直线的参数方程的几何意义

直线的参数方程的几何意义
直线的参数方程的几何意义

课 题 直线的参数方程的几何意义

教学目标 要 求 与直线的参数方程有关的典型例题 教学重难点 分 析

与直线的参数方程有关的典型例题

知识要点概述

(1)定义:过定点),(000y x M 、倾斜角为α的直线l 的参数方程为??

?+=+=α

α

sin cos 00t y y t x x (t 为参数),

其中t 表示直线l 上以定点0M 为起点,任意一点M (x ,y )为终点的有向线段M M 0的数量, (2)

的几何意义:直线上点到M 的距离.此时,若t>0,则

的方向向上;若t<0,则

的方

向向下;若t=0,则点与点M 重合.

(3)参数t 的性质:

若直线l 上两点A 、B 所对应的参数分别为B A t t ,,则

性质一:A 、B 两点之间的距离为||||B A t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|B A t t

性质二:A 、B 两点的中点所对应的参数为

2

B

A t t +,若0M 是线段A

B 的中点,则 0=+B A t t ,反之亦然。

精编例题讲练

一、求直线上点的坐标

例1.一个小虫从P (1,2)出发,已知它在 x 轴方向的分速度是?3,在y 轴方向的分速度是4,问小虫3s 后的位置Q 。

分析:考虑t 的实际意义,可用直线的参数方程???x = x 0 +at ,

y = y 0 +bt

(t 是参数)。

解:由题意知则直线PQ 的方程是???x = 1 ? 3 t ,

y = 2 + 4 t

,其中时间t 是参数,将t =3s 代入得Q (?8,12)。

例2.求点A (?1,?2)关于直线l :2x ?3y +1 =0的对称点A ' 的坐标。

解:由条件,设直线AA ' 的参数方程为 ?

?

?

x = ?1 ?

2

13

t ,y = ?2 + 3

13 t

(t 是参数), ∵A 到直线l 的距离d =

513, ∴ t = AA ' = 1013, 代入直线的参数方程得A ' (?

3313,4

13

)。 点评:求点关于直线的对称点的基本方法是先作垂线,求出交点,再用中点公式,而此处则是充分利用了参数 t 的几何意义。

二 求定点到过定点的直线与其它曲线的交点的距离 例1.设直线经过点

(1,5),倾斜角为

,

1)求直线和直线的交点到点的距离; 2)求直线和圆

的两个交点到点

的距离的和与积.

解:直线的参数方程为

( t 为参数)

1)将直线的参数方程中的x,y 代入

,得t=.所以,直线和直线

的交点到点

的距离为

2)将直线的方程中的x,y 代入,得

设此方程的两根为

,

=

=10.可知

均为负值,所以

=

点评:解决本题的关键一是正确写出直线的参数,二是注意两个点对应的参数的符号的异同。

三 求直线与曲线相交的弦长

例1 过抛物线的焦点作斜角为的直线与抛物线交于A 、B 两点,求|AB|.

解因直线的倾角为,则斜率为-1,又抛物线的焦点为F(1,0),则可设AB的方程为

(为参数)

代入整理得

由韦达定理得t1+t2=,t1t2=-16。

∴===.

例2 已知直线L:x+y-1=0与抛物线y=交于A,B两点,求线段AB的长和点M(-1,2)到A,B两点的距离之积.

解:因为直线L过定点M,且L的倾斜角为,所以它的参数方程是(t为参数)

即(t为参数)

把它代入抛物线的方程,得

解得

由参数t的几何意义得

点评:本题的解答中,为了将普通方程化为参数方程,先判定点M(-1,2)在直线上,并求出直线的倾斜角,这样才能用参数t的几何意义求相应的距离.这样的求法比用普通方程求出交点坐标,再用距离公式求交点距离简便一些.

例1,已知经过点P(2,0),斜率为的直线和抛物线相交于A,B 两点,设线段AB 的中点为M,

求点M 的坐标.

解:设过点P(2,0)的直线AB 的倾斜角为,由已知可得:

cos ,

所以,直线的参数方程为(t 为参数)

代入

,整理得

中点M 的相应的参数是=

所以点M 的坐标为

点评:在直线的参数方程中,当t>0,则的方向向上;当t<0,则

的方向向下,所以A,B 中点的M 所

对应的t 的值等于,这与二点之点的中点坐标有点相同.

例2.已知双曲线 x 2 ?

y 2

2

= 1,过点P (2,1)的直线交双曲线于P 1,P 2,求线段P 1P 2的中点M 的轨迹方程。

分析:中点问题与弦长有关,考虑用直线的参数方程,并注意有t 1 +t 2=0。

解:设M (x 0,y 0)为轨迹上任一点,则直线P 1P 2的方程是???x = x 0 +t cos θ,

y = y 0 +t sin θ

(t 是参数),代入双曲线方

程得:(2cos 2θ ?sin 2θ) t 2 +2(2x 0cos θ ?y 0sin θ)t + (2x 02 ?y 02 ?2) = 0,

由题意t 1 +t 2=0,即2x 0cos θ ?y 0sin θ =0,得tan θ =

2x 0

y 0

。 又直线P 1P 2的斜率 k = tan θ =

y ?y 0

x ?x 0

,点P (2,1)在直线P 1P 2上, ∴1 ?y 02 ?x 0 = 2x 0

y 0

,即2x 2 ?y 2 ?4x +y = 0为所求的轨迹的方程。

解:因为直线l 过点)0,4(0-P ,倾斜角为

6

π

,所以直线l 的参数方程为 ??????

?+=+-=6sin 06cos 4π

πt y t x ,即???

????=+-=t y t x 2123

4,(t 为参数),代入圆方程,得 7)2

1

()234(22=++

-t t ,整理得09342=+-t t (1)设A 、B 所对应的参数分别为21,t t ,所以3421=+t t ,921=t t , 所以||||21t t AB -=.324)(21221=-+=

t t t t

(2)解方程09342

=+-t t 得,3,3321==t t ,

所以A P 033||1==t ,B P 0.3||2==t

解:因为直线l 过点)4,2(0P ,倾斜角为

6

π

,所以直线l 的参数方程为 ??????

?+=+=6sin 46cos 2ππt y t x ,即???

????+=+=t

y t x 214232,(t 为参数), (1) 设直线l 上与已知点)4,2(0P 相距为4的点为M 点,且M 点对应的参数为t ,则

||0M P 4||==t ,所以4±=t ,将t 的值代入(1)式,

当t =4时,M 点的坐标为)6,322(+; 当t =-4时,M 点的坐标为)2,322(-,

综上,所求M 点的坐标为)6,322(+或)2,322(-.

点评:若使用直线的普通方程,利用两点间的距离公式求M 点的坐标较麻烦,而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较容易。

解:直线l 过点)0,1(0P ,倾斜角为

4

π

,所以直线l 的参数方程为

???

???

?=+

=t y t x 2222

1,

(t 为参数),因为直线l 和抛物线相交,将直线的参数方程代入抛物线方程 x y 22=中,得:)221(2)22(

2t t +=,整理得0222

1

2=--t t , 06)2(2

1

4)2(2>=-??--=?,设这个二次方程的两个根为21,t t ,

由韦达定理得2221=+t t ,由M 为线段AB 的中点,根据t 的几何意义,得

22

2

1=+=

t t t M ,易知中点M 所对应的参数为2=M t ,将此值代入直线的参数方程得,M 点的坐标为(2,1)

点评:对于上述直线l 的参数方程,A 、B 两点对应的参数为21,t t ,则它们的中点所对应的参数为

.2

2

1t t +

直线参数方程t的几何意义44095

1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=221t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k = 的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P| 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P 同时改变符号 P 0P =-|P 0P| P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α α sin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P|=|t| ①当t>0时,点P 在点P 0的上方; x y ,) x

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

椭圆的参数方程中参数的几何意义

椭圆: 椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。 椭圆是圆锥曲线的一种,即圆锥与平面的截线。 椭圆的周长等于特定的正弦曲线在一个周期内的长度。 椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。

直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点 相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。

专题直线参数方程中t的意义理解高中数学精华修订版

专题直线参数方程中t 的意义理解高中数学精 华修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

专题:直线参数方程中的几何意义几点分析与解析 一. 知识点概述: ★ 若倾斜角为α的直线过点)(00y x M ,,t 为参数,则该直线的参数方程可写为 ★ 若直线过点M ,直线与圆锥曲线交于两点P 、Q ,则 |MP|、|MQ|的几何意义就是:||||||||21t MQ t MP ==, ; |MP|+|MQ|的几何意义就是:=+||||MQ MP |t ||t |21+; |MP|·|MQ|的几何意义就是:||||||21t t MQ MP ?=?; |PQ|的几何意义就是:2122121214)(|||PQ ||||PQ |t t t t t t t t ?-+=-=-=,即. ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,则弦的中点坐标公式为:??? ????+++=+=+++=+=2) sin ()sin (22)cos ()cos (2201021'201021'ααααt y t y y y y t x t x x x x 或??? ????++=+++=+=++=+++=+=)(22)()(2)(22)()(2212022012021'211021011021't t p y t p y t p y y y y t t p x t p x t p x x x x ,21p p ,为常数,均不为零 (其中 中点M 的相应参数为t ,而221t t t +=,所以中点坐标也为:???+=+=t p y y t p x x 2010 ) ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,且M 恰为弦AB 中点,

直线的参数方程的几何意义

课 题 直线的参数方程的几何意义 教学目标 要 求 与直线的参数方程有关的典型例题 教学重难点 分 析 与直线的参数方程有关的典型例题 教 学 过 程 知识要点概述 过定点),(000y x M 、倾斜角为α的直线l 的参数方程为?? ?+=+=α α sin cos 00t y y t x x (t 为参数), 其中t 表示直线l 上以定点0M 为起点,任意一点M (x ,y )为终点的有向线段M M 0的数量, 的几何意义是直线上点到M 的距离.此时,若t>0,则 的方向向上;若t<0,则 的方向向下;若t=0,则点与点M 重合. 由此,易得参数t 具有如下 的性质:若直线l 上两点A 、B 所对应的参数分别为 B A t t ,,则 性质一:A 、B 两点之间的距离为||||B A t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|B A t t 性质二:A 、B 两点的中点所对应的参数为 2 B A t t +,若0M 是线段A B 的中点,则 0=+B A t t ,反之亦然。

精编例题讲练 一、求直线上点的坐标 例1.一个小虫从P (1,2)出发,已知它在 x 轴方向的分速度是?3,在y 轴方向的分速度是4,问小虫3s 后的位置Q 。 分析:考虑t 的实际意义,可用直线的参数方程? ?? ? ?x = x 0 +at ,y = y 0 +bt (t 是参数)。 解:由题意知则直线PQ 的方程是? ????x = 1 ? 3 t , y = 2 + 4 t ,其中时间t 是参数,将t =3s 代入得Q (?8,12)。 例2.求点A (?1,?2)关于直线l :2x ?3y +1 =0的对称点A ' 的坐标。 解:由条件,设直线AA ' 的参数方程为 ? ?? ??x = ?1 ? 2 13 t , y = ?2 + 313 t (t 是参数), ∵A 到直线l 的距离d = 5 13 , ∴ t = AA ' = 10 13 , 代入直线的参数方程得A ' (? 3313,413 )。 点评:求点关于直线的对称点的基本方法是先作垂线,求出交点,再用中点公式,而此处则是充分利用了参数 t 的几何意义。 二 求定点到过定点的直线与其它曲线的交点的距离 例1.设直线经过点 (1,5),倾斜角为 , 1)求直线和直线的交点到点的距离; 2)求直线和圆 的两个交点到点 的距离的和与积. 解:直线的参数方程为( t 为参数)

直线参数方程t的几何意义

利用直线参数方程t 的几何意义 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ??+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; ③当t<0时,点P 在点P 0的下方; x

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

直线参数t的几何意义

数学试题(文) 1.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标 方程为()2sin cos 0a a ρθθ=>,过点()2,4P --的直线l 的参数方程为224x y ?=-+????=-+?? (t 为参数),直线l 与曲线C 相交于,A B 两点. (Ⅰ)写出曲线C 的直角坐标方程和直线l 的普通方程; (Ⅱ)若2PA PB AB ?=,求a 的值. 2.在平面直角坐标系中,以原点为极点,x 轴为极轴建立极坐标系,曲线1C 的方程为sin x y θθ?=??=??(θ为参数),曲线2C 的极坐标方程为2:cos sin 1C ρθρθ+=,若曲线1C 与2C 相交于A 、B 两点. (1)求||AB 的值;(2)求点(1,2)M -到A 、B 两点的距离之积. 3.已知在直角坐标系xOy 中,曲线1C 的参数方程为22+2 x y ?=????=-?? (t 为参数).在极坐标系(与直角坐 标取相同的长度单位,且以原点O 为极点,x 轴的非负半轴为极轴)中,曲线2C 的方程为221cos sin 22 a ap a ρρθθ--=+,[0,2]a ∈. (Ⅰ)求曲线2C 直角坐标方程,并说明方程表示的曲线类型; (Ⅱ)若曲线1C 、2C 交于A 、B 两点,定点P(0,-2),求PA PB ?的最大值.

4.已知直线l 的参数方程为2cos sin x t y t αα=+??=?,(t 为参数,α为倾斜角,且2πα≠)与曲线 221612x y +=1交于,A B 两点. (I )写出直线l 的一般方程及直线l 通过的定点P 的坐标; (Ⅱ)求||||PA PB 的最大值。 5.已知直线l 的参数方程为??? ????+=+=t y t x 232213(t 为参数),曲线C 的参数方程为???==θθsin 4cos 4y x (θ为参数).⑴将曲线C 的参数方程化为普通方程;⑵若直线l 与曲线C 交于A 、B 两点,求线段AB 的长. 6.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线 C:2sin 2cos a ρθθ=(a >0),已知过点P(-2,-4)的直线l 的参数方程为 :22 42 x y ?=-+????=-+??(t 为参数),直线l 与曲线C 分别交于M,N 两点. (1)写出曲线C 和直线l 的普通方程;(2)若|PM|,|MN|,|PN|成等比数列,求a 的值. 7.已知曲线C 的极坐标方程式2cos ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建 立平面直角坐标系,直线L 的参数方程是212 x m y t ?=+????=??,(t 为参数). (1)求曲线C 的直角坐标方程和直线L 的普通方程; (2)设点(,0)P m ,若直线L 与曲线C 交于两点,A B ,且||||1PA PB ?=,数m 的值.

利用直线参数方程t的几何性质解题

利用直线参数方程t 的几何性质解题 山东平邑县第一中学(273300)李志勤 过定点),(000y x M 、倾斜角为α的直线l 的参数方程为???+=+=α α sin cos 00t y y t x x (t 为参数), 其中t 表示直线l 上以定点0M 为起点,任意一点M (x ,y )为终点的有向线段M M 0的数量,由此,易得参数t 具有如下 的性质:若直线l 上两点A 、B 所对应的参数分别为 B A t t ,,则 性质一:A 、B 两点之间的距离为||||B A t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|B A t t 性质二:A 、B 两点的中点所对应的参数为 2 B A t t +,若0M 是线段A B 的中点,则 0=+B A t t ,反之亦然。 在解题时若能运用参数t 的上述性质,则可起到事半功倍的效果。 应用一:求距离 例1、直线l 过点)0,4(0-P ,倾斜角为6 π ,且与圆722=+y x 相交于A 、B 两点。 (1)求弦长AB. (2)求A P 0和B P 0的长。 解:因为直线l 过点)0,4(0-P ,倾斜角为 6 π ,所以直线l 的参数方程为 ?????? ?+=+-=6sin 06cos 4π πt y t x ,即??? ????=+-=t y t x 212 3 4,(t 为参数),代入圆方程,得 7)2 1( )2 34(2 2 =++-t t ,整理得09342 =+-t t (1)设A 、B 所对应的参数分别为21,t t ,所以3421=+t t ,921=t t , 所以||||21t t AB -=.324)(212 21=-+= t t t t (2)解方程09342 =+-t t 得,3,3321==t t , 所以A P 033||1==t ,B P 0.3||2= =t

椭圆的参数方程中参数的几何意义

椭圆的参数方程中参数的几何意义: 红点M的轨迹是椭圆,M(x,y)=(|OA|cosφ,|OB|sinφ) 所以离心角φ就是那条倾斜直线的角。 周长 椭圆周长计算公式:L=T(r+R) T为椭圆系数,可以由r/R的值,查表找出系数T值;r为椭圆短半径;R为椭圆长半径。 椭圆周长定理:椭圆的周长等于该椭圆短半径与长半径之和与该椭圆系数的积(包括正圆)。 几何关系 点与椭圆 点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1; 点在圆内:x02/a2+y02/b2<1; 点在圆上:x02/a2+y02/b2=1; 点在圆外:x02/a2+y02/b2>1; 跟圆与直线的位置关系一样的:相交、相离、相切。 直线与椭圆 y=kx+m① x2/a2+y2/b2=1② 由①②可推出x2/a2+(kx+m)2/b2=1 相切△=0 相离△<0无交点

相交△>0可利用弦长公式:设A(x1,y1)B(x2,y2) 求中点坐标 根据韦达定理x1+x2=-b/a,x1x2=c/a 代入直线方程可求出(y1+y2)/2=可求出中点坐标。 |AB|=d=√(1+k2)[(x1+x2)2-4x1*x2]=√(1+1/k2)[(y1+y2)2-4y1y2] 手绘法 1、:画长轴AB,短轴CD,AB和CD互垂平分于O点。 2、:连接AC。 3、:以O为圆心,OA为半径作圆弧交OC延长线于E点。 4、:以C为圆心,CE为半径作圆弧与AC交于F点。 5、:作AF的垂直平分线交CD延长线于G点,交AB于H点。 6、:截取H,G对于O点的对称点H’,G’⑺:H,H’为长轴圆心,分别以HA、H‘B为半径作圆;G,G’为短轴圆心,分别以GC、G‘D为半径作圆。 用一根线或者细铜丝,铅笔,2个图钉或大头针画椭圆的方法:先画好长短轴的十字线,在长轴上以圆点为中心先找2个大于短轴半径的点,一个点先用图钉或者大头针栓好线固定住,另一个点的线先不要固定,用笔带住线去找长短轴的4个顶点。 此步骤需要多次定位,直到都正好能于顶点吻合后固定住这2个点,用笔带住线,直接画出椭圆:使用细铜丝最好,因为线的弹性较大画出来不一定准确。

直线的参数方程(t的几何意义)复习教案

二轮复习:选修4-4 直线的标准参数方程t 的几何意义应用 一.考纲要求: 参数方程 1. 了解参数方程,了解参数的意义; 2. 能选择适当的参数写出直线、圆和圆锥曲线的参数方程。 二. 一轮知识课前回顾(请同学们独立默写完成) 1. 过点,倾斜角为的直线标准参数方程为____________________ 其中t 的意义如下: 设,则是直线方向上的单位向量, 若M 为直线上任一点,则, ,即直线上动点M 到定点的距离,等于直线标准参数方程中参数t 的__________ 即 ?? ?+=+=)(为参数t Bt n y At m x 为直线标准参数方程的条件为:①=+22B A __________ ②______>0 2.直线的非标准参数处理方案 ①转为________方程解决问题. ②转为标准参数方程: 如: 将直线:(为参数)的方程化为标准参数方程____________________ 3.已知过点M 0(x 0,y 0)的直线的参数方程为:(为参数),点M 、N 为直线l 上相异两点,点M 、N 所对应的参数分别为、, 请根据下列图象判断、的符号以及用、表示下列线段长度: (2) (3) 请用、表示线段长度: 4.若点Q 是线段MN 的中点,则点Q 对应的参数t=_________ ()000,y x M αl ()ααsin ,cos =e l ______=l e t M M =0_________=()000,y x M l ???? ?= 方向向下 ,若方向向上 若M M M M 000______,||l 222x t y t =+??=-? t l ???+=+=α α sin cos 00t y y t x x t 1t 2t 1t 2t 1t 2t ()11t 2t

专题:直线参数方程中t的意义理解(高中数学精华)

专题:直线参数方程中的几何意义几点分析与解析 一. 知识点概述: ★ 若倾斜角为α的直线过点)(00y x M ,,t 为参数,则该直线的参数方程可写为 为参数,t t y y t x x ?? ?+=+=α α sin cos 00 ★ 若直线过点M ,直线与圆锥曲线交于两点P 、Q ,则 |MP|、|MQ|的几何意义就是:||||||||21t MQ t MP ==,; |MP|+|MQ|的几何意义就是:=+||||MQ MP |t ||t |21+; |MP|·|MQ|的几何意义就是:||||||21t t MQ MP ?=?; |PQ|的几何意义就是:2122121214)(|||PQ ||||PQ |t t t t t t t t ?-+= -=-=,即. ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,则弦的中点坐标公式为: ??? ??? ?+++=+=+++=+=2)sin ()sin (22)cos ()cos (2201021'201021'ααααt y t y y y y t x t x x x x 或??? ??? ?++=+++=+=++=+++=+=) (22)()(2)(22) ()(2212022012021'211021011021't t p y t p y t p y y y y t t p x t p x t p x x x x ,21p p ,为常数,均不为零 (其中 中点M 的相应参数为t ,而22 1t t t +=,所以中点坐标也为:? ??+=+=t p y y t p x x 2010 ) ★ 若过点M )(00y x ,、倾斜角为α的直线l 与圆锥曲线交于A 、B 两点,且M 恰为弦AB 中点, 则中点M 的相应参数:2 2 1t t t += =0 (因为???+=+=t p y y t p x x 200 100,而21p p ,均不为0,所以t=0) 体会一:教学中一定要讲清楚直线参数方程的推导过程,并且一定要强调其中参数T 的由来。 实际上由新课程标准人教A 版数学选修课本中坐标系与参数方程的内容我们知道,平面内过定点),(000y x p 、倾斜角为α的直线l 的参数方程的标准形式为?? ?+=+=α α sin cos 00t y y t x x (t 为参数),其中t 表示直线l 上以定点0p 为起点,任 意一点P (x ,y )为终点的有向线段P P 0的数量,当P 点在0p 上方时t 为正,当P 点在0p 下方时t 为负。 体会二:教学中必须要强调参数T 的几何意义及两个结论的引导应用示范。 实际上在教学中我们知道,由直线参数方程的推导过程及向量模的几何意义等知识,很容易得参数t 具有如下的

直线参数方程t的几何意义

直线参数方程t的几何意 义 Prepared on 22 November 2020

利用直线参数方程t 的几何意义 1、直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ??+=+=ααsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 的参数方程 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即? ??+=+=ααsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; x

高中数学_直线的参数方程教学设计学情分析教材分析课后反思

直线的参数方程 教材:人教版普通高中课程标准实验教科书《数学》(B 版)选修4—4 坐标系与参数方程P35~P38,分两节课完成,本教案是第一节课,内容主要在P35~P37. 教材内容解析 本节内容是人教B 版选修4—4第二章第二部分的内容.直线是学生最熟悉的几何图形,在教材《必修2》中学生已经学习了直线的五种方程.教科书先引导学生回顾了用倾斜角的正切表示的直线的点斜式方程,这是为推导直线的参数方程做准备,从代数变换的角度看,教材P35的直线参数方程00+cos ,+sin .x x t t y y t αα=??=? (为参数)就是点斜式的变形.在提出“如何建立直线的参数方程?”后,教材引导学生借助向量工具探究直线的参数方程.这一过程,教师引导学生通过类比、联想的思想方法,将直线和单位方向向量联系起来,引入恰当的参数,从而建立直线的参数方程. 学情分析 学生对事物的认识多是从直观到抽象,从感性到理性.而对事物的理解多以自己的经验为基础来建构或解释现象,而并不是把知识从外界直接搬到记忆中.高三学生的学习过程也是如此. 之前圆锥曲线的参数方程学生已经熟悉,也能够理解各种曲线的参数的几何意义,但是直线的参数方程还能否用角作为参数呢?这是完全不同的,应该选择那个量作为直线的参数呢?需要引入“方向向量的概念”,之前的必修教材已经介绍过,为本节课的学习提供了知识储备. 教学方法与教学手段 教学方法:启发探究式(教师设问引导,学生自主探究、合作解决). 教学手段:多媒体辅助教学 教学目标 1.利用直线的点斜式方程、单位方向向量两种探究方法推导直线的参数方程,体会直线的普通方程与参数方程的联系; 2.理解并掌握直线的参数方程中参数t 的几何意义; 3.通过直线参数方程的探究,体会参数的形成过程,培养严密地思考和严谨推理的习惯; 4.在学习过程中渗透类比、归纳、推理的数学思想方法,以及引领学生体

直线参数方程t的几何意义

利用直线参数方程t 的几何意义 1、 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ???+=+=α αsin cos 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3=221t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、 直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ? ??+=+=bt y y at x x 00 (t 为参数) 点击直线参数方程: 一、直线的参数方程 问题1:(直线由点和方向确定) 求经过点P 0(00,y x ),倾斜角为α的直线l 设点P(y x ,)是直线l 上任意一点,(规定向上的 方向为直线L 的正方向)过点P 作y 轴的平行线,过 P 0作x 轴的平行线,两条直线相交于Q 点. 1)当P P 0与直线l 同方向或P 0和P 重合时, P 0P =|P 0P | 则P 0Q =P 0Pcos α Q P =P 0Psin α 2)当P P 0与直线l 反方向时,P 0P 、P 0Q 、Q P P 0P =-|P 0P | P 0Q =P 0Pcos α Q P =P 0Psin α 仍成立 设P 0P =t ,t 为参数, 又∵P 0Q =0x x -, 0x x -=tcos α Q P =0y y - ∴ 0y y -=t sin α 即???+=+=α αsin cos 00t y y t x x 是所求的直线l 的参数方程 ∵P 0P =t ,t 为参数,t 的几何意义是:有向直线l 上从已知点P 0(00,y x )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ①当t>0时,点P 在点P 0的上方; ②当t =0时,点P 与点P 0重合; x

直线的参数方程的几何意义

乐恩特教育个性化教学辅导教案 课 题 直线的参数方程的几何意义 教学目标 要 求 与直线的参数方程有关的典型例题 教学重难点 分 析 与直线的参数方程有关的典型例题 教 学 过 程 知识要点概述 过定点),(000y x M 、倾斜角为α的直线l 的参数方程为?? ?+=+=α α sin cos 00t y y t x x (t 为参 数),其中t 表示直线l 上以定点0M 为起点,任意一点M (x ,y )为终点的有向线段 M M 0的数量, 的几何意义是直线上点到M 的距离.此时,若t>0,则 的方向向上;若t<0,则 的方向向下;若t=0,则点与点M 重合. 由此,易得参数t 具有如下 的性质:若直线l 上两点A 、B 所对应的参数分别为 B A t t ,,则 性质一:A 、B 两点之间的距离为||||B A t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|B A t t 性质二:A 、B 两点的中点所对应的参数为 2 B A t t +,若0M 是线段A B 的中点,则 0=+B A t t ,反之亦然。 精编例题讲练 一、求直线上点的坐标 例1.一个小虫从P (1,2)出发,已知它在 x 轴方向的分速度是?3,在y 轴方向的分速度是4,问小虫3s 后的位置Q 。 分析:考虑t 的实际意义,可用直线的参数方程???x = x0 +at , y = y0 +bt (t 是参数)。 解:由题意知则直线PQ 的方程是???x = 1 ? 3 t , y = 2 + 4 t ,其中时间t 是参数,将t =3s 代入得Q

(?8,12)。 例2.求点A (?1,?2)关于直线l :2x ?3y +1 =0的对称点A ' 的坐标。 解:由条件,设直线AA ' 的参数方程为 ?? ?x = ?1 ? 2 13 t ,y = ?2 + 313 t (t 是参数), ∵A 到直线l 的距离d = 513, ∴ t = AA ' = 1013 , 代入直线的参数方程得A ' (? 3313,4 13 )。 点评:求点关于直线的对称点的基本方法是先作垂线,求出交点,再用中点公式,而此处则是充分利用了参数 t 的几何意义。 二 求定点到过定点的直线与其它曲线的交点的距离 例1.设直线经过点 (1,5),倾斜角为 , 1)求直线和直线的交点到点的距离; 2)求直线和圆 的两个交点到点 的距离的和与积. 解:直线的参数方程为 ( t 为参数) 1)将直线的参数方程中的x,y 代入,得t= .所以,直线 和直线 的交点到点 的距离为 2)将直线的方程中的x,y 代入,得设此方程的两 根为 ,则 ==10.可知 均为负值,所以 = 点评:解决本题的关键一是正确写出直线的参数,二是注意两个点对应的参数的符号的异同。 三 求直线与曲线相交的弦长 例1 过抛物线的焦点作斜角为的直线与抛物线交于A 、B 两点,求|AB|.

《直线参数方程t的几何意义》专题-直线参数方程t的意义

《直线参数方程t 的几何意义》专题 2019年( )月( )日 班级 姓名 直线参数方程的标准式 (1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是 ? ? ?+=+=αα sin cos 00t y y t x x (t 为参数) t 的几何意义:t 表示有向线段P P 0的数量, P 0P =t ∣P 0P ∣=t P (y x ,)为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2, 则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣ (3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3 则P 1P 2中点P 3的参数为t 3= 22 1t t +,∣P 0P 3∣=2 21t t + (4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 直线参数方程的一般式 过点P 0(00,y x ),斜率为a b k = 的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) 性质一:A 、B 两点之间的距离为||||21t t AB -=,特别地,A 、B 两点到0M 的距离分别为.|||,|21t t 性质二:A 、B 两点的中点所对应的参数为 2 2 1t t +,若0M 是线段AB 的中点,则 021=+t t ,反之亦然。 在解题时若能运用参数t 的上述性质,则可起到事半功倍的效果。

应用一:求距离之积 例1:已知直线l :01=-+y x 与抛物线2 x y =交于B A ,两点,求线段AB 的长和点 )2,1(-M 到B A ,两点的距离之积。 应用二:求距离 例2、直线l 过点)0,4(0-P ,倾斜角为6 π,且与圆72 2=+y x 相交于A 、B 两点。 (1)求弦长AB . (2)求A P 0和B P 0的长。 应用三:求点的坐标 例3、直线l 过点)4,2(0P ,倾斜角为6 π,求出直线l 上与点)4,2(0P 相距为4的点的坐标。

2知识讲解 曲线的参数方程

曲线的参数方程 【学习目标】 1. 了解参数方程,了解参数的意义。 2. 能利用参数法求简单曲线的参数方程。 3. 掌握参数方程与普通方程的互化。 4. 能选择适当的参数写出圆和圆锥曲线的参数方程 【要点梳理】 要点一、参数方程的概念 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标y x,都是某个变数t的函数, 即 () ........... () x f t y g t = ? ? = ? ①, 并且对于t的每一个允许值,方程组①所确定的点(,) M x y都在这条曲线上,那么方程组①就叫做这条曲线的参数方程,联系y x,间的关系的变数t叫做参变数(简称参数). 相对于参数方程来说,直接给出曲线上点的坐标关系的方程(,)0 F x y=,叫做曲线的普通方程。 要点诠释: (1)参数是联系变数x,y的桥梁,可以是一个有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. (2)一条曲线是用直角坐标方程还是用参数方程来表示,要根据具体情况确定. (3)曲线的普通方程直接地反映了一条曲线上的点的横、纵坐标之间的关系,而参数方程是通过参数反映坐标变量x、y间的间接联系。 要点二、求曲线的参数方程 求曲线参数方程的主要步骤: 第一步,画出轨迹草图,设M(x,y)是轨迹上任意一点的坐标.画图时要注意根据几何条件选择点的位置,以便于发现变量之间的关系. 第二步,选择适当的参数.参数的选择要考虑以下两点: 一是曲线上每一点的坐标(x,y)都能由参数取某一值唯一地确定出来; 例如,在研究运动问题时,通常选时间为参数;在研究旋转问题时,通常选旋转角为参数.此外,离某一定点的有向距离、直线的倾斜角、斜率、截距等也常常被选为参数. 有时为了便于列出方程,也可以选两个以上的参数,再设法消去其中的参数得到普通方程,或剩下一个参数得到参数方程,但这样做往往增加了变形与计算的麻烦,所以参数个数一般应尽量少.二是曲线上每一点的坐标x,y与参数的关系比较明显,容易列出方程; 第三步,根据已知条件、图形的几何性质、问题的物理意义等,建立点的坐标与参数的函数关系式,证明可以省略. 要点诠释: 普通方程化为参数方程时,(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与

第04讲-直线参数t的几何意义-2020届一轮复习数学套路之极坐标与参数方程(解析版)

第四讲 直线参数t 的几何意义 1.直线的参数方程 (1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为00cos (sin x x t t y y t α α =+???=+??为参数) (2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义 参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离. (1)当0M M u u u u u r 与e (直线的单位方向向量)同向时,t 取正数. (2)当0M M u u u u u r 与e 反向时,t 取负数, (3)当M 与M 0重合时,t =0. 3.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数) t t y y t x x (sin cos 00?? ?+=+=α α 若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 2 2; (2)|PM |=|t 0|=t 1+t 2 2; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2| (5)212 121212121212()4,0 ,0 t t t t t t t t PA PB t t t t t t ?-=+-??当当 (注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】 (1)直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |. (2)直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 知识解读

相关文档
最新文档