指数与指数函数.板块一.学生版

指数与指数函数.板块一.学生版
指数与指数函数.板块一.学生版

第5讲指数与指数函数(学生版)

第5讲 指数与指数函数 1. 化简[(-2)6]12 -(-1)0的结果为( ) A .-9 B .7 C .-10 D .9 2. 设x +x -1=3,则x 2+x - 2的值为( ) A .9 B .7 C .5 D .3 3.函数f (x )=a x - 1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( ) A .y =1-x B .y =|x -2| C .y =2x -1 D .y =log 2(2x ) 4. 若a >1且a 3x +1>a - 2x ,则x 的取值范围为________. 5.若指数函数y =(a 2-1)x 在(-∞,+∞)上为减函数,则实数a 的取值范围是________. 指数函数的图象及应用 (1)函数f (x )=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( ) A .a >1,b <0 B .a >1,b >0 C .00 D .0

必修一指数与指数函数

指数函数 典例分析 题型一 指数函数的定义与表示 【例1】 求下列函数的定义域 (1)32 x y -= (2)21 3 x y += (3)512x y ??= ??? (4)()10.7x y = 【例2】 求下列函数的定义域、值域 ⑴11 2 x y -= ; ⑵3x y -=; ⑶2 120.5x x y +-= 【例3】 求下列函数的定义域和值域: 1.x a y -=1 2.31 )2 1(+=x y 【例4】 求下列函数的定义域、值域 (1)11 0.4 x y -=; (2)y = (3)21x y =+ 【例5】 求下列函数的定义域 (1)13x y =; (2)y =

【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f , (3)f -的值. 【例7】 若1a >,0b >,且b b a a -+=b b a a --的值为( ) A B .2或2- C .2- D .2 题型二 指数函数的图象与性质 【例8】 已知1a b c >>>,比较下列各组数的大小: ①___b c a a ;②1b a ?? ??? 1c a ?? ??? ;②11 ___b c a a ;②__a a b c . 【例9】 比较下列各题中两个值的大小: ⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9. 【例10】 比较下列各题中两个值的大小 (1)0.80.733, (2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01, (4) 3.3 4.50.990.99, 【例11】 已知下列不等式,比较m 、n 的大小 (1) 22m n < (2)0.20.2m n > (3)()01m n a a a <<< (4)()1m n a a a >>

苏教版数学高一苏教版必修1指数函数第1课时

指数函数的定义及性质练习 1.下列以x 为自变量的函数中,是指数函数的是______. ①y =(-2)x ②y =5x ③y =-2x ④y =a x +2(a >0且a ≠1) 2.设a =40.9,b =80.48,-1.5 1=2c ?? ??? ,则a ,b ,c 的大小关系是__________. 3.若指数函数的图象经过点138??- ???,,则f (2)=__________. 4 .函数y __________. 5.若0<a <1,记m =a -1,4 3=n a -,1 3=p a -,则m ,n ,p 的大小关系是__________. 6.已知集合M ={-1,1},11=<24,2x N x x +?<∈??Z ,则M ∩N =__________. 7.如图是指数函数:①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象,则a ,b ,c ,d 的 大小关系是__________. 8.已知实数a ,b 满足等式11=23a b ???? ? ?????,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b =0.其中不可能成立的关系式有__________. 9.若函数1,0,()=1,0,3x x x f x x ?

参考答案1.答案:② 2.解析:因为a=40.9=21.8,b=80.48=21.44, -1.5 1 = 2 c ?? ? ?? =21.5, 所以由指数函数y=2x在(-∞,+∞)上单调递增知a>c>b.答案:a>c>b 3.解析:设f(x)=a x,则a-3=1 8 ,a=2, 所以f(x)=2x,f(2)=22=4. 答案:4 4.解析:由条件得2x-1-8≥0,即x-1≥3,x≥4.所求定义域为[4,+∞). 答案:[4,+∞) 5.解析:∵0<a<1, ∴y=a x在R上为单调递减函数. ∵-4 3 <-1<- 1 3 , ∴p<m<n.答案:p<m<n 6.解析:由1 2 <2x+1<4,得-1<x+1<2,-2<x<1. 又x∈Z,∴x=-1或0.所以N={-1,0}.从而M∩N={-1}. 答案:{-1} 7.解析:利用特殊值法判断. 答案:b<a<d<c 8.解析:在同一坐标系中作出 1 1 = 2 x y ?? ? ?? 与 2 1 3 x y ?? = ? ?? 的图象,如下图所示,由图象可 知当a<b<0,或0<b<a,或a=b=0时才有可能成立,故不成立的关系式为③0<a<b 和④b<a<0. 答案:③④

4.1.2指数函数图像与性质-学生版

试卷第3页,总3页 4.1.2指数函数图像与性质 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.已知集合{} |2,1x A y y x ==<,则集合R C A =( ) A .(0,2) B .[2,)+∞ C .(,0]-∞ D .(,0][2,)-∞+∞ 2.方程4x -3?2x +2=0的解集为( ) A .{}0 B .{}1 C .{}0,1 D .{}1,2 3.函数()01x y a a a =>≠且在[]1,2上的最大值与最小值的差为2,则a = A .12 B .2 C .4 D .14 4.已知函数1()()x x f x e e =-,则下列判断正确的是( ) A .函数()f x 是奇函数,且在R 上是增函数 B .函数()f x 是偶函数,且在R 上是增函数 C .函数()f x 是奇函数,且在R 上是减函数 D .函数()f x 是偶函数,且在R 上是减函数 5.不等式274122x x --<的解集是( ) A .(,3)-∞- B .(,3)-∞ C .(3,)+∞ D .(3,)-+∞ 6.已知函数()2 ()3 x f x =,则函数y =f (x +1)的图象大致是( ) A . B . C . D .

试卷第2页,总3页 7.已知函数2()1x f x a -+=+,若(1)9-=f ,则a =( ) A .2 B .2- C .8 D .8- 8.设函数 且是上的减函数,则的取值范围是 ( ) A . B . C . D . 9.当(,1?)x ∈-∞-时,不等式(21)420x x m -?-< 恒成立,则m 的取值范围是( ) A .32m < B .0m < C .32m D .302m << 10.如图,在四个图形中,二次函数2y ax bx =+与指数函数x b y a ??= ??? 的图象只可能是( ) A . B . C . D . 11.给出下列4个判断: ①若f (x )=x 2-2ax 在[1,+∞)上增函数,则a =1; ②函数f (x )=2x -x 2只有两个零点; ③函数y =2|x |的最小值是1; ④在同一坐标系中函数y =2x 与y =2-x 的图象关于y 轴对称. 其中正确命题的序号是( ) A .①② B .②③ C .③④ D .①④ 12.用{,min a b ,}c 表示a ,b ,c 三个数中的最小值.设函数 (){}()2,1,90x f x min x x x =+-≥,则函数()f x 的最大值为( ) A .4 B .5 C .6 D .7

苏教版数学高一必修1素材 3.1指数函数

3.1 指数函数【思维导图】

【微试题】 1. 下列函数中,满足“()()()f x y f x f y +=”的单调递增函数是( ) A .()12f x x = B .()3f x x = C .()12x f x ??= ??? D .()3x f x = 【答案】D

2.若函数(1)(0,1)x y a b a a =-+>≠的图像经过第一、三、四象限,则一定有( A ) A .01>>b a 且 B .010<<<>b a 且 【答案】A

3.若函数 1 ( ),0 3 () 1 ,0 x x f x x x ? ≤ ?? =? ?> ?? ,则不等式|f(x)|≥ 1 3的解集为() A. [) 13, B. (],3 -∞ C. []31 -, D. [)31 -,【答案】C

4. 已知函数()f x x x -+=22. (Ⅰ) 用函数单调性定义及指数函数性质证明: ()f x 是区间 ),0(+∞上的增函数; (Ⅱ) 若325)(+?=-x x f ,求x 的值. 【答案】 【解析】解:(Ⅰ) 设120x x ∈+∞,(,),且12x x <,则 )22()22()()(221121x x x x x f x f --+-+=- 121211 (22)()22x x x x =-+- 21 121222(22)22x x x x x x -=-+? =2121212) 12)(22(x x x x x x ++-- ∵120x x ∈+∞,(,),且12x x <, ∴121222220x x x x <∴-<, 1212021x x x x ++>∴> 12210x x +∴->, 又0221>+x x ∴12()()0f x f x -<

考点08 指数与指数函数(学生版)单元检测系列(基础类) 备战2021年高考

考点08 指数与指数函数 1.已知a=20.2,b=0.40.2,c=0.40.6,则() A.a>b>c B.a>c>b C.c>a>b D.b>c>a 2.已知a=20.2,b=0.40.2,c=0.40.6,则() A.a>b>c B.a>c>b C.c>a>b D.b>c>a 3.函数y=2x-2-x是() A.奇函数,在区间(0,+∞)上单调递增 B.奇函数,在区间(0,+∞)上单调递减 C.偶函数,在区间(-∞,0)上单调递增 D.偶函数,在区间(-∞,0)上单调递减 4.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于() A.5 B.7 C.9 D.11 5.已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为() A.[9,81] B.[3,9] C.[1,9] D.[1,+∞) 6.已知x,y∈R,且2x+3y>2-y+3-x,则下列各式正确的是() A.x-y>0 B.x+y<0 C.x-y<0 D.x+y>0 7.已知函数f(x)=a x,其中a>0,且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)等于() A.1 B.a C.2 D.a2 8.若偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-3)> 0}=() A.{x|x<-3或x>5} B.{x|x<1或x>5} C.{x|x<1或x>7} D.{x|x<-3或x>3} 9.若x log52≥-1,则函数f(x)=4x-2x+1-3的最小值为() A.-4 B.-3

高一数学必修一指数函数、对数函数习题精讲

指数函数、对数函数习题精讲 一、指数及对数运算 [例1](1)已知x 21 +x 21-=3,求3 2222323++++--x x x x 的值 (2)已知lg(x +y )+lg(2x +3y )-lg3=lg4+lg x +lg y ,求y x 值. (1)【分析】 由分数指数幂运算性质可求得x 23+x 23 -和x 2+x -2的值. 【解】 ∵x 21+x 21-=3 ∴x 23 +x 23 -=(x 21+x 21 -)3-3(x 21+x 21-)=33-3×3=18 x 2+x -2=(x +x -1)2-2=[(x 21+x 21 -)2-2]2-2 =(32-2)2-2=47 ∴原式= 347218++=5 2 (2)【分析】 注意x 、y 取值范围,去掉对数符号,找到x 、y 关系式. 【解】 由题意可得x >0,y >0,由对数运算法则得 lg(x +y )(2x +3y )=lg(12xy ) 则(x +y )(2x +3y )=12xy (2x -y )(x -3y )=0 即2x =y 或x =3y 故y x =21或y x =3 二、指数函数、对数函数的性质应用 [例2]已知函数y =log a 1(a 2x )·log 2a ( ax 1)(2≤x ≤4)的最大值为0,最小值为-81,求a 的值. 【解】 y =log a 1(a 2x )·log 2a ( ax 1)=-log a (a 2x )[-21log a (ax )] = 21(2+log a x )(1+log a x )=21(log a x +23)2-8 1 ∵2≤x ≤4且-8 1≤y ≤0 ∴log a x +23=0,即x =a 23-时,y min =-81

苏教版数学高一数学必修一练习指数函数(一)

3.1.2指数函数(一) 一、基础过关 1.函数f(x)=(a2-3a+3)a x是指数函数,则a=________. 2.函数y=x 1 2的值域是__________________. 3.若函数y=(a2-1)x在(-∞,+∞)上为减函数,则实数a的取值范围是__________.4.如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x年可以增长到原来的y 倍,则函数y=f(x)的图象大致为________.(填序号) 5.函数y=???? 1 2x2-2x+2(0≤x≤3)的值域为______. 6.函数y=8-23-x(x≥0)的值域是________. 7.判断下列函数在(-∞,+∞)内是增函数,还是减函数? (1)y=4x;(2)y=???? 1 8 x;(3)y=3 2 x . 8.比较下列各组数中两个值的大小: (1)0.2-1.5和0.2-1.7; (2) 3 1 ) 4 1 (和3 2 ) 4 1 (; (3)2-1.5和30.2. 二、能力提升 9.设函数f(x)= ?? ? ??2x,x<0, g(x),x>0. 若f(x)是奇函数,则g(2)=________. 10.函数y=a|x|(a>1)的图象是________.(填序号)

11.若f (x )=????? a x (x >1),????4-a 2x +2 (x ≤1).是R 上的单调递增函数,则实数a 的取值范围为________. 12.求下列函数的定义域与值域: (1)y =21x -4 ;(2)y =????23-|x |;(3)y =4x +2x +1+1. 三、探究与拓展 13.当a >1时,证明函数f (x )=a x +1a x -1是奇函数.

指数与指数函数.板块二.学生版

题型一 指数函数的定义与表示 【例1】 求下列函数的定义域 (1)32 x y -= (2)21 3 x y += (3)512x y ??= ??? (4)()10.7x y = 【例2】 求下列函数的定义域、值域 ⑴11 2 x y -= ; ⑵3x y -=; ⑶2 120.5x x y +-= 【例3】 求下列函数的定义域和值域: 1.x a y -=1 2.31 )2 1(+=x y 【例4】 求下列函数的定义域、值域 (1)11 0.4 x y -=; (2)51 3 x y -=. (3)21x y =+ 典例分析 板块二.指数函数

【例5】 求下列函数的定义域 (1)13x y =; (2)y = 【例6】 已知指数函数()(0,x f x a a =>且1)a ≠的图象经过点(3,π),求(0)f ,(1)f , (3)f -的值. 【例7】 若1a >,0b >,且b b a a -+=b b a a --的值为( ) A B .2或2- C .2- D .2 题型二 指数函数的图象与性质 【例8】 已知1a b c >>>,比较下列各组数的大小: ①___b c a a ;②1b a ?? ??? 1c a ?? ??? ;③11 ___b c a a ;④__a a b c . 【例9】 比较下列各题中两个值的大小: ⑴ 2.51.7,31.7; ⑵ 0.10.8-,0.20.8-; ⑶ 0.31.7, 3.10.9. 【例10】 比较下列各题中两个值的大小 (1)0.80.733, (2)0.10.10.750.75-, (3) 2.7 3.51.01 1.01, (4) 3.3 4.50.990.99,

高中必修一指数和指数函数练习题及答案

指数和指数函数 一、选择题 1.( 36 9a )4(6 3 9a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.若a>1,b<0,且a b +a -b =22,则a b -a -b 的值等于( ) (A )6 (B )±2 (C )-2 (D )2 3.函数f (x )=(a 2 -1)x 在R 上是减函数,则a 的取值范围是( ) (A )1>a (B )2b,ab 0≠下列不等式(1)a 2>b 2,(2)2a >2b ,(3)b a 11<,(4)a 31> b 31 ,(5)(31)a <(31) b 中恒成立的有( ) (A )1个 (B )2个 (C )3个 (D )4个 7.函数y=1 21 2+-x x 是( ) (A )奇函数 (B )偶函数 (C )既奇又偶函数 (D )非奇非偶函数 8.函数y= 1 21 -x 的值域是( ) (A )(-1,∞) (B )(-,∞0)?(0,+∞) (C )(-1,+∞) (D )(-∞,-1)?(0,+∞) 9.下列函数中,值域为R + 的是( ) (A )y=5 x -21 (B )y=( 31)1-x (C )y=1)2 1(-x (D )y=x 21- 10.函数y=2 x x e e --的反函数是( ) (A )奇函数且在R + 上是减函数 (B )偶函数且在R + 上是减函数 (C )奇函数且在R +上是增函数 (D )偶函数且在R + 上是增函数 11.下列关系中正确的是( ) (A )(21)32<(51)32<(21)31 (B )(21)31<(21)32<(51)32

数学苏教版必修1指数函数(教案)

指数函数(一) 教学目标: 使学生理解指数函数的概念,并能正确作出其图象,掌握指数函数的性质;培养学生观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;培养学生发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。 教学重点: 指数函数的概念、图象、性质 教学难点: 指数函数的图象、性质 教学过程: 教学目标 (一)教学知识点 1.指数函数. 2.指数函数的图象、性质. (二)能力训练要求 1.理解指数函数的概念. 2.掌握指数函数的图象、性质. 3.培养学生实际应用函数的能力. (三)德育渗透目标 1.认识事物之间的普遍联系与相互转化. 2.用联系的观点看问题. 3.了解数学知识在生产生活实际中的应用. ●教学重点 指数函数的图象、性质. ●教学难点 指数函数的图象性质与底数a的关系. ●教学方法 学导式 引导学生结合指数的有关概念来理解指数函数的概念,并向学生指出指数函数的形式特点,在研究指数函数的图象时,遵循由特殊到一般的研究规律,要求学生自己作出特殊的较为简单的指数函数的图象,然后推广到一般情况,类比地得到指数函数的图象,并通过观察图象,总结出指数函数的性质,而且是分a>1与0<a<1两种情形. ●教具准备 幻灯片三张 第一张:指数函数的图象与性质(记作§2.6.1 A) 第二张:例1 (记作§2.6.1 B) 第三张:例2 (记作§2.6.1 C) ●教学过程 Ⅰ.复习回顾 [师]前面几节课,我们一起学习了指数的有关概念和幂的运算性质.这些知 识都是为我们学习指数函数打基础. 现在大家来看下面的问题: 某种细胞分裂时,由1个分裂成2个,2个分裂成4个……1个这样的细胞分裂x次后,

指数函数图像及性质学生

指数函数图像及性质(学生)

————————————————————————————————作者:————————————————————————————————日期:

指数函数图象及性质 专题一:分辨指数函数 1、判断下列函数是否为指数函数( ) ①y= (2 1)x ②y=-2x ③y=3-x ④y= (x 1 )101 A .1 B .2 C .3 D .4 专题二:指数函数及复合函数定义域 1、函数f (x )=x 21-的定义域是( ) A .(-∞,0] B .[0,+∞) C .(-∞,0) D .(-∞,+∞) 2、已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是 . 3、函数1 21 8 x y -=的定义域是 ; 4、函数1()1x f x e = -的定义域是 . 专题三:指数函数及复合函数值域 1、函数y=2x -1的值域是( ) A .R B .(-∞,0) C .(-∞,-1) D .(-1,+∞) 2、下列函数中,值域为(0,)+∞的是( ) A .1 25 x y -= B . 11()3 x y -= C . 1 ()1 2x y =- D . 12x y =- 3、函数y= 1 21 -x 的值域是( ) A .(-1,∞) B .(-,∞0)?(0,+∞) C .(-1,+∞) D .(-∞,-1)?(0,+∞) 4、函数| |2 )(x x f -=的值域是( ) A .]1,0( B .)1,0(

C .),0(+∞ D .R 5、函数1 12 31+? ? ? ??=x y 值域为( ) A .(-∞,1) B .( 3 1 ,1) C .[31 ,1) D .[31 ,+∞) 6、函数y=(31 )1822+--x x (-31≤≤x )的值域是 . 7、求2 12)(x x g -=的值域 . 8、函数121 8 x y -=的定义域是 ;值域是 . 9、已知函数225 13x x y ++??= ? ?? ,求值域。 10、已知集合{}1,1-=M ,? ?????<<∈=+4221 1x Z x N ,则=N M ( ) A .{}1,1- B .{}1- C .{}0 D .{}0,1- 11、函数y =x a 在] ,[10上的最大与最小值的和为3, 则a 等于( ) A . 2 1 B .2 C .4 D . 4 1 12、函数x y 2=在]1,0[上的最大值与最小值之和为 . 13、函数=)x (f )1a ,0a (a x ≠>在]2 ,1[上的最大值比最小值大 2 a ,则a 的值为 . 14、若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( ) A . 25 1+ B . 25 1+- C .2 5 1± D . 2 1 5±

必修一:指数与指数函数

指数与指数函数 级级: 姓名: 学号: 得分: 一、选择题(每题5分,共40分) 1.(369a )4(639a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.下列函数中,定义域为R 的是( ) (A )y=5x -21 (B )y=(3 1)1-x (C )y=1)2 1 (-x (D )y=x 21- 3.已知01,b <0 B .a >1,b >0 C .00 D .0a a 且)的图象经过二、三、四象限,则一定有 A.10<b B.1>a 且0>b C.10<a 且0

y A.a <b <1<c <d B.b <a <1<d <c C.1<a <b <c <d D.a <b <1<d <c 二、填空题(每题5分,共30分) 10.已知函数()14x f x a -=+的图像恒过定点P ,则点P 的坐标是___________ 11.方程96370x x -?-=的解是_________ 12.指数函数x a x f )1()(2-=是减函数,则实数a 的取值范围是 . 13.函数221x x y a a =+-(0>a 且1≠a )在区间]1,1[-上的最大值为14,a 的值是 14.计算:412121325.0320625.0])32.0()02.0()008.0()9 45()833[(÷?÷+---_______________ 15.若()10x f x =,则()3f =———————— 三、解答题(16/17/19题各5分,18题15分,共30分) 16.设关于x 的方程02 41=--+b x x 有实数解,求实数b 的取值范围。),1[+∞- 17.设0a 522-+x x . 18.已知2()()1 x x a f x a a a -=-- (0>a 且1≠a ). (1)判断)(x f 的奇偶性;(2)讨论)(x f 的单调性;(3)当]1,1[-∈x 时,b x f ≥)(恒成立,求b 的取值范围。 19.若函数4323x x y =-+的值域为[]1,7,试确定x 的取值范围。

高中数学苏教版必修一指数函数.doc

3.1.2指数函数(二) 一、基础过关 1.函数 y= 16-4x的值域是 ________. 2.设 0< a<1,则关于 x 的不等式a2 x 23 x 2 >a2 x2 2x 3 的解集为 ________. 3.函数 y= a x在 [0,1] 上的最大值与最小值的和为3,则函数 y= 2ax- 1 在 [0,1] 上的最大值是________. 4.已知函数 f(x)= (x- a)(x- b)(其中 a>b) 的图象如图所示,则函数g( x)= a x+ b 的图象是________. (填图象编号 ) 5.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的 2 倍,若荷叶20 天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生 长了 ________天. 6.函数 y=1- 3x(x∈ [- 1,2]) 的值域是 ________. 7.解不等式: (1)9x>3x-2; (2)3× 4x- 2×6x>0. 8.函数 f(x)=a x(a>0,且 a≠ 1)在区间 [1,2] 上的最大值比最小值大a ,求 a 的值.2 二、能力提升 9.已知定义在R 上的奇函数f(x)和偶函数g(x)满足 f(x)+ g(x)= a x-a-x+ 2(a>0,且 a≠1) .若g(2) =a,则 f(2) =________. 10.某工厂的一种产品的年产量第二年比第一年增加21%,第三年比第二年增加44%,则这两年的平均增长率为________.

11.已知函数 f(x)是定义在 R 上的奇函数,当 x>0 时, f(x)= 1- 2 - x ,则不等式 集是 ________. a x - x )(a>0 且 a ≠ 1),讨论 f(x)的单调性. 12.已知 f(x)= 2 (a - a a - 1 三、探究与拓展 b - 2x 13.已知定义域为 R 的函数 f(x)= 2x + a 是奇函数. (1)求 a , b 的值. (2)用定义证明 f(x)在 (-∞,+∞ )上为减函数. (3)若对于任意 t ∈R ,不等式 f(t 2- 2t)+ f(2t 2- k)<0 恒成立,求 k 的范围. 1 f(x)<- 的解

(完整版)指数函数及其性质教案

2.1.2指数函数及其性质教学设计 一、教学目标: 知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。 过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。 情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。 二、教学重点、难点: 教学重点:指数函数的概念、图象和性质。 教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。 三、教学过程: (一)创设情景 问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂 x 次后,得到的细胞分裂的个数 y 与 x 之间,构成一个函数关系,能写出 x 与 y 之间的函数关系式吗? 学生回答: y 与 x 之间的关系式,可以表示为y =2x 。 问题2: 一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x 表示,剩留量用y 表示。 学生回答: y 与 x 之间的关系式,可以表示为y =0.84x 。 引导学生观察,两个函数中,底数是常数,指数是自变量。 1.指数函数的定义 一般地,函数()10≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域是R . 问题:指数函数定义中,为什么规定“10≠>a a 且”如果不这样规定会出现什么情况? (1)若a<0会有什么问题?(如2 1,2=-=x a 则在实数范围内相应的函数值不存在) (2)若a=0会有什么问题?(对于0≤x ,x a 无意义) (3)若 a=1又会怎么样?(1x 无论x 取何值,它总是1,对它没有研究的必要.) 师:为了避免上述各种情况的发生,所以规定0>a 且 1≠a .

苏教版数学高一苏教版必修1指数函数

2.2.2 指数函数 名师导航 知识梳理 1.基础知识图表 2.指数函数的定义 函数_________(a>0且a≠1)叫做指数函数.定义中对a>0且a≠1的规定,是为了保证定义域为实数集,且具有单调性. (1)如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义; (2)如果a<0,比如y=(-4)x,对x= 2 1 , 4 1 等都无意义; (3)如果a=1,则y=1x=1是一个常数,对它没有研究的必要.此时,y=a x的反函数不存在,且不具有单调性; (4)对于无理数指数幂,过去学过的有理数指数幂的性质和运算法则都适用; (5)像y=2·3x,y=x 1 2,y=3x+4等函数都不是指数函数,要注意区分. 3.指数函数的图象和性质 熟练地掌握指数函数的图象,是记忆和理解指数函数性质的关键. 指数函数的性质如下表: a>100时,y>1x<0时,00时,01 (-∞,+∞)上为增函数(-∞,+∞)上为减函数 当x>0时,底大图象高;x<0时,底大图象低 4.关于函数的图象和性质,需注意的几个问题 (1)单调性是指数函数的重要性质,特别是由函数图象的无限伸展,x轴是函数图象的渐近线. 当01时,x→-∞,y→0, 当a>1时,a的值越大,图象越靠近y轴,递增速度越快; 当01)是增函数. 证明:当a>1时,任取x1、x2∈R,x1x1,a>1,∴

《指数函数及其性质》教材分析

新课标人教版必修一§2.1.2 《指数函数及其性质》教材分析 一、 教学内容 指数函数的定义及其有关的概念。指数函数特殊形式 与 的特殊形式的指数函数到一般形式 的过渡。即a 的抽象化过 程,用易理解与生活贴近的例子来构建起指数函数模型;此部分的教学难点为,底数a 的不同取值,指数函数相应的变化。 函数的图像及其性质。底数a 的不同取值范围,相应的图像,通过的定点、定义域、值域、函数的增减性以及奇偶性。此部分是教学的重点,通过学生自己画图动手操作,去探究指数函数的性质,老师引导学生从不同底数性质的异同去归纳。 二、教学目标 知识与技能目标 1、 深刻理解指数函数的定义。 2、 掌握指数函数的图像和性质。通过生活实例、以及师生在教学活动中共 同操作,让学生画出指数函数的图像,归纳出指数函数性质。 3、 知识迁移,初步学会运用指数函数解决问题,并为后学习的对数函数、 幂函数做知识铺垫。 过程与方法目标 1、 由生活实例引出指数函数的定义,并对指数函数的定义和幂运算进行归 纳,让学生进行简单的指数函数运算练习。 2、 引导学生动手画图,进行实际的操作,让学生在画图过程中对指数函数 图像进行初步分析,鼓励学生进行大胆的猜想。 3、 通过观察图像,用表格法归纳出指数函数的性质,体会数形结合和分类 讨论的数学思想方法,增强识图用图的能力。 )1且0(≠>=a a a y x x y 2=x y ???? ??=21

情感态度与价值观目标 1、通过本节课的学习,使学生获得研究函数的规律和方法,提高学生 的学习能力,养成积极主动,勇于探索,不断创新的学习习惯。 2、通过自主探究,培养学生的合作意识与动手能力,让学生体会到成 果的喜悦,并树立学数学,爱数学,用数学的精神。 3、激发学生探索新知的兴趣,为后面学习对数函数和幂函数做铺垫。 三、地位与作用 指数函数及其性质是在学生系统地学习了函数概念及性质,掌握了指数与指数幂的运算性质的基础上展开研究的。作为重要的基本初等函数之一,指数函数是高中所研究的第一种函数,也为今后研究其他函数提供了方法和模式,为后续的学习奠定基础。指数函数在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此要重点研究。 四、教学建议 1、创设情境,从特殊到一般,直观到抽象 指数函数的概念较为抽象,在阐述指数函数的定义时,要联系生活实际,从生活的例子入手,首先让学生建立起指数函数的初印象,然后逐渐深入,加深理解,过渡到抽象的a,最后导入指数函数的定义,但是也要注意不要对学生过于引导,留下足够的思考空间。 2、合作探究,印象深刻 为了让学生总结归纳出指数函数的性质,让学生进行合作性探究,动手实践画图,小组合作分析得出不同底数a的不同性质,各个小组再进行交流。使得学生对于指数函数的性质印象深刻。 3、启发式教学 新课标更加注重学生学习的主体型,所以老师多采用启发式教学,给学生留下很大的思考空间,锻炼学生的思考能力和创造能力。 4、总结反思,优化认知 在学习了函数以及性质之后,要学会反思总结,通过总结在教学过程中经验,优化教学模式,另一方面也通过学生总结,优化学生对于本节课的认知。

苏教版数学必修一新素养同步讲义:3.1 3.1.2 第1课时 指数函数的概念、图象及性质

3.1.2指数函数 第1课时指数函数的概念、图象及性质 1.了解指数函数的实际背景. 2.理解指数函数的概念、意义、图象和性质.3.掌握与指数函数有关的函数定义域、值域、单调性问题. [学生用书P 41] 1.指数函数的定义 一般地,形如y=a x(a>0且a≠1)的函数叫做指数函数,其中x 为自变量,定义域为 R. 2.指数函数的图象与性质 a>100时,y>1; x=0时,y=1; x<0时,00时,01 1.判断(正确的打“√”,错误的打“×”) (1)指数函数y=a x中,a可以为负数.() (2)指数函数的图象一定在x轴的上方.() (3)函数y=2-x的定义域为{x|x≠0}.() ★★答案★★:(1)×(2)√(3)× 2.下列函数:①y=(-2)x;②y=2x;③y=2-x;④y=3×2x.其中指数函数的个数为() A.0B.1 C.2 D.4

★★答案★★:C 3.若f (x )=(a 2-3)a x 是指数函数,则a =________. ★★答案★★:2 4.函数f (x )=2x ,x ∈[0,2]的值域是________. ★★答案★★:[1,4] 指数函数的概念[学生用书P41] 下列函数中,哪些是指数函数. ①y =(-8)x ;②y =2x 2-1;③y =a x ; ④y =(2a -1)x ????a >1 2且a ≠1;⑤y =2×3x . 【解】 ①中底数-8<0,所以不是指数函数. ②中指数不是自变量x ,所以不是指数函数. ③中底数a ,只有规定a >0且a ≠1时,才是指数函数. ④因为a >1 2且a ≠1,所以2a -1>0且2a -1≠1, 所以y =(2a -1)x ????a >1 2且a ≠1为指数函数. ⑤中3x 前的系数是2,而不是1, 所以不是指数函数.故只有④是指数函数. 只需判定其解析式是否符合y =a x (a >0,且a ≠1)这一结构形式,其具备的特点为: 1.指出下列函数中,哪些是指数函数. (1)y =πx ;(2)y =-4x ; (3)y =(1-3a )x ??? ?a <1 3且a ≠0; (4)y =(a 2+2)- x ;(5)y =2×3x +a (a ≠0). 解:根据指数函数的定义,指数函数满足:①前面系数为1;②底数a >0且a ≠1;③指数是自变量. (1)y =πx ,底数为π,满足π>0且π≠1,前面系数为1,且指数为自变量x ,故它是指数函数.

3.1.2指数函数1学生版

1 / 1 3.1.2 指数函数(一) 一、基础过关 1.下列以x 为自变量的函数中,是指数函数的是 ( ) A .y =(-4)x B .y =πx C .y =-4x D .y =a x + 2(a>0且a≠1) 2.函数f(x)=(a 2-3a +3)a x 是指数函数,则有 ( ) A .a =1或a =2 B .a =1 C .a =2 D .a>0且a≠1 3.函数y =21 x 的值域是 ( ) A .(0,+∞) B .(0,1) C .(0,1)∪(1,+∞) D .(1,+∞) 4.如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x 年可以增长到原来的y 倍,则函数y =f(x)的图象大致为 ( ) 5.函数f(x)=a x 的图象经过点(2,4),则f(-3)的值为____________. 6.函数y =8-23- x (x≥0)的值域是________. 7.比较下列各组数中两个值的大小: (1)0.2-1.5和0.2-1.7; (2)(14)13和(14)23; (3)2- 1.5和30. 2. 8.判断下列函数在(-∞,+∞)内是增函数,还是减函数. (1)y =4x ; (2)y =????14x ; (3)y =2x 3. 二、能力提升 9.设函数f(x)=? ???? 2x , x<0, , x>0. 若f(x)是奇函数,则g(2)的值是 ( ) A .-1 4 B .-4 C.14 D .4 10.函数y =a |x|(a>1)的图象是 ( ) 11.若f(x)=???? ? a x ,-a 2 +,是R 上的单调递增函数,则实数a 的取值范围为________. 12.求函数y =????12x2-2x +2 (0≤x≤3)的值域. 三、探究与拓展 13.当a >1时,判断函数y =a x +1 a x -1是奇函数.

相关文档
最新文档