基于混合高斯背景模型和四帧差分法的目标检测方法

基于混合高斯背景模型和四帧差分法的目标检测方法
基于混合高斯背景模型和四帧差分法的目标检测方法

混合高斯模型的简要介绍

混合高斯模型跟高斯变量之和看起来有一点像, 注意不要把它们弄混淆了. 混合高斯模型给出的概率密度函数实际上是几个高斯概率密度函数的加权和: 计算均值和方差的公式不仅适用于几个(多维)高斯分布混合的情况, 还适用于非高斯分布的情况. 高斯变量之和就没什么好说的了, 几个高斯变量之和是一个新的高斯变量. 原理: 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。 对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以认为是图像灰度概率密度的估计。如果图像所包含的目标区域和背景区域相比比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对应于背景的中心灰度。对于复杂的图像,尤其是医学图像,一般是多峰的。通过将直方图的多峰特性看作是多个高斯分布的叠加,可以解决图像的分割问题。 在智能监控系统中,对于运动目标的检测是中心内容,而在运动目标检测提取中,背景目标对于目标的识别和跟踪至关重要。而建模正是背景目标提取的一个重要环节。 我们首先要提起背景和前景的概念,前景是指在假设背景为静止的情况下,任何有意义的运动物体即为前景。建模的基本思想是从当前帧中提取前景,其目的是使背景更接近当前视频帧的背景。即利用当前帧和视频序列中的当前背景帧进行加权平均来更新背景,但是由于光照突变以及其他外界环境的影响,一般的建模后的背景并非十分干净清晰,而高斯混合模型是是建模最为成功的方法之一。 混合高斯模型使用K(基本为3到5个)个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型, 用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,主要是有方差和均值两个参数决定,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。 到这里为止,混合高斯模型的建模基本完成,我在归纳一下其中的流程,首先初始化预先定义的几个高斯模型,对高斯模型中的参数进行初始化,并求出之后将要用到的参数。其次,对于每一帧中的每一个像素进行处理,看其是否匹配某个模型,若匹配,则将其归入该模型中,并对该模型根据新的像素值进行更新,若不匹配,则以该像素建立一个高斯模型,初始化参数,代理原有模型中最不可能的模型。最后选择前面几个最有可能的模型作为背景模型,为背景目标提取做铺垫。 目前,运动物体检测的问题主要分为两类,摄像机固定和摄像机运动。对于摄像机运动的运动物体检测问题,比较著名的解决方案是光流法,通过求解偏微分方程求的图像序列的光流场,从而预测摄像机的运动状态。对于摄像机固定的情形,当然也可以用光流法,但是由于光流法的复杂性,往往难以实时的计算,所以我采用高斯背景模型。因为,在摄像机固定的情况下,背景的变化是缓慢的,而且大都是光照,风等等的影响,通过对背景建模,对一幅给定图像分离前景和背景,一般来说,前景就是运动物体,从而达到运动物体检测的目的。 单分布高斯背景模型单分布高斯背景模型认为,对一个背景图像,特定像素亮度的分布满足高斯分布,即对背景图像B,(x,y)点的亮度满足: IB (x,y) ~ N(u,d)

高斯分布背景模型原理

高斯分布背景模型原理 背景差分法的关键是背景图像的描述模型即背景模型,它是背景差分法分割运动前景的基础。背景模型主要有单模态和多模态两种,前者在每个背景像素点上的颜色分布比较集中,可以用单分布概率模型来描述,后者的分布则比较分散,需要用多分布概率模型来共同描述。在许多应用场景,如水面的波纹、摇摆的树枝,飘扬的红旗、监视器屏幕等,像素点的值都呈现出多模态特性。最常用的描述场景背景点颜色分布的概率密度模型(概率密度分布)是高斯分布(正态分布)。 1 单高斯分布背景模型 单高斯分布背景模型适用于单模态背景情形, 它为每个图象点的颜色建立了用单个高斯分布表示的模型) ,(,t t x N σμ其中下标t 表示时间。设图象点的当前颜色度量为t X ,若(,,)ttt p N X T μσ ≤ (这里p T 为概率阈值) , 则该点被判定为前景点, 否则为背景点(这时又称t X 与) ,(,t t x N σμ相匹配)。 在常见的一维情形中, 以t σ表示均方差, 则常根据/t t d σ的取值 设置前景检测阈值:若/t t d T σ>,则该点被判定为前景点, 否则为背 景点。 单高斯分布背景模型的更新即指各图象点高斯分布参数的更新。引入表示更新快慢的常数——更新率α, 则该点高斯分布参数的更新可表示为 1(1)t t t d μαμα+=-?+? (1)

21(1)t t t d σασα+=-?+? (2) 单高斯背景模型能处理有微小变化与慢慢变化的简单场景,当较复杂场景背景变化很大或发生突变,或者背景像素值为多峰分布(如微小重复运动)时,背景像素值的变化较快,并不是由一个相对稳定的单峰分布渐渐过度到另一个单峰分布,这时单高斯背景模型就无能为力,不能准确地描述背景了。]1[ 2 混合高斯分布背景模型 与单高斯背景模型不同,混合高斯背景模型对每个像素点用多个高斯模型混合表示。设用来描述每个像素的高斯分布共K 个(K 通常取 3—5个),象素uv Z 的概率函数: ,,,1()(,,)K u v j u v u v j u v j u v j P Z N Z ωμ ==∑∑ 其中,j uv ω是第j 个高斯分布的权值, 背景建模和更新过程(仅针对单个像素): 1.初始化:第一个高斯分布用第一帧图像该点的像素值作为均值或前N 帧图像该点的像素值的平均值作为均值,并对该高斯分布的权值取较大值(比其它几个高斯分布大)。其余的高斯分布的均值均为0,权重相等,所有高斯函数的方差取相等的较大值。 2.权值归一化 3.选取背景

混合高斯模型(Mixtures of Gaussians)和EM算法

混合高斯模型(Mixtures of Gaussians)和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与 k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项 式分布,,其中,有k个值{1,…,k} 可以选取。而且我们认为在给定后,满足多值高斯分布,即。由 此可以得到联合分布。 整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个, 然后根据所对应的k个多值高斯分布中的一个生成样例,。整个过程称作混合高斯模型。 注意的是这里的仍然是隐含随机变量。模型中还有三个变量和。最大似然估计为 。对数化后如下: 这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是 close form。但是假设我们知道了每个样例的,那么上式可以简化为: 这时候我们再来对和进行求导得到:

就是样本类别中的比率。是类别为j的样本特征均值,是类别为j的样例的特征的协方差矩阵。 实际上,当知道后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。 之前我们是假设给定了,实际上是不知道的。那么怎么办呢?考虑之前提到的EM 的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:

混合高斯模型算法原理

混合高斯模型算法原理 混合高斯模型是一种经典的背景建模算法,用于背景相对稳定情况下的运动目标检测。它由单高斯模型发展而来,对于多模态的背景有一定的鲁棒性,如:树叶晃动、水纹波动等。在介绍混合高斯模型前,首先介绍单高斯模型。 1. 单高斯背景模型: 单高斯模型将图像中每一个像素点的颜色值看成是一个随机过程,并假设该点的像素值出现的概率服从高斯分布。该算法的基本原理就是对每一个像素位置建立一个高斯模型,模型中保存该处像素的均值和方差。如,可设),(y x 处像素的均值为),(y x u ,方差为),(2y x σ,标准差为),(y x σ。由于随着视频图像序列的输入,模型参数不断更新,所以不同时刻模型参数有不同的值,故可将模型参数表示为三个变量t y x ,,的函数:均值),,(t y x u 、方差),,(2t y x σ、标准差),,(t y x σ。用单高斯模型进行运动检测的基本过程包括:模型的初始化、更新参数并检测两个步骤。 1)模型初始化 模型的初始化即对每个像素位置上对应的高斯模型参数进行初始化,初始化采用如下公式完成: ?? ???===init std y x init std y x y x I y x u _)0,,(_)0,,()0,,()0,,(22σσ (1) 其中,)0,,(y x I 表示视频图像序列中的第一张图像),(y x 位置处的像素值,init std _为一个自己设的常数,如可设20_=init std 。 2)更新参数并检测 每读入一张新的图片,判断新图片中对应点像素是否在高斯模型描述的范围中,如是,则判断该点处为背景,否则,判断该点处为前景。假设前景检测的结 果图为out put ,其中在t 时刻),(y x 位置处的像素值表示为),,(t y x output ,),,(t y x output 的计算公式如下: ???-?<--=otherwise t y x t y x u t y x I t y x output ,1)1,,()1,,(),,(,0),,(σλ (2) 其中,λ是自己设的一个常数,如可设5.2=λ。以上公式表示的含义是:若新的图片中相应位置的像素值与对应模型中像素的均值的距离小于标准差的λ倍,则该点为背景,否则为前景。 模型的更新采用如下公式: ?? ???=-?+-?-=?+-?-=),,(),,()],,(),,(I [)1,,()1(),,(),,()1,,()1(),,(2222t y x t y x t y x u t y x t y x t y x t y x u t y x u t y x u σσασασαα (3) 其中,参数α表示更新率,也是自己设的一个常数,该常数的存在可以使得模型在背景的缓慢变化时具有一定的鲁棒性,如光照的缓慢变亮或变暗等。

高斯混合模型实现——【机器学习与算法分析 精品资源池】

实验算法高斯混合模型实验 【实验名称】 高斯混合模型实验 【实验要求】 掌握高斯混合模型应用过程,根据模型要求进行数据预处理,建模,评价与应用; 【背景描述】 高斯混合模型(Gaussian Mixed Model)指的是多个高斯分布函数的线性组合,理论上GMM 可以拟合出任意类型的分布,通常用于解决同一集合下的数据包含多个不同的分布的情况。属于无监督机器学习,用于对结构化数据进行聚类。 【知识准备】 了解高斯混合模型的使用场景,数据标准。了解Python/Spark数据处理一般方法。了解spark 模型调用,训练以及应用方法 【实验设备】 Windows或Linux操作系统的计算机。部署Spark,Python,本实验提供centos6.8环境。【实验说明】 采用UCI机器学习库中的wine数据集作为算法数据,除去原来的类别号,把数据看做没有类别的样本,训练混合高斯模型,对样本进行聚类。 【实验环境】 Spark 2.3.1,Pyrhon3.X,实验在命令行pyspark中进行,或者把代码写在py脚本,由于本次为实验,以学习模型为主,所以在命令行中逐步执行代码,以便更加清晰地了解整个建模流程。【实验步骤】 第一步:启动pyspark: 1

命令行中键入pyspark --master local[4],本地模式启动spark与python: 第二步:导入用到的包,并读取数据: (1).导入所需的包 from pyspark import SparkContext, SQLContext, SparkConf from math import sqrt from pyspark.sql.functions import monotonically_increasing_id (2).读取数据源 df_wine = sc.textFile(u"file:/opt/algorithm/gaussianMixture/wine.txt").map( lambda x: str(x).split(",")).map(lambda x: [float(z) for z in x]) (3).数据转换为Data df_wine_rdd = sqlContext.createDataFrame(df_wine) (4).数据展示 df_wine_rdd.show() 1

混合高斯背景建模与更新

计算机学院专业实习报告专业名称计算机科学与技术 实习题目基于多摄像机协同的运动对象分割与三维重建系统之背景建模与运动前景分割 姓名李林 班级10010804 学号2008302499 实习时间 指导教师杨涛Northwestern Polytechnical University

2010年7月14日 目录 摘要 (1) 第一章基本原理 (2) 1.1高斯模型原理 (2) 1.2 混合高斯背景建模与更新 (3) 1.2.1 背景训练 (4) 1.2.2 模板匹配 (4) 1.2.3背景更新 (5) 第二章运动物体提取 (6) 2.1目标提取概述 (6) 2.2 提取过程 (6) 2.2.1 参数设置 (6) 2.2.2 模型建立 (7) 2.2.3 背景学习 (7) 2.2.4 模板匹配与背景更新 (9) 第3章其他增强效果算法 (10) 3.1阴影的检测和去除 (10) 3.1.1 阴影简介 (10) 3.1.2 阴影检测法 (11) 3.1.2 阴影去除 (13) 3.2形态学滤波 (14) 3.2.1 图像腐蚀与膨胀 (15) 3.2.2 开运算和闭运算 (16) 第四章最终成品 (18) 4.1 成品说明 (18) 4.1.1性能说明 (18) 4.1.2成品样式 (19) 4.1.3使用说明 (19) 第五章实习心得 (19)

摘要 背景建模与运动前景分割是指从视频或者连续的图像序列中将运动的区域分割出来,本次实行所需的运动物体提取只是用来为后面的形成3维图形提供图像数据,日常生活中视频监控系统已广泛应用于各大公共场所,如公司,机场,酒店等都备有监控系统。但对于大多数监控系统来说,都需要监控者保持对监控录像的观测。如何实现视频监控系统的自动监控,是近年来比较关注的问题。自动视频监控技术其主要内容之一就是能监视某一特定场景中的新目标的出现,首先检测视频序列图像中是否有变化,如图像变化,说明有新目标出现,则把这个目标从视频图像序列中分割提取出来,为下一步的目标识别和跟踪提取数据提供基础。因此,一个视频监控系统的好坏,运动目标能否良好的提取是非常关键的。 目前运动目标的提取已经取得很多成果,并且不断有新技术、新方法出现。但是,在实际应用中,由于自然环境复杂,目标机动性高,使得提取与跟踪时干扰因素多,提取不准确且匹配效率不高。要提高跟踪的精度需要对复杂环境下的目标提取和跟踪进行研究,但到目前为止,仍没有一种普遍适用、比较完善的方法,因此对这两方面作进一步研究仍有很大空间。 针对本次实习的特殊场景,经分析决定采用混合高斯模型对运动图像进行提取,弥补单高斯模型不能适应背景微变化的这一缺陷,例如光照明暗、阴影等变化。利用混合高斯模型对输入的视频进行学习,之后再对运动物体进行前景提取,形成二值图像,运动物体置为白色,背景值为黑色,由于在提取过程中会存在这一些噪声点,所以最后运用腐蚀与膨胀运算对图像进行去噪处理。最终设计完形成的图像预计效果为能基本提取出运动物体,可能遇到较为复杂的背景会存在一定的噪声。 目前,从现有的测试数据来看程序能基本提取出运动物体,基本达到了预定的效果,在设计之中起初运用了帧间差分法,测试数据背景较为简单时能基本提取前景,但换成了光照发生变化的背景后运动物体的提取有明显难以改善的噪声,之后考虑更改算法,现有的算法中,光流法效果较为明显,但其算法较为复杂,不适合本次实习的开发,其次较为合适的还有单高斯模型,但其由于在变化的场景中表现

混合高斯背景建模matlab代码

clear all % source = aviread('C:\Video\Source\traffic\san_fran_traffic_30sec_QVGA'); source = mmreader('SampleVideo.avi'); frameQYT=get(source,'NumberOfFrames'); % ----------------------- frame size variables ----------------------- fr = read(source,1); % 读取第一帧作为背景 fr_bw = rgb2gray(fr); % 将背景转换为灰度图像 fr_size = size(fr); %取帧大小 width = fr_size(2); height = fr_size(1); fg = zeros(height, width); bg_bw = zeros(height, width); % --------------------- mog variables ----------------------------------- C = 4; % 组成混合高斯的单高斯数目(一般3-5) M = 0; % 组成背景的数目 D = 2.5; % 阈值(一般2.5个标准差) alpha = 0.01; % learning rate 学习率决定更新速度(between 0 and 1) (from paper 0.01) thresh = 0.75; % foreground threshold 前景阈值(0.25 or 0.75 in paper) sd_init = 6; % initial standard deviation 初始化标准差(for new components) var = 36 in paper w = zeros(height,width,C); % initialize weights array 初始化权值数组 mean = zeros(height,width,C); % pixel means 像素均值 sd = zeros(height,width,C); % pixel standard deviations 像素标准差 u_diff = zeros(height,width,C); % difference of each pixel from mean 与均值的差p = alpha/(1/C); % initial p variable 参数学习率(used to update mean and sd) rank = zeros(1,C); % rank of components (w/sd) % ------initialize component means and weights 初始化均值和权值---------- pixel_depth = 8; % 8-bit resolution 像素深度为8位 pixel_range = 2^pixel_depth -1; % pixel range 像素范围2的7次方0—255(# of possible values) for i=1:height for j=1:width for k=1:C mean(i,j,k) = rand*pixel_range; % means random (0-255之间的随机数) w(i,j,k) = 1/C; % weights uniformly dist sd(i,j,k) = sd_init; % initialize to sd_init end end

混和高斯模型的推导和实现

基于GMM 的运动目标检测方法研究 一、GMM 数学公式推导 1、预备知识: (1)设离散型随机变量X 的分布率为: {} 2,1,P ===k p a X k k 则称()∑= k k k p a X E 为X 的数学期望或均值 (2)设连续型随机变量X 的概率密度函数(PDF )为f(x) 其数学期望定义为:()()dx x xf X E ? +∞ ∞ -= (3)()()()[] 2 X E X E X D -=称为随机变量x 的方差,()X D 称为X 的标准差 (4)正态分布:() 2,~σμN X 概率密度函数为:()()??????? ?--= 22221 σμσ πx e x p (5)设(x,y)为二维随机变量,()[]()[]{}Y E Y X E X E --若存在,则 称其为X 和Y 的协方差,记为cov(x,y) ()()[]()[]{}()XY E Y E Y X E X E Y X =--=,cov 2、单高斯模型:SGM (也就是多维正态分布) 其概率密度函数PDF 定义如下: ()() ()()μμπμ--- -= x C x n T e C C x N 12 1 21 ,; 其中,x 是维数为n 的样本向量(列向量),μ是期望,C 是协方差矩阵,|C|表示C 的行列式,1-C 表示C 的逆矩阵,()T x μ-表示()μ-x 的转置。 3、混合高斯模型:GMM 设想有 m 个类:m 321????,,,, ,每类均服从正态分布。 各分布的中心点(均值)分别为:m 321μμμμ,,,,

方差分别为:m 321σσσσ,,,, 每一类在所有的类中所占的比例为 ()()()()m P P P P ????,,,,321 其中()11=∑=m i i P ?。 同时,已知 个观察点: 。其中,用大写P 表示概率,用小写p 表 示概率密度。 则依此构想,可得概率密度函数为: ()()()()()()()() ()()()μμπ??σμ?σμ?σμ--- =-∑ =?++?+?=x C x m i d i m m m T e C P P N P N P N x p 12 1 12221112,,, 其中d 是维数,|·|是行列式 但是在利用GMM 进行目标检测时,这些模型的参数可能已知,也可能不知道,当参数已知时,可以直接利用GMM 进行目标检测,在未知的情况下,需要对参数进行估计。对参数估计时,还要考虑样本分类是否已知。 (1)样本已知: 最大似然估计: 可以直接采用MLE (最大似然估计)进行参数估计: 未知量为集合:()()()m P P C C ??μμλ,,1m 1m 1 ,,,,,,= 将衡量概率密度函数优劣的标准写出:()()∏==n k k x P x p 1||λλ 即为: ()() () ()()i k T i k x C x n k m i d i e C P x p μμπ?λ--- ==-∏∑ =12 1 11 | |2| 只要定出该标准的最大值位置,就可以求出最优的待定参数。为了 求出这个最

基于高斯混合模型的人群异常检测

龙源期刊网 https://www.360docs.net/doc/fb17873909.html, 基于高斯混合模型的人群异常检测 作者:于明郭团团 来源:《软件导刊》2017年第11期 摘要:近年来,公众场所安全问题得到了广泛关注,视频监控下的人群异常检测成为智能监控的研究热点。现实场景中的人群异常检测具有容易受到光照亮度变化影响、可能存在大量遮挡以及人群密度大等研究难点。提出一种基于高斯混合模型的人群异常检测方法,能有效应用于复杂的室外场景。首先通过预处理阶段求得视频帧的感兴趣区域(ROI),再在感兴趣区域中计算人群光流,并在此基础上融合SIFT特征,利用图像分块提取特征。对不同分块建立对应的高斯混合模型,进而用模型判断特征点是否属于异常事件。实验结果证明,该方法对于UMN数据库中人群的四散奔跑以及UCSD数据库中人行横道上出现汽车和自行车等异常事件有较高的识别率。 关键词关键词:人群异常检测;感兴趣区域;SIFT特征;光流法;高斯混合模型 DOIDOI:10.11907/rjdk.171847 中图分类号:TP319 文献标识码:A文章编号文章编号:16727800(2017)011011407 0引言 近年来,人群异常检测在智能监控视频中扮演着越来越重要的角色。异常本身是指行为不规则、不寻常、偏离正常类型,例如摔倒、斗殴、逆行、闯入禁止区域等[1]。因此,在不同 应用上,异常定义方式不同。本文在监控视频场景下对异常的定义是低概率发生的事件,或者是出现次数很少的事件[23]。 面对监控视频中的高密度人群场景,异常检测面临着3大挑战:①异常与正常定义比较模糊;②高密度人群中存在遮挡情况,行为动作难以分析;③视频监控场景具有多样性,以及视频监控角度不同造成区域运动大小不一致。由于存在这些挑战,导致传统的行人动作分析技术不能直接用于人群异常检测,而人群异常检测又在保障公众场所人身安全上具有重要意义,所以异常检测成为热门的研究方向,一系列检测方法被不断提出。大量相关方法都指出,现实场景具有时间和空间两个特性,异常也具有这两个特性,通常将异常分为时间异常事件和空间异常事件。 时间异常是指在一定时间内视频中物体的速度违背了正常规律的事件,其最明显的表现是视频前后帧的物体位置变化幅度较大。对于时间异常,传统的检测方法有基于轨迹分析的、基于光流法的与基于能量的方法,它们都利用了异常的时间特性[47]。基于轨迹的检测算法通过多目标跟踪算法跟踪行人运动,用运动轨迹表示人群场景,然后用概率模型对人群场景进行建

EM算法在高斯混合模型中的应用

EM 算法在高斯混合模型中的应用 1.定义 对于一个随机信号生成器,假设他的模型参数为Θ,我们能观测到的数据输出为X ,不能观测到的数据输出为Y ,且随机系统模型结构的概率密度函数为 (,|)p x y Θ (1) 能够观测到的一部分数据输出数据12{,,...,}N x x x ,模型的另一部分输出数据 未知,模型的参数Θ也未知。EM 算法就是要求我们从观测数据12{,,...,}N x x x 中估计出参数Θ。 2.EM 算法的描述 假设每一对随机系统的输出样本(,)n n x y 对于不同的n 相互独立,这样当(,,)p x y Θ,x 和y 都已知的情况下,概率(,,)p x y Θ也已知。未观测的输出y 的概率分布也属于待求参数Θ。 根据独立性假设有: 1(,|)(,|)N n n n p x y p x y =Θ=Θ∏ (2) 3.EM 算法的基本思路 基本问题是求解下面的方程的解: arg max (,|)p x y Θ=Θ (3) 由于X 是确定量,Y 是未知的,因此即使给定了Θ,也无法求得(,|)p x y Θ的值,因此我们只能退一步求: arg max (|)p x Θ=Θ (4) 其中 (|)(,|)[(|),(|,)]y Y y Y p x p x y p y p x y ∈∈Θ=Θ=ΘΘ∑∑ (5) 表示考虑了未知数据y 的所有可能的取值Y 后对(|,)p x y Θ求平均值。 最后根据log 函数的单调性得到(4)的等效形式: arg max log (|)p x Θ=Θ (6) 对于(6)给出的最优化问题,考虑用下面的递推算法解决,即:先给定一个估值k Θ并计算(|)k p x Θ,然后更新k Θ得到1k +Θ并且有 1log (|)log (|)k k p x p x +Θ>Θ (7) ()log (|)log [(|)(|,)] |(|,)log (|,)(|,)(|)(|,)(|,)log (|,)(,) y Y k k y Y k k y Y k p x p y p x y p y p x y p y x p y x p y p x y p y x p y x B ∈∈∈Θ=ΘΘΘΘ? ?=Θ??Θ???? ??ΘΘ≥Θ????Θ??? ?=ΘΘ∑∑∑ (8) 其中,等号在(,)k k B ΘΘ时成立,即: (,)log (|)k k k B p x ΘΘ=Θ (9)

G M M 高 斯 混 合 模 型

语音识别之GMM-HMM模型(一):语音识别简介与混合高斯模型-GMM 写在前面 都知道语音识别有GMM-HMM模型,也分别了解了什么是: 但是却发现不清楚GMM与HMM与语音识别有什么关系,更不知道GMM-HMM模型究竟是什么 好像没有看到有系统讲解很清楚的博客 于是我根据这些零散的学习,整理出了一套比较方便适于理解的系列博客。 原始整理为:qq_37385726 系列博客 语音识别之GMM-HMM模型(一):语音识别简介与混合高斯模型-GMM 语音识别之GMM-HMM模型(二):隐马尔科夫模型-HMM 语音识别之GMM-HMM模型(三):GMM-HMM模型应用于语音识别任务原理详解 语音识别简介 混合高斯模型 GMM建模声学特征的理解 语音识别简介 自动语音识别(Automatic speech recongnition, ASR)技术时使

人与人。人与机器交流的关键技术,它将声学波形转换为人类的文字。 一个语音对话系统通常包括四个主要组成部分的一个或多个,即语音识别系统将语音转化为文本,语义理解系统提取用户说话的语义信息、文字转换系统将内容转化为语音、对话管理系统连接其他三个系统并完成与实际场景的沟通。 语音识别系统主要有图2中的四部分组成,信号处理和特征提取、声学模型(AM)、语言模型(LM)和解码搜索部分。信号处理和特征提取部分以音频信号为输入,通过消除噪声和信道失真对语音进行增强,将信号从时域转化到频域,并为声学模型提取合适的特征向量。声学模型将声学和发音学(phonetics)进行整合,以特征向量作为输入,并为可变长特征序列生成声学模型分数。语言模型学习词与词间的相互关系,来评估序列的可能性。解码搜索对给定特征向量序列和若干假设次序列计算声学模型和语言模型分数,并输出得分最高的结果。 声学模型的两个主要问题为特征向量序列可编程和音频信号的丰富变化性。前者可通过动态时间规整(DTW)或HMM解决。在过去,最流行的语音识别系统采用MFCC或RASTA-PLP作为特征向量,使用GMM-HMM作为声学模型。采用最大似然准则、序列鉴别性训练算法(MCE、MPE)等进行训练。现在流行的是分层鉴别性模型如深度神经网络模型。 混合高斯模型 随机变量可分为离散型随机变量, 连续型随机变量或混合型随机

高斯混合模型GMM实现matlab

高斯混合模型GMM实现matlab (1 )以下matlab代码实现了高斯混合模型: function [Alpha, Mu, Sigma] = GMM_EM(Data, Alpha0, Mu0, Sigma0) %%EM 迭代停止条件 loglik_threshold = 1e-10; %%初始化参数 [dim, N] = size(Data); M = size(Mu0,2); loglik_old = -realmax; nbStep = 0; Mu = Mu0; Sigma = Sigma0; Alpha = Alpha0; Epsilon = 0.0001; while (nbStep < 1200) nbStep = nbStep+1; %%E-步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:M % PDF of each point Pxi(:,i) = GaussPDF(Data, Mu(:,i), Sigma(:,:,i)); end % 计算后验概率 beta(i|x) Pix_tmp = repmat(Alpha,[N 1]).*Pxi; Pix = Pix_tmp ./ (repmat(sum(Pix_tmp,2),[1 M])+realmin); Beta = sum(Pix); %%M- 步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:M % 更新权值 Alpha(i) = Beta(i) / N; %更新均值 Mu(:,i) = Data*Pix(:,i) / Beta(i); %更新方差 Data_tmp1 = Data - repmat(Mu(:,i),1,N);

高斯混合模型

高斯混合模型(Gaussian Mixture Model, GMM) (2011-12-30 23:50:01) 标签: 分类:工作篇 校园 高斯混合模型 高斯模型就是用高斯概率密度函数(正态分布曲线)精确地量化事物,将一个事物分解为若干的基于高斯概率密度函数(正态分布曲线)形成的模型。对图像背景建立高斯模型的原理及过程:图像灰度直方图反映的是图像中某个灰度值出现的频次,也可以以为是图像灰度概率密度的估计。如果图像所包含的目标区域和背景区域相比比较大,且背景区域和目标区域在灰度上有一定的差异,那么该图像的灰度直方图呈现双峰-谷形状,其中一个峰对应于目标,另一个峰对应于背景的中心灰度。对于复杂的图像,尤其是医学图像,一般是多峰的。通过将直方图的多峰特性看作是多个高斯分布的叠加,可以解决图像的分割问题。在智能监控系统中,对于运动目标的检测是中心内容,而在运动目标检测提取中,背景目标对于目标的识别和跟踪至关重要。而建模正是背景目标提取的一个重要环节。 我们首先要提起背景和前景的概念,前景是指在假设背景为静止的情况下,任何有意义的运动物体即为前景。建模的基本思想是从当前帧中提取前景,其目的是使背景更接近当前视频帧的背景。即利用当前帧和视频序列中的当前背景帧进行加权平均来更新背景,但是由于光照突变以及其他外界环境的影响,一般的建模后的背景并非十分干净清晰,而高斯混合模型 (GMM)是建模最为成功的方法之一。 英文翻译及缩写:Gaussian mixture model (GMM) 混合高斯模型使用K(基本为3到5个)个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,他主要是有方差和均值两个参数决定,,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率;为提高在繁忙的场景下,大而慢的运动目标的检测效果,引入权值均值的概念,建立背景图像并实时更新,然后结合权值、权值均值和背景图像对像素点进行前景和背景的分类。具体更新公式如下: μt= (1 - ρ)μt- 1 +ρxt (1) ?2t = (1 - ρ)?2t- 1 +ρ( xt -μt ) T ( xt -μt ) (2) ρ =αη( xt | μκ,?κ ) (3) | xt -μt - 1 | ≤ 2. 5?t- 1 (4) w k , t = (1 - α) w k , t - 1 +αMk , t (5) 式中ρ为学习率,即反映当前图像融入背景的速率。

高斯混合模型GMM实现 matlab

(1)以下matlab代码实现了高斯混合模型: function [Alpha, Mu, Sigma] = GMM_EM(Data, Alpha0, Mu0, Sigma0) %% EM 迭代停止条件 loglik_threshold = 1e-10; %% 初始化参数 [dim, N] = size(Data); M = size(Mu0,2); loglik_old = -realmax; nbStep = 0; Mu = Mu0; Sigma = Sigma0; Alpha = Alpha0; Epsilon = 0.0001; while (nbStep < 1200) nbStep = nbStep+1; %% E-步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:M % PDF of each point Pxi(:,i) = GaussPDF(Data, Mu(:,i), Sigma(:,:,i)); end % 计算后验概率 beta(i|x) Pix_tmp = repmat(Alpha,[N 1]).*Pxi; Pix = Pix_tmp ./ (repmat(sum(Pix_tmp,2),[1 M])+realmin); Beta = sum(Pix); %% M-步骤 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for i=1:M % 更新权值 Alpha(i) = Beta(i) / N; % 更新均值 Mu(:,i) = Data*Pix(:,i) / Beta(i); % 更新方差 Data_tmp1 = Data - repmat(Mu(:,i),1,N);

EM及高斯混合模型

EM及高斯混合模型 本文就高斯混合模型(GMM,Gaussian Mixture Model)参数如何确立这个问题,详细讲解期望最大化(EM,Expectation Maximization)算法的实施过程。 单高斯分布模型GSM 多维变量X服从高斯分布时,它的概率密度函数PDF为: x是维度为d的列向量,u是模型期望,Σ是模型方差。在实际应用中u通常用样本均值来代替,Σ通常用样本方差来代替。很容易判断一个样x本是否属于类别C。因为每个类别都有自己的u 和Σ,把x代入(1)式,当概率大于一定阈值时我们就认为x属于C类。 从几何上讲,单高斯分布模型在二维空间应该近似于椭圆,在三维空间上近似于椭球。遗憾的是在很多分类问题中,属于同一类别的样本点并不满足“椭圆”分布的特性。这就引入了高斯混合模型。 高斯混合模型GMM GMM认为数据是从几个GSM中生成出来的,即 K需要事先确定好,就像K-means中的K一样。πk是权值因子。其中的任意一个高斯分布N(x;u k,Σk)叫作这个模型的一个component。这里有个问题,为什么我们要假设数据是由若干 个高斯分布组合而成的,而不假设是其他分布呢?实际上不管是什么分布,只K取得足够大,这个XX Mixture Model就会变得足够复杂,就可以用来逼近任意连续的概率密度分布。只是因为高斯函数具有良好的计算性能,所GMM被广泛地应用。 GMM是一种聚类算法,每个component就是一个聚类中心。即在只有样本点,不知道样本分类(含有隐含变量)的情况下,计算出模型参数(π,u和Σ)----这显然可以用EM算法来求解。再用训练好的模型去差别样本所属的分类,方法是:step1随机选择K个component中的一个(被选中的概率是πk);step2把样本代入刚选好的component,判断是否属于这个类别,如果不属于则回到step1。

高斯混合模型GMM实现matlab

高斯混合模型GMM 实现matlab (1)以下matlab 代码实现了高斯混合模型: function[Alpha,Mu,Sigma]=GMM_EM(Data,Alpha0,Mu0,Sigma0) %%EM迭代停止条件 loglik_threshold=1e-10; %%初始化参数 [dim,N]=size(Data); M=size(Mu0,2); loglik_old=-realmax; nbStep=0; Mu=Mu0; Sigma=Sigma0; Alpha=Alpha0; Epsilon=0.0001; while(nbStep<1200) nbStep=nbStep+1; %%E-步骤%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fori=1:M %PDFofeachpoint Pxi(:,i)=GaussPDF(Data,Mu(:,i),Sigma(:,:,i));e nd %计算后验概率beta(i|x) Pix_tmp=repmat(Alpha,[N1]).*Pxi; Pix=Pix_tmp./(repmat(sum(Pix_tmp,2),[1M])+realmin); Beta=sum(Pix); %%M-步骤%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% fori=1:M %更新权值 Alpha(i)=Beta(i)/N; %更新均值 Mu(:,i)=Data*Pix(:,i)/Beta(i); %更新方差 Data_tmp1=Data-repmat(Mu(:,i),1,N);

Sigma(:,:,i)=(repmat(Pix(:,i)',dim,1).*Data_tmp1*Data_tmp1')/Beta(i); %%AddatinyvariancetoavoidnumericalinstabilitySigm a(:,:,i)=Sigma(:,:,i)+1E-5.*diag(ones(dim,1)); end %%%Stoppingcriterion1%%%%%%%%%%%%%%%%%%%% %fori=1:M %Computethenewprobabilityp(x|i) %Pxi(:,i)=GaussPDF(Data,Mu(:,i),Sigma(i)); %end %Computetheloglikelihood %F=Pxi*Alpha'; %F(find(F

相关文档
最新文档