观地体现在界面上。在此基础上查找所选用操作系统平台上支持信号量机制的系统调用具体形式,运用生产者与消费者模型设计实现一个简单的信箱,该信箱需要有创建、发信、收信、撤销等函数,至少能够支持两个进程互相交换信息,比较自己实现的信箱与操作系统本身提供的信箱,分析两者之间存在的异同。 五、背景知识介绍: 1、sembuf 数据结构 struct sembuf { unsigned short int sem_num; //semaphore number short int sem_op; //semaphore operation short int sem_flg; //operation flag }; sem_num :操作信号在信号集中的编号,第一个信号的编号是0。 进程A 进程B 信箱A 信箱B Send() Send() receive() receive()

进程与线程的区别 进程的通信方式 线程的通信方式

进程与线程的区别进程的通信方式线 程的通信方式 进程与线程的区别进程的通信方式线程的通信方式2011-03-15 01:04 进程与线程的区别: 通俗的解释 一个系统运行着很多进程,可以比喻为一条马路上有很多马车 不同的进程可以理解为不同的马车 而同一辆马车可以有很多匹马来拉--这些马就是线程 假设道路的宽度恰好可以通过一辆马车 道路可以认为是临界资源 那么马车成为分配资源的最小单位(进程) 而同一个马车被很多匹马驱动(线程)--即最小的运行单位 每辆马车马匹数=1 所以马匹数=1的时候进程和线程没有严格界限,只存在一个概念上的区分度 马匹数1的时候才可以严格区分进程和线程 专业的解释: 简而言之,一个程序至少有一个进程,一个进程至少有一个线程.

线程的划分尺度小于进程,使得多线程程序的并发性高。另外,进程在执 行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序 的运行效率。 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行 的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在 应用程序中,由应用程序提供多个线程执行控制。 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可 以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程 的调度和管理以及资源分配。这就是进程和线程的重要区别。 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的 能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中 必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的 其他的线程共享进程所拥有的全部资源. 一个线程可以创建和撤销另一个线程;同一个进程中的多个线程之间可以 并发执行 进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有 独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响, 而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线 程之间没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程 的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。如果有兴趣深入的话,我建议你们看看《现代操作系统》或者 《操作系统的设计与实现》。对就个问题说得比较清楚。 +++ 进程概念

Linux系统编程实验六进程间通信

实验六:进程间通信 实验目的: 学会进程间通信方式:无名管道,有名管道,信号,消息队列, 实验要求: (一)在父进程中创建一无名管道,并创建子进程来读该管道,父进程来写该管道(二)在进程中为SIGBUS注册处理函数,并向该进程发送SIGBUS信号(三)创建一消息队列,实现向队列中存放数据和读取数据 实验器材: 软件:安装了Linux的vmware虚拟机 硬件:PC机一台 实验步骤: (一)无名管道的使用 1、编写实验代码pipe_rw.c #include #include #include #include #include #include int main() { int pipe_fd[2];//管道返回读写文件描述符 pid_t pid; char buf_r[100]; char* p_wbuf; int r_num; memset(buf_r,0,sizeof(buf_r));//将buf_r初始化 char str1[]=”parent write1 “holle””; char str2[]=”parent write2 “pipe”\n”; r_num=30; /*创建管道*/ if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } /*创建子进程*/ if((pid=fork())==0) //子进程执行代码 {

//1、子进程先关闭了管道的写端 close(pipe_fd[1]); //2、让父进程先运行,这样父进程先写子进程才有内容读sleep(2); //3、读取管道的读端,并输出数据 if(read(pipe_fd[0],buf_r, r_num)<0) { printf(“read error!”); exit(-1); } printf(“%s\n”,buf_r); //4、关闭管道的读端,并退出 close(pipe_fd[1]); } else if(pid>0) //父进程执行代码 { //1、父进程先关闭了管道的读端 close(pipe_fd[0]); //2、向管道写入字符串数据 p_wbuf=&str1; write(pipe_fd[1],p_wbuf,sizof(p_wbuf)); p_wbuf=&str2; write(pipe_fd[1],p_wbuf,sizof(p_wbuf)); //3、关闭写端,并等待子进程结束后退出 close(pipe_fd[1]); } return 0; } /*********************** #include #include #include #include #include #include int main() { int pipe_fd[2];//管道返回读写文件描述符 pid_t pid; char buf_r[100]; char* p_wbuf; int r_num;

进程管理实验报告文档

实验一进程管理 1.实验目的: (1)加深对进程概念的理解,明确进程和程序的区别; (2)进一步认识并发执行的实质; (3)分析进程争用资源的现象,学习解决进程互斥的方法; (4)了解Linux系统中进程通信的基本原理。 2.实验预备内容 (1)阅读Linux的源码文件,加深对进程管理概念的理解; (2)阅读Linux的fork()源码文件,分析进程的创建过程。 3.实验内容 (1)进程的创建: 编写一段程序,使用系统调用fork() 创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 源代码: #include <> #include <> #include #include <> main() {

int p1,p2; p1=fork(); ockf()函数是将文件区域用作信号量(监视锁),或控制对锁定进程的访问(强制模式记录锁定)。试图访问已锁定资源的其他进程将返回错误或进入休态,直到资源解除锁定为止。而上面三个进程,不存在要同时进入同一组共享变量的临界区域的现象,因此输出和原来相同。 (3) a) 编写一段程序,使其实现进程的软中断通信。 要求:使用系统调用fork() 创建两个子进程,再用系统调用signal() 让父进程捕捉键盘上来的中断信号(即按DEL键);当捕捉到中断信号后,父进程用系统调用Kill() 向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child Process 1 is killed by Parent! Child Process 2 is killed by Parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent Process is killed!

实验五-进程间通信实验(二)

实验五-进程间通信实验(二)

实验五进程间通信实验(二) 实验目的: 1.通过基础实验,基本掌握无名管道、有名管道的程序设计。 2.通过编写程序,使读者掌握信号处理程序设计方法。 实验内容: 1.无名管道程序设计:在父进程中创建一个无名管道,并创建子进程;在父进程中写该管道,并用子进程将内容读出。 2.有名管道程序设计:创建两个进程,在A进程中创建一个有名管道,并向其写入数据,通过B进程从有名管道中读出数据。 3.信号处理程序设计:在进程中为SIGBUS注册处理函数,并向该进程发送SIGBUS信号来触发信号处理函数。 实验过程: (一)无名管道程序设计 实验代码: /* pipe.c */ #include #include #include

#include #include #include #define MAX_DATA_LEN 256 #define DELAY_TIME 1 int main() { pid_t pid; int pipe_fd[2]; char buf[MAX_DATA_LEN]; const char data[] = "Pipe Test Program"; int real_read, real_write; memset((void*)buf, 0, sizeof(buf)); /* 创建管道*/ if (pipe(pipe_fd) < 0) { printf("pipe create error\n"); exit(1); }

进程间通信实验报告

进程间通信实验报告 班级:10网工三班学生姓名:谢昊天学号:1215134046 实验目的和要求: Linux系统的进程通信机构 (IPC) 允许在任意进程间大批量地交换数据。本实验的目的是了解和熟悉Linux支持的消息通讯机制及信息量机制。 实验内容与分析设计: (1)消息的创建,发送和接收。 ①使用系统调用msgget (), msgsnd (), msgrev (), 及msgctl () 编制一长度为1k 的消息的发送和接收程序。 ②观察上面的程序,说明控制消息队列系统调用msgctl () 在此起什么作用? (2)共享存储区的创建、附接和段接。 使用系统调用shmget(),shmat(),sgmdt(),shmctl(),编制一个与上述功能相同的程序。(3)比较上述(1),(2)两种消息通信机制中数据传输的时间。 实验步骤与调试过程: 1.消息的创建,发送和接收: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)在SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER 。SERVER每接收到一个消息后显示一句“(server)received”。 (3)CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。最后的一个消息,既是 SERVER端需要的结束信号。CLIENT每发送一条消息后显示一句“(client)sent”。 (4)父进程在 SERVER和 CLIENT均退出后结束。 2.共享存储区的创建,附接和断接: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)SERVER端建立一个KEY为75的共享区,并将第一个字节置为-1。作为数据空的标志.等待其他进程发来的消息.当该字节的值发生变化时,表示收到了该消息,进行处理.然后再次把它的值设为-1.如果遇到的值为0,则视为结束信号,取消该队列,并退出SERVER.SERVER 每接收到一次数据后显示”(server)received”. (3)CLIENT端建立一个为75的共享区,当共享取得第一个字节为-1时, Server端空闲,可发送请求. CLIENT 随即填入9到0.期间等待Server端再次空闲.进行完这些操作后, CLIENT退出. CLIENT每发送一次数据后显示”(client)sent”. (4)父进程在SERVER和CLIENT均退出后结束。 实验结果: 1.消息的创建,发送和接收: 由 Client 发送两条消息,然后Server接收一条消息。此后Client Server交替发送和接收消息。最后一次接收两条消息。Client 和Server 分别发送和接收了10条消息。message 的传送和控制并不保证完全同步,当一个程序不再激活状态的时候,它完全可能继续睡眠,造成上面现象。在多次send message 后才 receive message.这一点有助于理解消息转送的实现机理。

Linux进程通信实验报告

Linux进程通信实验报告 一、实验目的和要求 1.进一步了解对进程控制的系统调用方法。 2.通过进程通信设计达到了解UNIX或Linux系统中进程通信的基本原理。 二、实验内容和原理 1.实验编程,编写程序实现进程的管道通信(设定程序名为pipe.c)。使 用系统调用pipe()建立一条管道线。而父进程从则从管道中读出来自 于两个子进程的信息,显示在屏幕上。要求父进程先接受子进程P1 发来的消息,然后再接受子进程P2发来的消息。 2.可选实验,编制一段程序,使其实现进程的软中断通信(设定程序名为 softint.c)。使用系统调用fork()创建两个子进程,再用系统调用 signal()让父进程捕捉键盘上来的中断信号(即按Del键),当父进程 接受这两个软中断的其中一个后,父进程用系统调用kill()向两个子 进程分别发送整数值为16和17的软中断信号,子进程获得对应软中 断信号后分别输出相应信息后终止。 三、实验环境 一台安装了Red Hat Linux 9操作系统的计算机。 四、实验操作方法和步骤 进入Linux操作系统,利用vi编辑器将程序源代码输入并保存好,然后 打开终端对程序进行编译运行。 五、实验中遇到的问题及解决 六、实验结果及分析 基本实验 可选实验

七、源代码 Pipe.c #include"stdio.h" #include"unistd.h" main(){ int i,j,fd[2]; char S[100]; pipe(fd); if(i=fork==0){ sprintf(S,"child process 1 is sending a message \n"); write(fd[1],S,50); sleep(3); return; } if(j=fork()==0){ sprintf(S,"child process 2 is sending a message \n"); write(fd[1],S,50); sleep(3); return;

实验五:进程间通信

实验五:进程间通信 ●实验目的: 学会进程间通信方式:无名管道,有名管道,信号,共享内存 ●实验要求: (一)在父进程中创建一无名管道,并创建子进程来读该管道,父进程来写该管道(二)在进程中为SIGBUS注册处理函数,并向该进程发送SIGBUS信号 (三)创建一共享内存,实现放进程间通信 ●实验器材: 软件:安装了Linux的vmware虚拟机 硬件:PC机一台 ●实验步骤: (一)无名管道的使用 1、编写实验代码pipe_rw.c #include #include #include #include #include #include int main() { int pipe_fd[2]; pid_t pid; char buf_r[100]; char* p_wbuf; int r_num; memset(buf_r,0,sizeof(buf_r)); /*创建管道*/ if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } /*创建子进程*/ if((pid=fork())==0) //子进程执行代码 { //1、子进程先关闭了管道的写端 //2、让父进程先运行,这样父进程先写子进程才有内容读 //3、读取管道的读端,并输出数据 //4、关闭管道的读端,并退出

} else if(pid>0) //父进程执行代码 { //1、父进程先关闭了管道的读端 //2、向管道写入字符串数据 //3、关闭写端,并等待子进程结束后退出 } return 0; } 2、编译应用程序pipe_rw.c 3、运行应用程序 子进程先睡两秒让父进程先运行,父进程分两次写入“hello”和“pipe”,然后阻塞等待子进程退出,子进程醒来后读出管道里的内容并打印到屏幕上再退出,父进程捕获到子进程退出后也退出 4、由于fork函数让子进程完整地拷贝了父进程的整个地址空间,所以父子进程都有管道的读端和写端。我们往往希望父子进程中的一个进程写一个进程读,那么写的进程最后关掉读端,读的进程最好关闭掉写端 (二)信号处理 1、编写实验代码sig_bus.c #include #include #include //1、自定义信号处理函数,处理SIGBUS信号,打印捕捉到信号即可 int main() { printf("Waiting for signal SIGBUS \n "); //2、注册信号处理函数 pause();//将进程挂起直到捕捉到信号为止 exit(0);

进程同步实验报告

实验三进程的同步 一、实验目的 1、了解进程同步和互斥的概念及实现方法; 2、更深一步的了解fork()的系统调用方式。 二、实验内容 1、预习操作系统进程同步的概念及实现方法。 2、编写一段源程序,用系统调用fork()创建两个子进程,当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。程序的输出是什么?分析原因。 3、阅读模拟火车站售票系统和实现进程的管道通信源代码,查阅有关进程创建、进程互斥、进程同步的系统功能调用或API,简要解释例程中用到的系统功能或API的用法,并编辑、编译、运行程序,记录程序的运行结果,尝试给出合理的解释。 4、(选做)修改问题2的代码,使得父子按顺序显示字符“a”;“b”、“c”编辑、编译、运行。记录程序运行结果。 三、设计思想 1、程序框架 (1)创建两个子进程:(2)售票系统:

(3)管道通信: 先创建子进程,然后对内容加锁,将输出语句存入缓存,并让子进程自己进入睡眠,等待别的进程将其唤醒,最后解锁;第二个子进程也执行这样的过程。父进程等待子进程后读内容并输出。 (4)修改程序(1):在子进程的输出语句前加上sleep()语句,即等待父进程执行完以后再输出。 2、用到的文件系统调用函数 (1)创建两个子进程:fork() (2)售票系统:DWORD WINAPI Fun1Proc(LPVOID lpPartameter); CreateThread(NULL,0,Fun1Proc,NULL,0,NULL); CloseHandle(hThread1); (HANDLE)CreateMutex(NULL,FALSE,NULL); Sleep(4000)(sleep调用进程进入睡眠状态(封锁), 直到被唤醒); WaitForSingleObject(hMutex,INFINITE); ReleaseMutex(hMutex); (3)管道通信:pipe(fd),fd: int fd[2],其中: fd[0] 、fd[1]文件描述符(读、写); lockf( fd,function,byte)(fd: 文件描述符;function: 1: 锁定 0:解锁;byte: 锁定的字节数,0: 从当前位置到文件尾); write(fd,buf,byte)、read(fd,buf,byte) (fd: 文件描述符;buf : 信息传送的源(目标)地址;byte: 传送的字节数); sleep(5); exit(0); read(fd[0],s,50) (4)修改程序(1):fork(); sleep(); 四、调试过程 1、测试数据设计 (1)创建两个子进程:

VC++之线程和进程之用剪贴板实现进程间通信

一、创建对话框应用程序工程 二、编辑对话框资源 控件ID及标题 IDD_THREAD_DIALOG 用剪贴板实现进程间通信 IDC_STATIC 进程1发送数据:IDC_EDIT_SEND IDC_STATIC 进程2接收数据:IDC_EDIT_REC IDC_SEND 发送 IDC_REC 接收 三、添加消息响应函数

四、于“ThreadDlg.cpp”文件内添加消息响应函数代码 void CThreadDlg::OnRec() { // TODO: Add your control notification handler code here if(OpenClipboard()) { if(IsClipboardFormatAvailable(CF_TEXT)) { HANDLE clipboard; char* buf; clipboard=GetClipboardData(CF_TEXT); buf=(char*)GlobalLock(clipboard); GlobalUnlock(clipboard); SetDlgItemText(IDC_EDIT_REC,buf); CloseClipboard(); } } } void CThreadDlg::OnSend() { // TODO: Add your control notification handler code here if(OpenClipboard()) //打开剪贴板 {

CString str; HANDLE clipboard; char * buf; EmptyClipboard(); //清空剪贴板 GetDlgItemText(IDC_EDIT_SEND,str); clipboard=GlobalAlloc(GMEM_MOVEABLE,str.GetLength()+1); buf=(char*)GlobalLock(clipboard); //空字符作文本数据结尾,多分配一个字节 strcpy(buf,str); GlobalUnlock(clipboard); SetClipboardData(CF_TEXT,clipboard); CloseClipboard(); } } 五、编译 六、运行 七、函数说明 1、SetClipboardData()函数声明 HANDLE SetClipboardData( UINT nFormat, //剪贴板格式 HANDLE hMen //特定格式之数据句柄 ) 功能:以特定剪贴板格式复制数据到剪贴板。函数调用成功,返回数据句柄;失败,返回NULL,可用GetLastError()函数获取详细错误信息。 2、GetClipboardData()函数声明 HANDLE GetClipboardData( UINT uFormat //剪贴板模式 ) 功能:以特定模式获取剪贴板信息。函数调用成功,返回非零值;失败,返回零。 3、GlobalLock()函数声明 LPVOID GlobalLock(

实验三 进程间通信

实验三进程间通信(2学时) 一、实验目的 (1)了解什么是信号。 (2)熟悉LINUX系统中进程之间软中断通信的基本原理。 (3)熟悉LINUX支持的管道通信方式。 二、实验内容 (1)编写一段程序,使其现实进程的软中断通信。 即:使用系统调用fork()创建两个子进程,再用系统调用signal()让父进程捕捉键盘上来的中断信号(即按 ctrl+c 键);当捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后,分别输出下列信息后终止: Child Process11 is killed by Parent! Child Process12 is killed by Parent! 父进程等待两个子进程终止后,输出如下的信息后终止 Parent Process is killed! 要求:运行以下参考程序并分析结果。 <参考程序> #include #include #include #include void waiting(),stop(),alarming(); int wait_mark; main() { int p1,p2; if(p1=fork()) /*创建子进程p1*/ { if(p2=fork()) /*创建子进程p2*/ { //父进程 wait_mark=1; signal(SIGINT,stop); /*接收到^c信号,转stop*/

signal(SIGALRM,alarming);/*接受SIGALRM*/ waiting(); kill(p1,16); /*向p1发软中断信号16*/ kill(p2,17); /*向p2发软中断信号17*/ wait(0); /*同步*/ wait(0); printf("parent process is killed!\n"); exit(0); //会暂时停止目前进程的执行,直到有信号来到或子进程结束。 } else { wait_mark=1; signal(17,stop); signal(SIGINT,SIG_IGN); /*忽略 ^c信号*/ while (wait_mark!=0); lockf(1,1,0); printf("child process2 is killed by parent!\n"); lockf(1,0,0); exit(0); } } else { wait_mark=1; signal(16,stop); signal(SIGINT,SIG_IGN); /*忽略^c信号*/ while (wait_mark!=0); lockf(1,1,0); printf("child process1 is killed by parent!\n"); lockf(1,0,0); exit(0); } } void waiting() { sleep(5); if (wait_mark!=0) kill(getpid(),SIGALRM); } void alarming()

操作系统进程创建及通信实验报告

武汉工程大学计算机科学与工程学院 《操作系统》实验报告[Ⅰ]

一、实验目的 创建进程,实现进程消息通信和共享内存通信,了解进程的创建、退出和获取进程信。了解什么是映像文件、管道通信及其作用,掌握通过内存映像文件和管道技术实现进程通信。 二、实验内容 本例用三种方法实现进程通信,仅用于示例目的,没有进行功能优化。 1、创建进程A和B后,在进程A中输入一些字符,点“利用 SendMessage发送消息”按钮可将消息发到进程B。 2、在进程A中输入一些字符,点“写数据到内存映像文件”按钮, 然后在进程B中点“从内存映像文件读数据”按钮可收到消息。其中在点“写数据到内存映像文件”时,要求创建映像文件,B进程在印象文件中读取数据。 3、先在进程B中点“创建管道并接收数据”按钮,然后在进程A 中输入一些字符,点“写数据到管道文件”按钮可将消息发到进程B。管道是连接读/写进程使他们进行通信的一个共享文件,目的是更好地实现进程间的通信。 三、实验思想 这次试验最主要的内容和核心思想就是学会创建进程并实现进程间的简单通信、创建映像文件和创建管道文件来通信,后两者是实现进程通信的高级通信机制中的两种。. 创建一个程序A和程序B,其中程序A和B各有一个主窗体,A主窗体上要求可以实现创建进程B(即调用函数B)、结束进程B、关闭进程A、向进程B发送数据、创建映像文件、创建管道文件等功能,进程B要求有从映像文件读取数据、创建管道并接收数据、结束进程B功能。最终让A、B进程相互通信。

四、设计分析: 首先设得设计A、B两个程序的操作界面,然后编写各个功能模块。对于A 程序窗体,在“利用SendMessage发送消息”按钮的消息响应函数中,主要是利用Windows API函数CWnd::FindWindow来找到接收消息的窗体,即进程B,找到进程B后,利用这个函数返回的窗体指针的SendMessage函数来发送消息。在“写数据到内存印象文件”按钮的消息响应函数中,主要是利用函数CreateFileMapping来创建一个印象文件,这个函数返回的是这个印象文件的句柄,然后将这个句柄和要发送的消息字符串传递到函数sprintf中,就可以所要发送的消息写入印象文件,在B程序窗体中有个“从内存印象文件读数据”按钮,在这个按钮的消息响应函数中读取父进程所创建的印象文件中的数据就可以实现通信了。在B程序窗体按钮“写数据到管道文件”的消息响应函数中,不能直接将要发送的消息发送到管道文件,因为管道必须先由子进程通过函数CreateNamedPipe创建,只有待子进程创建好管道后父进程才能根据管道创建管道文件,将消息写入管道文件并及时发送给子进程。而且这个管道只能使用一次,即每次发送完消息后那个管道不能在使用了,必须再由子进程创建一个管道,A 进程才能再次创建管道文件并向其中写入消息。这个程序也不一定要MFC实现,还可以用其他的技术和语言实现,比如说Java、VB等,外表构架可以不一样,但核心技术都是一样的,只是不同的调用形式和调用方法,比如说在VB中,实现进程间的一般通信就是使用动态数据交换DDE,实现起来就比较简单,但是要创建映像文件和管道文件就比较繁琐,可以根据不同的需求采用不同的语言。 五、程序部分源代码: 1.“利用SendMessage发送消息”按钮中的主要代码 //找到接收消息的窗口(窗口名为Receiver) CString str="进程B"; CWnd *pWnd=CWnd::FindWindow(NULL,str); if(pWnd) { COPYDATASTRUCT buf; char * s=new char[m_Msg1.GetLength()]; //m_Msg1为CString类型的变量 s=m_Msg1.GetBuffer(0);

进程线程通信及同步方法总结

Linux系统中的进程间通信方式主要以下几种: 同一主机上的进程通信方式 * UNIX进程间通信方式: 包括管道(PIPE), 有名管道(FIFO), 和信号(Signal) * System V进程通信方式:包括信号量(Semaphore), 消息队列(Message Queue), 和共享内存(Shared Memory) 网络主机间的进程通信方式 * RPC: Remote Procedure Call 远程过程调用 * Socket: 当前最流行的网络通信方式, 基于TCP/IP协议的通信方式. 各自的特点如下: ?管道(PIPE):管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系(父子进程)的进程间使用。另外管道传送的是无格式的字节流,并且管道缓冲区的大小是有限的(管道缓冲区存在于内存中,在管道创建时,为缓冲区分配一个页面大小)。 ?有名管道(FIFO):有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。 ?信号(Signal):信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。 ?信号量(Semaphore):信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 ?消息队列(Message Queue):消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。 ?共享内存(Shared Memory ):共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号量,配合使用,来实现进程间的同步和通信。 ?套接字(Socket):套解口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同主机间的进程通信。 Linux系统中的线程间通信方式主要以下几种: * 锁机制:包括互斥锁、条件变量、读写锁 互斥锁提供了以排他方式防止数据结构被并发修改的方法。 读写锁允许多个线程同时读共享数据,而对写操作是互斥的。 条件变量可以以原子的方式阻塞进程,直到某个特定条件为真为止。对条件的测试是在互斥锁的保护下进行的。条件变量始终与互斥锁一起使用。 * 信号量机制(Semaphore):包括无名线程信号量和命名线程信号量 * 信号机制(Signal):类似进程间的信号处理 线程间的通信目的主要是用于线程同步,所以线程没有像进程通信中的用于数据交换的通信机制。

实验5 进程间通信实验

实验五进程间通信实验 一、实验目的 1、了解什么是信号。 2、熟悉LINUX系统中进程之间软中断通信的基本原理。 3、了解什么是管道 4、熟悉UNIX/LINUX支持的管道通信方式 二、实验内容 1、编写一段程序,使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按ctrl+c键),当捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后,分别输出下列信息后终止:Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出以下信息后终止: Parent process is killed! <参考程序> #include #include #include #include #include int wait_mark; void waiting(),stop(); void main() {int p1, p2; signal(SIGINT,stop); while((p1=fork())==-1); if(p1>0) /*在父进程中*/ { while((p2=fork())==-1); If(p2>0) /*在父进程中*/ { wait_mark=1; waiting(0); kill(p1,10); kill(p2,12); wait( ); wait( ); printf("parent process is killed!\n"); exit(0); } else /*在子进程2中*/ { wait_mark=1; signal(12,stop); waiting();

进程控制与进程间通信操作系统实验报告

工程大学实验报告 专业班级:姓名:学号: 课程名称:操作系统 实验成绩:指导教师:蔡敦波 实验名称:进程控制与进程间通信 一、实验目的: 1、掌握进程的概念,明确进程和程序的区别。 2、认识和了解并发执行的实质。 3、了解什么是信号。 4、熟悉LINUX系统中进程之间软中断通信的基本原理。 二、实验内容: 1、进程的创建(必做题) 编写一段程序,使用系统调用fork( )创建两个子进程,在系统中有一个父进程和两个子进程活动。让每个进程在屏幕上显示一个字符;父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 <参考程序>

运行的结果是bca. 首先创建进程p1,向子进程返回0,输出b.又创建进程p2,向子进程返回0,输出c,同时向父进程返回子进程的pid,输出a 2、修改已编写的程序,将每个进程的输出由单个字符改为一句话,再观察程序执行时屏幕上出现的现象,并分析其原因。(必做题) <参考程序> # include int main() { int p1, p2, i; while((p1=fork())= = -1); if(p1= =0) for(i=0;i<500;i++) printf(“child%d\n”,i); else { while((p2=fork())= =-1); If(p2= =0) for(i=0;i<500;i++) printf(“son%d\n”,i); else for(i=0;i<500;i++) printf(“daughter%d\n”,i); } }

运行的结果是如上图所示. 首先创建进程p1,向子进程返回0,并for语句循环输出child +i字符串.又创建进程p2,向子进程返回0,输出字符串son+i,同时向父进程返回子进程的pid,输出字符串duaghter +i ,各打印5次。

实验报告三进程管理及进程通信

实验三进程管理及进程通信 实验环境: Linux操作系统 实验目的: (1)利用Linux提供的系统调用设计程序,加深对进程概念的理解。 (2)体会系统进程调度的方法和效果。 (3)了解进程之间的通信方式以及各种通信方式的使用。 实验方法: 用vi 编写c 程序(假定程序文件名为prog1.c)编 译程序 $ gcc -o prog1.o prog1.c 或 $ cc -o prog1.o prog1.c 运行 $./prog1.o 实验内容及步骤: 实验1 编写程序。显示进程的有关标识(进程标识、组标识、用户标识等)。经过5 秒钟后,执行另一个程序,最后按用户指示(如:Y/N)结束操作。 编程截图:

运行结果: 实验2 参考例程1,编写程序。实现父进程创建一个子进程。体会子进程与父进程分 别获得不同返回值,进而执行不同的程序段的方法。 例程1:利用fork()创建子进程 /* 用fork()系统调用创建子进程的例子*/ main() { int i; if (fork()) /*父进程执行的程序段*/ i=wait(); /* 等待子进程结束*/{ printf("It is parent process.\n"); printf("The child process,ID number %d, is finished.\n",i); } else{

Printf(“It is child process.\n”); Sleep(10); Exit(); } } 运行结果: 思考: 子进程是如何产生的?又是如何结束的?子进程被创建后它的运行环境是怎样建立的? 答:是由父进程用fock()函数创建形成的,通过exit()函数自我结束,子进程被创建后核心 将其分配一个进程表项和进程标识符,检查同时运行的进程数目,并且拷贝进程表项的数据,由子进程继承父进程所有文件。 实验3 参考例程2,编写程序。父进程通过循环语句创建若干子进程。探讨进程的家族树 以及子进程继承父进程的资源的关系。 例程2:循环调用fork()创建多个子进程。 /*建立进程树*/ #include main() { int i; printf(“My pid is %d, my father’s pid is %d\n”,getpid() ,getppid()); for(i=0; i<3; i++) if(fork()==0) printf(“%d pid=%d ppid=%d\n”, i,getpid(),getppid()); else { j=wait(0); Printf(“%d:The chile %d is finished.\n”,getpid(),j);

相关文档
最新文档