阴离子聚丙烯酰胺的制备

阴离子聚丙烯酰胺的制备
阴离子聚丙烯酰胺的制备

毕业设计(论文)阴离子聚丙烯酰胺的制备

系别:应用化学与环境工程系

专业(班级):应用化学09级1班

作者(学号):赵宜磊(50905021040)

指导教师:曾小剑(讲师)

完成日期:2013年1月15日

蚌埠学院教务处制

蚌埠学院本科毕业设计(论文)

目录

中文摘要 (3)

英文摘要 (4)

第1章绪论 (5)

1.1 阴离子聚丙烯酰胺的描述 (5)

1.2 阴离子聚丙烯酰胺的作用原理 (5)

1.2.1 絮凝作用原理 (5)

1.2.2 吸附架桥原理 (5)

1.3 阴离子聚丙烯酰胺的用途 (6)

1.3.1 水处理领域 (6)

1.3.2 石油采油领域 (6)

1.3.3 造纸领域 (6)

1.3.4 纺织领域 (6)

1.3.5 其他领域 (7)

1.4 阴离子聚丙烯酰胺的发展现状 (7)

1.4.1 发展现状 (7)

第2章阴离子聚丙烯酰胺的制备方法 (8)

2.1水溶液聚合 (8)

2.2反相乳液聚合 (8)

2.3沉淀聚合法 (8)

2.4反相悬浮聚合法 (9)

第3章实验部分 (11)

3.1实验药品设备 (11)

3.1.1实验试剂 (11)

3.1.2实验设备 (11)

3.2实验步骤 (11)

3.3结果与讨论 (11)

3.3.1单体配比对HPAM分子量的影响 (11)

3.3.2 PH值对HPAM分子量的影响 (12)

3.3.3 HLB值对HPAM分子量的影响 (12)

3.3.4反应温度对HPAM分子量的影响 (13)

第4章结论 (14)

致谢 (15)

参考文献 (16)

赵宜磊:阴离子聚丙烯酰胺的制备

阴离子聚丙烯酰胺的制备

摘要:采用反相乳液聚合方法,以Tween-60和Span-80复配作乳化剂,丙烯酰胺(AM)和丙烯酸(AA)为单体共聚制得阴离子聚丙烯酰胺(HPAM)。主要研究了反应温度、HLB值、单体配比等因素对HPAM分子量的影响。实验结果表明:反应温度、HLB值、单体配比等因素直接影响到HPAM的分子量高低。粘度用乌氏粘度计测得。

关键词:反相乳液聚合,聚丙烯酰胺,丙烯酸,影响因素

蚌埠学院本科毕业设计(论文)

Preparation of Anionic Polyacrylamide

Abstract:By inverse emulsion polymerization to Tween-60 and Span-80 as emulsifier compound, acrylamide (AM) and acrylic acid (AA) obtained by

copolymerizing the monomers anionic polyacrylamide (HPAM). Mainly

studied the reaction temperature, HLB value, monomer ratio and other

factors on the molecular weight of HPAM. Experimental results show that:

the reaction temperature, HLB value, ratio of monomers and other factors

directly affect the low molecular weight of HPAM. Viscosity measured

using an Ubbelohde viscometer.

Keywords: inverse emulsion polymerization,polyacrylamide,acrylic acid,influencing factors

赵宜磊:阴离子聚丙烯酰胺的制备

1 绪论

1.1 阴离子聚丙烯酰胺的描述

聚丙烯酰胺分为三种:一是阳离子聚丙烯酰胺;二是阴离子聚丙烯酰胺;三是两性聚丙烯酰胺。其中阴离子聚丙烯酰胺的英文缩写是HPAM。它有以下几个特征:本实验采用的是反相乳液聚合法,制备出的产品为白色乳液状,放置一定时间内不分层,干燥后为白色粉颗粒状,HPAM的分子量范围比较宽,最低可以到600万,最高可以到2500万。HPAM能够以任意的比例溶于水中,但是HPAM 和有机溶剂不相容。阴离子聚丙烯酰胺的PH值范围是7至14。

1.2 阴离子聚丙烯酰胺的作用原理

1.2.1 絮凝作用原理

阴离子聚丙烯酰胺HPAM可以作为絮凝剂使用,主要是和被絮凝物的表面发生作用。因此,用HPAM作为絮凝剂时,应充分考虑被絮凝物的表面的性质。例如动电位、粘度、悬浮液的PH值等因素[1]。其中动电位因素对整个絮凝效果影响最大。所以在被絮凝物的表面动电位为正时,使用HPAM作为絮凝剂可以获得很好地絮凝效果,它通过降低被絮凝物的动电位从而使被絮凝物凝聚沉降。

1.2.2 吸附架桥原理

由于相同分子的表面性质一样,根据同性相斥、异性相吸原理,分子之间很难聚集到一起,因此可以选择表面性质相反的物质通过分子间的相互吸附来达到絮凝沉降的目的。HPAM就具有吸附架桥的作用[2]。利用HPAM分子吸附不同的颗粒分子,使其聚集,从而可以达到沉降的效果。

1.3 阴离子聚丙烯酰胺的用途

蚌埠学院本科毕业设计(论文)

1.3.1 水处理领域

在我国,HPAM在水处理领域应用是它的第二大用途[3]。HPAM在水处理工业中,主要用在三个方面:污水处理、原水处理和工业废水处理。在污水处理中,HPAM主要是用来给污泥脱水。在原水的处理中,主要是利用HPAM的吸附架桥原理,通过连接不同的悬浮颗粒使其聚集沉降,净水能力要比其他絮凝剂高很多。在工业废水处理中,HPAM不是作为主要试剂,作为配方药剂,特别试用于PH值为中性或者碱性的废水。

1.3.2 石油采油领域

由于我国的地质条件比较特殊,国内很多大型油田都采用了聚合物驱油技术[4]。其中主要使用的聚合物就是HPAM,它在提高采油率等方面有很好的效果,因此被广泛使用在强化采油、钻井、固井、完井等采油作业中。对于我国现在已经进入中后期的油田开采来说,通过使用HPAM可以大大提高采油量。

1.3.3 造纸领域

HPAM在造纸领域中主要是作为均度剂、助滤剂、驻留剂等[5]。它在造纸工艺中所起的作用主要有四种:一是它能够提高填料的留着率;二是可以改善浆料的脱水性能;三是可以大大改善纸张的质量;四是可以减轻造纸生产对环境的污染。HPAM能够达到上述效果主要决定于以下四个方面:离子强度、平均分子量、离子性质以及其他的共聚物的活性。

1.3.4 纺织领域

在纺织工业中,HPAM有很多用途。例如在纺织工艺的后阶段,HPAM可以用作整理剂或者上浆剂[6];同时HPAM可以改善织物的表面性质,提高织物的阻燃性,降低织物的静电作用;纺织工业排放的污水,可以用HPAM作为絮凝剂进行处理,从而使水得到二次利用;用作印染助剂时,HPAM可以使产品的附着牢度增大、鲜艳度提高。

赵宜磊:阴离子聚丙烯酰胺的制备

1.3.5 其他领域

在医药工业中,HPAM主要有三个用途。一是可以作为工业用水的处理剂,发挥絮凝剂的作用;二是可以通过吸附沉降作用,分离溶液中的抗菌素;三是可以作为药片的粘接剂。在洗煤、采矿作业中, HPAM可以作为絮凝剂处理作业过程中需要使用以及排放的水;此外还可以回收利用固体颗粒,大大减轻了对环境的污染;在制糖领域,利用HPAM可使蔗汁中细粒子迅速沉降,加快缩短过滤时间,提高了滤液的清澈度;在建材领域,HPAM可用作陶瓷粘接剂、锯石板材冷却剂和涂料增稠分散剂等;在建筑领域,HPAM可以加速石棉水泥的脱水、提高石膏水泥的硬度[7]。另外,HPAM还可用作无机肥料的造粒助剂[8];皮革的保护涂层等。

1.4 阴离子聚丙烯酰胺的发展现状

1.4.1 发展现状

各个国家和地区的阴离子聚丙烯酰胺的应用情况有所不同。在国外,美国和西欧的HPAM使用领域和比例大致相同,第一大领域都是水处理行业,第二大领域是造纸行业;日本的HPAM在造纸行业中使用最多,将近一半的比例,水处理行业是第二大使用领域。在国内,阴离子聚丙烯酰胺主要是用于油田的三次采油和水处理行业。表1.1列举了部分国家的具体使用情况。

表1.1 中国、美国、日本、西欧的阴离子聚丙烯酰胺的消费份额

水处理造纸石油矿山其他中国16.9 10.9 68.1 - 4.1

美国60 25 -11 4

日本32 45 12 8 3

西欧56 29 11 - 4

蚌埠学院本科毕业设计(论文)

2 阴离子聚丙烯酰胺的制备方法

2.1水溶液聚合

水溶液聚合就是把反应单体和引发剂溶解到水中进行反应。该方法是HPAM 工业生产中最早采用的方法,同时也是一直被采用的主要方法,特点是聚合物产率高、操作方便简单而且环境污染小,容易得到高分子量的聚合物。目前,对水溶液聚合方法的研究己经比较广泛、深入。刘纯波等[9]利用AA、AM为单体,以AIBN为引发剂,制备了一种新型增稠剂。吴挡兰等[10]以采用氧化还原体系为引发剂,以AM和AA为单体,加入CTA,制备了低相对分子质量的共聚物。

2.2反相乳液聚合

本次实验采用的就是反相乳液聚合。它是先将有机溶剂和乳化剂混合在一起,然后快速搅拌均匀,接着加入引发剂进行反应。所使用的引发剂分为两种:水溶性的、油溶性的。该聚合反应的场所是在已经分散到油相的微粒中进行的,从而反应产生的热量能够散发均匀,不会出现爆聚,最终可以得到相对分子量高、分子量分布较窄的HPAM。王雨华等[11]同时使用了水溶性和油溶性引发剂,以AM、AA为原料,分段引发进行反相乳液共聚合,制的高分子量HPAM。candau等[14]以AM进行均聚或者与AA进行共聚,通过表面活性剂,稳定微乳液,制备了稳定性好的HPAM。

2.3沉淀聚合法

沉淀聚合法有三个优点:一是聚合反应产生的热容易散发,整个反应体系的粘度小,聚合过程操作简单;二是反应的转化率较高,产物的分子量较大,主要和反应后期单体的自由扩散有关;三是容易制备高纯度、低毒性的HPAM[12];四是后处理过程简单,可以用泵输送物料,通过对产物进行过滤、分离、气流干燥,可以制的疏松的粉状产品。采用沉淀聚合法制备的聚合物和介质并不相容,该过

赵宜磊:阴离子聚丙烯酰胺的制备

程是以溶液聚合作为基础,反应所使用的溶剂需要根据实验要求来具体选择。

2.4反相悬浮聚合法

反相悬浮聚合是近十年发展起来的一种制备水溶性聚合物工业化生产的理想方法。在有机溶剂中,单体的水溶液分散成小液珠,并悬浮在其中,进行的聚合反应[13]。该技术最早是应用在氯乙烯、丙烯腈等均相单体溶液的聚合上。可以利用挥发性有机溶剂的回流散发聚合热,可以使用氧化还原引发体系来控制聚合温度以及不让聚合物中生成交联物质。阴离子型聚丙烯酞胺的反相悬浮聚合研究主要侧重于高吸水树脂的生产,目前国外一些大公司已实现了工业化,而国内也有较多的实验室研究报道,但目前该类产品仍主要依赖于进口。

蚌埠学院本科毕业设计(论文)

3 实验部分

3.1实验药品设备

3.1.1实验试剂

丙烯酰胺、丙烯酸、Tween60、Span80、石油醚、过硫酸铵、无水亚硫酸钠

3.1.2实验设备

电子称、恒温水浴槽、乌氏粘度计

3.2实验步骤

根据实验要求组装好实验装置,检查装置的正确性,称取适量的石油醚作为连续相,然后往里加入适量的乳化剂,搅拌完全后加入实验装置的三口烧瓶中,恒温搅拌,然后加入适量的AM、AA和水,快速搅拌一个半小时后加入适量引发剂,持续搅拌三个小时,反应结束。

3.3结果与讨论

3.3.1单体配比对HPAM分子量的影响

AM/g AA/g PH 水浴温度/℃ HLB值HPAM分子量/千万

1 5.0 5.0 9 40 6 0.60

2 5.0 4.0 9 40 6 0.72

3 5.0 3.0 9 40 6 0.94

4 5.0 2.0 9 40 6 1.03

赵宜磊:阴离子聚丙烯酰胺的制备

表3.1单体配比对HPAM分子量的影响

由表3.1可以看出,在单体溶液中,丙烯酰胺所占比例越高,阴离子聚丙烯酰胺的分子量相对增大。当AA与AM的配比为1:1.25时,阴离子聚丙烯酰胺的分子量最大;当AA与AM的配比为1:1时,阴离子聚丙烯酰胺的分子量最小。而且单体的配比不同,分子量的变化比较明显,这可能是因为两种单体的竟聚力不同所导致的,ΓAM=1.0,ΓAA=0.35。

3.3.2 PH值对HPAM分子量的影响

AM/g AA/g PH 水浴温度/℃ HLB值HPAM分子量/千万

1 5.0 2.0 7 40 6 0.76

2 5.0 2.0 8 40 6 0.83

3 5.0 2.0 9 40 6 0.90

4 5.0 2.0 10 40 6 0.87

表3.2 PH值对HPAM分子量的影响

由表3.2可以看出,随着PH值的增加,HPAM的分子量先增加后减少,出现拐点时的PH值是9,因此可以得出溶液的PH值过高过低都不能制备分子量较高的HPAM,当PH值为9时,制备的HPAM的分子量最高。

3.3.3 HLB值对HPAM分子量的影响

AM/g AA/g PH 水浴温度/℃ HLB值HPAM分子量/千万

1 5.0 2.0 9 40 5 0.85

2 5.0 2.0 9 40 6 0.97

3 5.0 2.0 9 40 7 0.81

4 5.0 2.0 9 40 8 0.83

蚌埠学院本科毕业设计(论文)

表3.3 HLB值对HPAM分子量的影响

由表3.3可以看出,随着HLB值得增加,HPAM的分子量先增加后减少,分子量在最大值时所对应的的HLB值为6,在其他三个不同的HLB值时,HPAM的分子量相差不是很明显。因此要制备分子量较高的HPAM,可以选择HLB值为6时进行反应。

3.3.4反应温度对HPAM分子量的影响

AM/g AA/g PH 水浴温度/℃ HLB值HPAM分子量/千万

1 5.0 2.0 9 30 6 0.89

2 5.0 2.0 9 35 6 0.95

3 5.0 2.0 9 40 6 1.12

4 5.0 2.0 9 4

5

6 0.87

表3.4反应温度对HPAM分子量的影响

由表3.4可以看出,随着反应温度的升高,HPAM的分子量先上升后下降。反应温度低,导致反应太慢,部分原料在一定时间内未参与反应;反应温度高,导致反应速度过快,从而分子量下降。因此利用反相乳液乳液聚合法制备HPAM的最佳反应温度为40℃。

赵宜磊:阴离子聚丙烯酰胺的制备

4 结论

(1).运用反相乳液聚合法成功地制备出了阴离子聚丙烯酰胺。

(2).本实验制备阴离子聚丙烯酰胺的最佳工艺为:AM 5.0g、AA 2.0g、PH=9、HLB=6、反应温度40℃。

蚌埠学院本科毕业设计(论文)

致谢

完成这篇论文总共经历了三个阶段,一是课题相关资料查询学习阶段,二是实验药品与仪器的准备,三是实验阶段,所用时间将近两个月。在整个毕业论文实验过程中,我遇到了很多的困难和问题,通过老师的指导和同学的帮助,我都一一克服了障碍,最终完成实验。在此我要特别感谢一位老师,就是我的论文指导老师曾小剑老师,从开始的文献查询,到实验药品和仪器的准备,以及整个实验过程和最后的论文修改,曾小剑老师都进行了无私的指导和帮助,特别是在论文修改阶段,曾老师非常认真的查看了我的论文初稿,指出了很多不正确的地方,为论文的完善提供了很多很好地建议,我在此非常感谢。

赵宜磊:阴离子聚丙烯酰胺的制备

参考文献

[1] 王强林,李旭祥,吕飞.有机高分子絮凝剂的研究现状(一).精细与专用化

学品.2003,(20):16.

[2] 肖莜俞,张静,李蘅.水处理絮凝剂研究进展[J].矿产与地质.2003.2

[3] 方道斌,郭睿威,哈润华. 丙烯酰胺聚合物[M]. 化学工业出版社,2006.

[4] 蔡开勇,王久芬,杜拴丽.引发体系对聚丙烯酰胺相对分子质量的影响[J]. 华

北工学院学报,1999,20(1).

[5] 赵谨.国内有机高分子絮凝剂的开发与应用[J].2003.23(3):9-12.

[6] 申迎华.水解制备超高相对分子质量阴离子聚丙烯酰胺.太原理工大学学

报.2002.33.(2):160-162

[7] 刘纯波,常乃堂,陶阿晖. 制备聚丙烯酰胺的引发体系[P],中华人民共和国

国家知识产权局,Editor.2005:中国.

[8] 吴挡兰. 水溶液聚合高分子聚丙烯酰胺的研究[J]. 当代化工,2005,34(3):

183-187.

[9] 蔡智奇,孙建中,周其云. 辣根过氧化物酶酶促体系引发丙烯酰胺聚合的研

究[J]. 功能高分子学报,2004,17(1):81-86.

[10] 黄利铭,伍钦. 均聚法制备高分子量聚丙烯酰胺[J]. 功能材料,2004,2(35):

257-261.

[11] 李富生,左晓玲,等. CuSO4-NaHSO3引发的聚丙烯酰胺聚合[J]. 精细石油

化工,2003,3(2):20-22.

[12] De B. Atberto S,Capekl. J. PolymerSeience. Part A:Polymer. Chemistry[J].

1998,36(5):737-745.

[13] Barton J. Free-radieal polymerization in inverse mieroemulsion. Progress

Polymer Seience[J]. 1996,21(3):399-438.

[14] Candau F,Leng Y. S,Pouyet G,etal. Inverse Mieroemulsion Polymerization of

Aerylamide: Charaeterization of the Whate-in-oi1 Mieroemulsions and the Final Mierolatexes. Journal of Colloid and Interface Science[J]. 1984,101(l):167-183.

蚌埠学院本科毕业设计(论文)

赵宜磊:阴离子聚丙烯酰胺的制备

蚌埠学院本科毕业设计(论文)

聚丙烯酰胺合成方法

聚丙烯酰胺合成工艺 (1)A原理:丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 B.丙烯酰胺水溶液聚合存在的问题:①聚合热为82.8 kJ/mol,相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。②是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。③是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。④是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(1.72±0.3)×104和(16.3±0.7)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=4.2±0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C 22O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。

聚丙烯酰胺合成技术与应用

聚丙烯酰胺合成技术与应用介绍 聚丙烯酰胺(PAM)是丙烯酰胺(AM)均聚或1其他单体共聚而成的质量分数为50%以上的线型水溶性高分子化学品的总称。由十其结构单儿中含有酰胺基,易形成氢键,所以具有良好的水溶性,广泛应用于石油、金属及化学矿山开采、水处理、纺织、造纸等行业。PAM 系列产品可分为非离子型(NPAM)、阳离子型(CPAM)、阴离子型(APAM)和两性4大类。相对分子质量大小是PAM主要性能指标之一。 1 PAM的合成方法 PAM一般由自由基引发聚合合成,主要有本体法、水溶液法、乳液法和悬浮法等合成方法。根据聚合是否加入其他单体,又可分为均聚和共聚2种,PAM产品形态有水溶液、乳剂和粉剂等。 1. 1水溶液聚合法 水溶液聚合法是将单体AM和引发剂溶解在水中的聚合反应,是目前应用较广泛和成熟的技术。所得PAM产品有胶状和粉状2种,其胶体采用质量分数为8%-10%或20%-30% AM的水溶液在引发剂作用下直接聚合而得,产物经脱水干燥后可得粉状产品。产物相对分子质量为7万-700万。该法优点为安全、工艺设备简单、环境污染小,缺点是产物固含量低,仅为8%-15%,且易发生酰亚胺化反应,生成凝胶。 在PAM的水溶液聚合中,引发剂在很大程度上决定了聚合反应后得到产物的相对分子质量、产率,因而新型引发体系的开发是AM 水溶液聚合研究的关键。蔡开勇等人研究了过硫酸钾一胺体系、过硫

酸钾连二硫酸钠体系、有机过氧化物、浪酸盐或氯酸盐、金属离子等五类氧化还原引发体系对合成PAM相对分子质量的影响,发现过硫酸钾一连二硫酸钠体系是合成高相对分子质量PAM的有效引发体系。吴挡兰等人采用复合氧化还原引发体系,得到相对分子质量为3. 05 X 106的PAM。穆志坚采用过硫酸钾一氮三丙酰胺引发体系,在最佳土艺条件下,得到相对分子质量为6.2X105的PAM,转化率为98. 94%。张宝军等人开发出一种新型氧化还原引发体系,以AM和丙烯酸钠为单体,进行水溶液自由基共聚合反应,合成了相对分子质量高达1.8X107,过滤比为1. 24的超高相对分子质量PAM。 双官能度引发聚合是自由基聚合中一个很活跃的研究领域,它直接影响聚合速率和聚合物性能,包括端基性能、相对分子质量大小、结构等。Shah和8me、首次提出自由基“逐步聚合”概念,指出双官能度引发齐」能够用十自由基均聚制备超高相对分子质量聚合物。日木江畸厚等人使用双官能度过氧化物Luperox-2, 5-2, 5与NaHS03及Fev组成的氧化还原引发体系引发AM溶液聚合,制备了高相对分子质量的PAM}I-7。黄利铭等人以双官能度氧化还原引发体系为主,配合偶氮化合物引发剂组成新型复合引发体系,在低温下采用均相水溶液聚合法引发AM均聚,制备相对分子质量高达2 000万的PAM。 西南石油学院的胡星琪研究小组开发了一种新型的基十后过渡金属和业硫酸氢钠的AM水溶液聚合用引发体系,该体系的特点是不需要氮气保护,在常温不搅拌的情况下即可引发AM的水溶液聚合反应,日反应过程平稳可控,不易发生爆聚,可得到相对分子质量在

阴离子聚丙烯酰胺PAM工艺介绍

阴离子聚丙烯酰胺PAM工艺介绍 单体制备 丙烯腈储运工段 外运的丙烯腈在氮气的作用下,卸到丙烯腈储罐,在罐内有氮气保护,氮气呼出气体通过洗涤塔洗涤后放空。 发酵工段 菌种在净化空气、消毒培养基等条件下,经种子罐、发酵罐逐级扩大培养获得生产用发酵液。催化水合工段 经离心清洗后的发酵液送入反应系统,流加脱盐水、丙烯腈进行催化水合反应,控制系统中丙烯酰胺、丙烯腈浓度及反应温度;物料平衡后连续出料。产出的丙烯酰胺水溶液送至丙烯酰胺精制工段。 丙烯酰胺(AM)精制工段 丙烯酰胺AM在低温和负压下闪蒸,闪蒸后的单体经过过滤,利用阳床、阴床、混床进行离子交换,进一步纯化聚丙烯酰胺单体。 聚合部分 调制工段 经精制后的单体送入调制釜调至一定浓度和温度。 聚合水解工段 调制后的单体溶液输送至聚合釜,在一定条件下完成聚合及水解,形成的胶体送至储料箱。造粒工段 采用前加碱工艺时,储料箱内的胶体通过造粒机造粒,送至流化床内。采用后水解工艺时,储料箱内的胶体通过一次造粒送至水解器进行水解,水解后将胶粒卸入缓冲料仓内,经过二次造粒机送入流化床。 流化工段 胶粒经流化床完成干燥过程,形成固态颗粒。 研磨系统 干燥后的物料颗粒经多级研磨、筛分,成品经自动称量包装 1、铜催化水合法:采用丙烯腈在铜基催化剂存在下经水合反应来制备丙烯酰胺,所述方法包括使反应体系中出现在一个分子中具有活性亚甲基基团和酸性基团的化合物或其盐,然后使该含有丙烯酰胺的溶液与弱碱性或中度碱性的阴离子交换树脂接触。在上述水合反应中,杂质的生成得到抑制,而催化剂活性却不受任何影响,所得丙烯酰胺可用来制造分子量高并且水溶性好的絮凝剂。 2、铜催化水合法也可将丙烯腈至少通过两个纯化步骤来处理,首先使丙烯腈与强酸性阳离子交换树脂接触,然后与具有伯氨基或仲氨基的树脂或与活性炭接触。最后在铜基催化剂存在下使所得到的丙烯腈经过水合反应。即使采用一般品质的丙烯腈,该方法也能制出高品质的丙烯酰胺,并能进一步制出具有良好水溶性的聚丙烯酰胺。铜催化水合法的缺点是需要回收丙烯腈以及分离铜,浪费资源和能源;同时副反应较多,不容易控制,产品纯度不高。 3、硫酸水合法:先使丙烯腈于100℃以下水解成丙烯酰胺硫酸盐,再中和得丙烯酰胺(AM)。初期通过丙烯酰胺均聚制得了非离子型聚丙烯酰胺,产品比较单一。不久开发了用碱部分水解(后水解法)的阴离子型聚丙烯酰胺。

聚丙烯酰胺生产工艺设计

聚丙烯酰胺(PAM)生产工艺设计 石油工业是国民经济的支柱产业,石油是经济发展的重要保证之一。我国石油资源相对较少,三次采油是我国保障石油供应的重要措施。进行聚丙烯酰生产工艺设计的研究,目的是使我国聚丙烯酰胺生产工艺技术、产品质量、及生产规模均提升到一个较高水平,以满足三次采油对聚丙烯酰胺质和量的要求,避免引进产品带来的风险,保证三次采油技术的顺利实施最终以满足国民经济发展对石油供应的要求,并获得最大经济效益。与此同时,进行聚丙烯酰生产工艺设计的研究,可满足随着三次采油工艺技术的不断提高而对聚丙烯酰胺各项性能不断改进的要求。 PAM最有价值的性能是分子量很高,水溶性强,可以制作出亲水而水不溶性的凝胶,可以引进各种离子基团并调节分子量以得到特定的性能,对许多固体表面和溶解物质有良好的粘附力。由于这些性能,使得PAM被广泛应用于增稠、絮凝、稳定胶体、减阻、粘结,成膜、阻垢、凝胶及生物医学材料等许多方面。PAM的最大用途是在水处理、造纸、采油、冶矿等领域。 此外,聚丙烯酰胺在水处理行业具有广阔的应用前景和巨大的潜在市场。随着环境意识的不断加强,聚丙烯酰胺在城市污水处理方面的应用将会越来越受到重视。聚丙烯酰胺生产工艺技术的研究,也将对城市污水处理工艺技术的提高起到推动作用。 目前PAM生产的工艺路线一般从丙烯腈(AN)为原料开始,经AM装置生产出AM 水溶液,再以AM为原料在PAM装置生产出PAM产品。AM生产工艺主要有以骨架铜为主体的重金属类为催化剂的化学法和以生物酶为催化剂的生物法,其技术的关键在于催化剂,依催化剂的不同生产工艺有较大差异。PAM的生产工艺方法较多,依PAM产品性能要求不同及生产过程采用的引发剂不同,生产工艺方法有较大的差异,其中引发剂是技术关键,属各公司的技术秘密。对PAM生产工艺技术的研究主要体现在引发体系和与PAM生产相关的专用设备上。

阳离子聚丙烯酰胺生产工艺汇总

阳离子聚丙烯酰胺生产工艺 聚丙烯酰胺简称PAM、结构式为[-CH2-CH(CONH2]n-,分子量在400-2000 万之间。聚丙烯酰胺主要有两种商品形式,一种是外观为白色或略带黄色粉末状的,易溶于水,速度很慢,提高温度可以稍微促进溶解,但温度不得超过50℃,以防发生分子降解,难溶于有机溶剂。另一种是无色粘稠胶体,还有聚丙烯酰胺乳液(上海合成树脂研究所研制。中性,无毒。聚丙烯酰胺贮存于阴凉、通风、干燥的库房内,防潮、避光、防热.存放时间不宜过长。聚丙烯酰胺按结构分为阳离子型、阴离子型、两性离子和非离子型。 1.2 阳离子聚丙烯酰胺(CPAM 阳离子聚丙烯酰胺(CPAM是由一种阳离子单元和丙烯酰胺非离子单元构成的共聚物,其分子链上带有可以电离的正电荷基团(-CONH2,在水中可以电离成聚阳离子和小的阴离子,能与分散于溶液中的悬浮粒子吸附和架桥,有着极强的絮凝作用。阳离子聚丙烯酰胺被广泛用于水处理以及冶金、造纸、石油、化工、纺织、选矿等领域,用作增稠剂、絮凝剂、减阻剂,具有凝胶、沉降、补强等作用。CPAM 的分子量一般比NPAM 和APAM 低,特别适用于城市污水、城市污泥、造纸污泥及其它工业污泥的脱水处理。 在阳离子聚丙烯酰胺的合成中较常用的阳离子单体有甲基丙烯酰氧乙基三甲基氯化铵(DMC、丙烯酰氧乙基三甲基氯化铵(DAC、二甲基二烯丙基氯化铵(DMDAAC、丙烯酰氨基丙基三甲基氯化铵(AMPTAC、甲基丙烯酸-2-(N,N-二甲氨基乙酯(DM、丙烯酸-2-(N,N-二甲氨基乙酯(DA等。其中以DMDAAC、DAC、DMC 较常用。(1DMDAAC 二甲基二烯丙基氯化铵,为高纯度、聚合级、季胺盐、高电荷密度的阳离子单体,含微量氯化钠和其他杂质(可控范围,分子式为C8H16NCl,分子量161.5。该分子结构中含有烯基双键,可以通过各种聚合反应,形成线性均聚物和各种共聚物。DMDAAC 作为阳离子单体通过均聚或共聚形成高分子。在水处理过程中可用于脱

分析聚丙烯酰胺阳离子、非离子、阴离子三者在污水处理中

分析聚丙烯酰胺阳离子、非离子、阴离子三者在污水处理中聚丙烯酰胺分为三种,有阳离子聚丙烯酰胺、非离子聚丙烯酰胺、阴离子聚丙烯酰胺,三者都在污水处理中有一定的用途,但是相互间又有一定的区别,以下来把三者间区别做个简单分析下。 聚丙烯酰胺(PAM)是一种线型水溶性高分子,是水溶性高分子化合物中应用最为广泛的品种之一,PAM及其衍生物可以用作高效的絮凝剂、增稠剂、纸张增强剂以及液体的减阻剂,广泛应用于水处理、造纸、石油、煤炭、矿冶、地质、轻纺、建筑等工业部门。 非离子聚丙烯酰胺: 用途: 污水处理剂:当悬浮性污水显酸性时,采用非离子聚丙烯酰胺作絮凝剂较为合适.这是PAM起吸附架桥作用,使悬浮的粒子产生絮凝沉淀,达到净化污水的目的.也可用于自来水的净化,尤其是和无机絮凝剂配合使用,在水处理中效果最佳. 纺织工业助剂:添加一些化学品可配成化学资料,用于纺织品上浆. 防沙固沙:将非离子聚丙烯酰胺溶成0.3%浓度加入交联剂,喷洒在沙漠上可起到防沙固沙的作用. 土壤保湿剂:用作土壤保湿剂和各种改性聚丙烯酰胺的基础原料. 阳离子聚丙烯酰胺: 用途: 污泥脱水:根据污性质可选用本产品的相应牌号,可有效在污泥进入压滤之前进行重力污泥脱水.脱水时,产生絮团大,不粘滤布,

在压滤时不流散,用量少,脱水效率高,泥饼含水率在80%以下. 污水和有机废水的处理:本产品在酸性或碱性介质中均呈现阳电性,这样对污水中悬浮颗粒带阴电荷的污水进行絮凝沉淀,澄清是极为有效的,如酒精厂废水,啤酒厂废水,味精厂废水,制糖厂废水,肉食品厂废水,饮料厂废水,纺织印染厂的废水等,用阳离子聚丙烯酰胺要比用阴离子聚丙烯酰胺,非离子聚丙烯酰胺或无机盐效果要高数倍或数十倍,因为这类废水普遍带有阴电荷. 自来水厂水处理絮凝剂:该产品具有用量少,效果好,成本低等特点,告别是和无机絮凝剂复配使用效果更好. 油田化学品:如粘土防膨剂,油田酸化用稠化剂品等. 造纸助剂:阳离子PAM纸张增强剂是一种含氨基甲酰基的水溶性阳离子聚合物,具有增强、助留、助滤等功能,可有效地提高纸的强度。同时该产品也是一种高效分散剂。 阴离子聚丙烯酰胺: 用途:工业废水处理:对于悬浮颗粒,较出、浓度高、粒子带阳电荷,水的PH值为中性或碱性的污水,钢铁厂废水,电镀厂废水,冶金废水,洗煤废水等污水处理,效果最好。饮用水处理:我国很多自来水厂的水源来自江河,泥沙及矿物质含量高,比较浑浊,虽经过沉淀过滤,仍不能达到要求,需要投加絮凝剂,投加量是无机絮凝剂的1/50,但效果是无机絮凝剂的几倍,对于有机物污染严重的江河水可采用无机絮凝剂和我公司的阳离子聚丙烯酰胺配合使用效果更好。淀粉厂及酒精厂的流失淀粉酒糟的回收:现在很多淀粉厂的废水内含

聚丙烯酰胺合成工艺

聚丙烯酰胺聚合工艺 (1)理论基础丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 丙烯酰胺水溶液聚合为聚丙烯酰胺水溶液时,聚合热为82.8 kJ/mol。相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。其次一个问题是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。第三个问题是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。第四个问题是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(1.72±0.3)×104和(16.3±0.7)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=4.2±0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C 22O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。

优质阴离子聚丙烯酰胺

阴离子聚丙烯酰胺 阴离子聚丙烯酰胺(APAM)产品外观:白色颗粒固含量:≥88% 分子量:600-3000万荷密度:10-40(Mole %)阴离子聚丙烯酰胺是水溶性的高分子聚合物,主要用于各种工业废水的絮凝沉降,沉淀澄清处理。 阴离子聚丙烯酰胺(APAM)产品外观:白色颗粒固含量:≥88% 分子量:600-3000万荷密度:10-40(Mole %)阴离子聚丙烯酰胺使粒子间架桥或通过电荷中和使粒子凝聚形成大的絮凝物,故可加速悬浮液中粒子的沉降,有非常明显的加快溶液澄清,促进过滤等效果。由于其分子链中含有一定数量的极性基团,它能通过吸附水中悬浮的固体粒子,使粒子间架桥或通过电荷中和使粒子凝聚形成大的絮凝物,故可加速悬浮液中粒子的沉降,有非常明显的加快溶液澄清,促进过滤等效果。 阴离子聚丙烯酰胺APAM特点: 1、水溶性好,在冷水中也能完全溶解。 2、添加少量本阴离子聚丙烯酰胺产品,即可收到极大的絮凝效果。一般只需添加0.01~10ppm(0.01~10g/m3),即可充分发挥作用。 3、同时使用阴离子聚丙烯酰胺产品和无机絮凝剂(聚合硫酸铁,聚合氯化铝,铁盐等),可显示出更大的效果。 阴离子聚丙烯酰胺PAM质量指标 阴离子聚丙烯酰胺是水溶性的高分子聚合物,主要用于各种工业废水的絮凝沉降,沉淀澄清处理,如钢铁厂废水,电镀厂废水,冶金废水,洗煤废水等污水处理、污泥脱水等。还可用于饮用水澄清和净化处理。分子量从600万到2500万水溶解性好,能以任意比例溶解于水且不溶于有机溶剂。有效的PH值范围为7到14,在中性碱性介质中呈高聚合物电解质的特性,与盐类电解质敏感,与高价金属离子能交联成不溶性凝胶体。阴离子聚丙烯酰胺APAM也用于造纸助剂、助率剂。在造纸前泵口式储浆池中加入微量PAM-LB-3阴离子聚丙烯酰胺可使水中填料与细小纤维在网上存留提高20-30%。每吨可节约纸浆20-30kg。 在工业用水处理中,低分子量的1800万分子量聚丙烯酰胺还可用作冷却水的阻垢剂.低分子量(104)阴离子型PAM能阻止盐类晶体析出和成长,使固体颗粒悬浮而不致沉积,对锅炉,冷

最全的聚丙烯酰胺分类与特点详解

最全的聚丙烯酰胺分类与特点详解 有代表性的高分子聚丙烯酰胺有:非离子型聚丙烯酰胺(简写NPAM,分子量800-1500万)、阴离子型聚丙烯酰胺(简写APAM,分子量800-2000万)、阳离子聚丙烯酰胺(简写CPAM,分子量800-1200万,离子度10%-80%)。用量一般为废水量的百万分之一至百万分之二。 阴离子聚丙烯酰胺(APAM)产品特性:阴离子聚丙烯酰胺(APAM)外观为白色粉粒,分子量从600万到2500万。水溶解性好,能以任意比例溶解于水且不溶于有机溶剂。有效的PH值范围为4到14,在中性碱性介质中呈高聚合物电解质的特性,与盐类电解质敏感,与高价金属离子能交联成不溶性凝胶体。 阳离子聚丙烯酰胺(CPAM)产品特性:阳离子聚丙烯酰胺(CPAM)外观为白色粉粒,离子度从20%到55%水溶解性好,能以任意比例溶解于水且不溶于有机溶剂。呈高聚合物电解质的特性,适用于带阴电荷及富含有机物的废水处理。适用于染色、造纸、食品、建筑、冶金、选矿、煤粉、油田、水产加工与发酵等行业有机胶体含量较高的废水处理,特别适用于城市污水、城市污泥、造纸污泥及其它工业污泥的脱水处理。

两性离子聚丙烯酰胺是由乙烯酰胺和乙烯基阳离子单体丙烯酰胺水解共聚而成。分子链上既有阳电荷,又有阴电荷的两性离子不规则聚合物。 非离子聚丙烯酰胺(简写NPAM) 产品特性:非离子聚丙烯酰胺系列产品是具有高分子量的低离子度的线性高聚物。由于其具有特殊的基团,便赋予它具有絮凝、分散、增稠、粘结、成膜、凝胶、稳定胶体的作用。污水处理剂:当悬浮性污水显酸性时,采用非离子聚丙烯酰胺作絮凝剂较为合适。这时PAM起吸附架桥作用,使悬浮的粒子产生絮凝沉淀,达到净化污水的目的。也可用于自来水的净化,尤其是和无机絮凝剂配合使用,在水处理中效果最佳。

阴离子聚丙烯酰胺

产品简介 阴离子(APAM)产品描述: 阴离子聚丙烯酰胺(APAM)外观为白色粉粒,分子量从600万 到2500万水溶解性好,能以任意比例溶解于水且不溶于有机溶 剂。有效的PH值范围为7到14,在中性碱性介质中呈高聚合物电解质的特性,与盐类电解质敏感,与高价金属离子能交联成不溶性凝胶体。 阴离子聚丙烯酰胺(APAM)产品特性: 1)絮凝性:PAM能使悬浮物质通过电中和,架桥吸附作用,起絮凝作用。 2)粘合性:能通过机械的、物理的、化学的作用,起粘合作用。 3)降阻性:PAM能有效地降低流体的摩擦阻力,水中加入微量PAM就能降阻50-80%。 4)增稠性:PAM在中性和酸性条件下均有增稠作用,当PH值在10 以上PAM易水解,呈半网状结构时,增稠将更明显。 阴离子聚丙烯酰胺(APAM)主要用途: 工业废水处理:对于悬浮颗粒,较出、浓度高、粒子带阳电荷,水的PH值为中性或碱性的污水,钢铁厂废水,电镀厂废水,冶金废水,洗煤废水等污水处理,效果最好。饮用水处理:我国很多自来水厂的水源来自江河,泥沙及矿物质含量高,比较浑浊,虽经过沉淀过滤,仍不能达到要求,需要投加絮凝剂,投加量是无机絮凝剂的1/50,但效果是无机絮凝剂的几倍,对于有机物污染严重的江河水可采用无机絮凝剂和我公司的阳离子聚丙烯酰胺配合使用效果更好。淀粉厂及酒精厂的流失淀粉酒糟的回收:现在很多淀粉厂

的废水内含淀粉很多,现投加阴离子聚丙烯酰胺,使淀粉微粒絮凝沉淀,然后将沉淀物经压滤机压滤变成饼状,可作饲料,酒精厂的酒精也可采用阴离子聚丙烯酰胺脱水,压滤进行回收。用于河水泥浆沉降。用于造纸干强剂。 用于造纸助剂、助率剂。在造纸前泵口式储浆池中加入微量PAM-ASG-3阴离子聚丙烯酰胺可使水中填料与细小纤维在网上存留提高20-30%。每吨可节约纸浆20-30kg。 举例:在洗煤过程中产生大量废水,直接排放污染环境,必须沉清后循环利用,回收水中煤泥,也很有价值,但靠自然沉降,费时费力,同时水也不清。 洗煤废水尾煤泥 处理前加PAM 处理后含煤3-5% 4ppm 清水回用 处理前加PAM 处理后 含煤泥30% 20ppm 含煤泥70% 阳离子(CPAM)产品特性: 阳离子聚丙烯酰胺(CPAM)外观为白色粉粒,离子度从20%到 55%水溶解性好,能以任意比例溶解于水且不溶于有机溶剂。呈 高聚合物电解质的特性,适用于带阴电荷及富含有机物的废水处理。适用于染色、造纸、食品、建筑、冶金、选矿、煤粉、油田、水产加工与发酵等行业有机胶体含量较高的废水处理,特别适用于城市污水、城市污泥、造纸污泥及其它工业污泥的脱水处理。 阳离子聚丙烯酰胺(CPAM)主要用途: 1)用于污泥脱水根据污泥性质可选用本产品的相应牌号,可有效在污泥进入压滤之前进行污泥脱水,脱水时,产生絮团大,不粘滤布,压滤时不散,流泥饼较厚,脱水效率高,泥饼含水率在80%以下。 2)用于生活污水和有机废水的处理,本产品在配性或碱性介质中均呈现阳电性,这样对污水中悬浮颗粒带阴电荷的污水进行絮凝沉淀,澄清很有效。如生产粮食酒精废水,造纸废水,城市污水处理厂的废水,啤酒废水,味精厂废水,制糖废水,有机含量高废水、饲料废水,纺织印染废水等,用阳离子聚丙烯酰胺要比用阴离子、非离子聚丙烯酰胺或无机盐类效果要高数倍或数十倍,因为这类废水普遍带阴电荷。 3)用于以江河水作水源的自来水的处理絮凝剂,用量少,效果好,成本低,特别是和无机絮凝剂复合使用效果更好,它将成为治长江、黄河及其它流域的自来水厂的高效絮凝剂。

聚丙烯酰胺

聚丙烯酰胺 1、定义 丙烯酰胺聚合物是丙烯酰胺的均聚物及其共聚物的统称。工业上凡是含有50%以上的丙烯酰胺(AM)单体结构单元的聚合物,都泛称聚丙烯酰胺。其他单体结构单元含量不足5%的通常都视为聚丙烯酰胺的均聚物。 聚丙烯酰胺,polyacrylamide(PAM),CAS RN:[9003-05-8],结构式为: n是聚合度。n的范围很宽,数量级为102~105,相应的相对分子质量由几千到上千万。 分子量是PAM的最重要参数。按其值得大小有低分子量(<100×104)、中等分子量(100×104~1000×104)、高分子量(1000×104~1500×104)和超高分子量(>1700×104)四种。不同分子量范围的PAM有不同的应用性质和用途。 2、分类 聚丙烯酰胺按在水溶液中的电离性可分为非离子型、阴离子型、阳离子型、两性型。 非离子型聚丙烯酰胺(NPAM)的分子链上不带可电离基团,在水中不电离;阴离子型聚丙烯酰胺(APAM)的分子链上带有可电离的负电荷基团,在水中可电离成聚阴离子和小的阳离子;阳离子型聚丙烯酰胺(CPAM)的分子链上带有可电离的正电荷基团,在水中可电离成聚阳离子和小的阴离子;两性的聚丙烯酰胺(AmPAM或ZPAM)的分子链上则同时带有可电离的负电荷基团和正电荷基团,在水中能电离成聚阴离子和聚阳离子,ZPAM的电性依溶液体系的PH值和何种类型的电荷基团多寡而定。 PAM的电性称谓和所带的电荷基团解离后的电性称谓相同。 按照聚合物分子链的几何形状可把PAM分为线型、支化型和交联型。PAM分子链的形状一般是线型结构。但是在丙烯酰胺自由基聚合反应的过程中会发生链转移反应。

聚丙烯酰胺絮凝剂的制备

聚丙烯酰胺絮凝剂的制备 一、实验目标 1.了解聚丙烯酰胺的性质及应用。 2.掌握反相乳液聚合法制备聚丙烯酰胺原理、操作条件及方法。 二、产品特性与用途 1.产品特性 聚丙烯酰胺(PAM),由丙烯酰胺聚合而成的热塑性树脂。溶于水,通常有粉状和胶冻状两种形式。 2.产品用途 聚丙烯酰胺目前是应用广、效能高的有机高分子絮凝剂。多用于印染、造纸、金属冶炼等工业领域作废水的处理。引入离子基团形成的阳离子型或阴离子型聚丙烯酰胺,应用范围更加广泛。阳离子聚丙烯酰胺具有除浊、脱色等功能,可用于带负电荷胶体的絮凝;阴离子聚丙烯酰胺具有良好的粒子絮体化性能,适宜用于矿物悬浮物的沉降分离。此外,聚丙烯酰胺在油田、建筑、土壤改良、纺织、液体输送等方面都有广泛应用。 三、实验原理 本实验采用过氧化苯甲酰(BPO)为引发剂,丙烯酰胺单体在分散介质邻二甲苯中进行自由基聚合,生成聚丙烯酰胺。其反应机理为: 丙烯酰胺是水溶性单体,不宜用水作为分散介质,而要选用与水溶性单体不互溶的油溶性溶剂作为分散介质,故本实验以邻二甲苯为分散介质。引发剂也选用油溶性的,以保证引发剂在油相分解形成自由基后扩散到水相引发单体进行聚合反应。本实验选用的过氧化苯甲酰引发剂,溶于有机溶剂而在水中的溶解度很小。人们习惯将上述聚合方法称为反相乳液聚合。对于反相乳液聚合体系,多选用HLB值在3~6的油包水型乳化剂。本实验选用失水山梨醇单硬脂酸酯(Span-60)为乳化剂,HLB值为4.7。 四、主要仪器与药品 1.主要仪器 恒温水浴锅、电动搅拌器、布氏漏斗、250ml三口烧瓶、球形冷凝管等。 2.主要药品 丙烯酰胺,聚合级;过氧化苯甲酰,AR;邻二甲苯,CP。 失水山梨醇单硬脂酸酯(Span-60),化学纯。棕黄色蜡状物,不溶于水,分散于热水成乳液。溶于热油、脂肪酸及各种有机溶剂。具有乳化、分散、增稠、润滑及防锈性能。用作乳化剂、稳定剂,主要用于医药、化妆品、食品、农药、涂料及塑料工业。

聚丙烯酰胺生产工艺设计

聚丙烯酰胺(PAM)生产工艺设计 石油工业是国民经济的支柱产业,石油是经济发展的重要保证之一。我国石油资源相对较少,三次采油是我国保障石油供应的重要措施。进行聚丙烯酰生产工艺设计的研究,目的是使我国聚丙烯酰胺生产工艺技术、产品质量、及生产规模均提升到一个较高水平,以满足三次采油对聚丙烯酰胺质和量的要求,避免引进产品带来的风险,保证三次采油技术的顺利实施最终以满足国民经济发展对石油供应的要求,并获得最大经济效益。与此同时,进行聚丙烯酰生产工艺设计的研究,可满足随着三次采油工艺技术的不断提高而对聚丙烯酰胺各项性能不断改进的要求。 PAM最有价值的性能是分子量很高,水溶性强,可以制作出亲水而水不溶性的凝胶,可以引进各种离子基团并调节分子量以得到特定的性能,对许多固体表面和溶解物质有良好的粘附力。由于这些性能,使得PAM被广泛应用于增稠、絮凝、稳定胶体、减阻、粘结,成膜、阻垢、凝胶及生物医学材料等许多方面。PAM的最大用途是在水处理、造纸、采油、冶矿等领域。 此外,聚丙烯酰胺在水处理行业具有广阔的应用前景和巨大的潜在市场。随着环境意识的不断加强,聚丙烯酰胺在城市污水处理方面的应用将会越来越受到重视。聚丙烯酰胺生产工艺技术的研究,也将对城市污水处理工艺技术的提高起到推动作用。 目前PAM生产的工艺路线一般从丙烯腈(AN)为原料开始,经AM装置生产出AM水溶液,再以AM为原料在PAM装置生产出PAM产品。AM生产工艺主要有以骨架铜为主体的重金属类为催化剂的化学法和以生物酶为催化剂的生物法,其技术的关键在于催化剂,依催化剂的不同生产工艺有较大差异。PAM的生产工艺方法较多,依PAM产品性能要求不同及生产过程采用的引发剂不同,生产工艺方法有较大的差异,其中引发剂是技术关键,属各公司的技术秘密。对PAM生产工艺技术的研究主要体现在引发体系和与PAM生产相关的专用设备上。 在AM制备方面,国外化学催化水合法已属成熟技术,生物催化水合法在日本已取得成功,并有大规模的工业应用。国内化学法则长期来无大的技术突破,引起关注的是用微生物法生产AM水溶液的研究取得了成功。该研究利用生物发酵方法培养出含腈水合酶的菌体,再将其菌体用海藻酸钠包埋作为催化剂使AN与水生成AM。据报道其产酶细胞最高活性达2924u/ml,平均酶活为2556u/ml, AN转化率为99.9%,其主要生产技术属国内领先且达到国际先进水平。 在国内微生物法AM技术研究取得成功后,利用其技术相继建设了四套规模在1000-2000t/a的中试装置,中试过程对其工艺技术进行了进一步研究完善。这些研究中包括与AM聚合工艺相配合的对AM纯度、杂质含量等进

聚丙烯酰胺的合成与分解

聚丙烯酰胺的合成与水解 一、实验目的 1.熟悉由丙烯酰胺合成聚丙烯酰胺的加聚反应。 2.熟悉聚丙烯酰胺在碱溶液中的水解反应。 二、实验原理 聚丙烯酰胺可在过硫酸铵的引发下由丙烯酰胺合成: 由于反应过程中无新的低分子物质产生,所以高分子的化学组成与起始单体相同,因此这一合成反应属于加聚反应。随着加聚反应的进行,分子链增长。当分子量增长到一定程度时,即可通过分子间的相互纠缠形成网络结构,使溶液的粘度明显增加。 聚丙烯酰胺可以在碱溶液中水解,生成部分水解聚丙烯酰胺: 随着水解反应的进行,有氨放出并产生带负电的链节。由于带负电的链节相互排斥,使部分水解聚丙烯酰胺有较伸直的构象,因而对水的稠化能力增加。 聚丙烯酰胺在钻井和采油中有许多用途。 三、仪器和药品 1.仪器 恒温水浴,沸水浴,烧杯,量筒,搅拌棒,电子天平。 2.药品

丙烯酰胺(化学纯),过硫酸铵(分析纯),氢氧化钠(分析纯)。四、实验步骤 1.丙烯酰胺的加聚反应 (1)用台秤称取烧杯和搅拌棒的质量(后面计算用到这一质量)。然后在烧杯中加入2g 丙烯酰胺和18mL 水,配成10%的丙烯酰胺溶液。 (2)在恒温水浴中,将10%丙烯酰胺加热到60℃,然后加入15 滴10%过硫酸铵溶液,引发丙烯酰胺加聚。 (3)在加聚过程中,慢慢搅拌,注意观察溶液粘度的变化。 (4)半小时后,停止加热,产物为聚丙烯酰胺。 2.聚丙烯酰胺的水解 (1)称量制得的聚丙烯酰胺,计算要补充加多少水,可配成5%聚丙烯酰胺的溶液。 (2)在聚丙烯酰胺中加入所需补加的水,用搅拌棒搅拌,观察高分子的溶解情况。 (3)称取20g 5%聚丙烯酰胺溶液(剩下的留作比较用)加入2mL 10%氢氧化钠,放入沸水浴中,升温至9 0℃以上进行水解。 (4)在水解过程中,慢慢搅拌,观察粘度变化,并检查氨气的放出(用湿的广泛pH试纸)。 (5)半小时后,将烧杯从沸水浴中取出,产物为部分水解聚丙烯酰胺。 (6)称取产物质量,补加蒸发损失的水量,制得5%的部分水解聚丙烯酰胺。比较水解前后5%溶液的粘度。 (7)将制得的聚丙烯酰胺倒入回收瓶中。 五、数据处理 聚丙烯酰胺的合成与水解原始数据表

正确区分阴离子阳离子聚丙烯酰胺类型的方法

正确区分阴离子阳离子聚丙烯酰胺类型的方法 聚丙烯酰胺根据起电荷特性大致分为阴离子、阳离子、非离子三种大类,它们的外观形状都是白色粉末或白色颗粒状的。 阴离子和阳离子聚丙烯酰胺都属于PAM中的一种类型,即都具备高分子有机聚合物性质。这两者在污水净化中大都作为絮凝剂使用,但其净化原理和净化效果不相同。在不同行业的污水中所需求的效果不相同,这也是为什么选用聚丙烯酰胺时要求选择类型的重要理由。 1.从溶解时间上来判断 不同型号的聚丙烯酰胺在水中完全溶解的时间也是不尽相同的,阴离子聚丙烯酰胺<非离子聚丙烯酰胺<阳离子聚丙烯酰胺。 阴离子的溶解时间大致是在30分钟以内,非离子的溶解时间大致在40分钟左右,而阳离子的溶解时间一般在60分钟左右。所以,从溶解的时间可以大致分辨出聚丙烯酰胺的型号。

2.测试pH值大小来判断 通过测试聚丙烯酰胺水溶液的pH值,由于不同型号的聚丙烯酰胺的酸碱度不同,可以通过聚丙的性能通过该方法进行鉴别,但是又因为不同厂家生产工艺的原因,会稍微有些偏差,可以通过生产工艺来确定pH值来进行判断。 3、混合添加的方法 经常接触聚丙烯酰胺的大概都清楚,阴离子与阳离子两种离子型是不可以混合使用的,混合添加会起反应效果,由于正负电荷接触会形成棉絮状的物质,而且液体会变的浑浊不清澈。所以也可以采用该方法进行判断,如果想确定可以让厂家做出明确的测试结果。 4、通过污水测试来判断 通过不同聚丙烯酰胺在污水中的适应度,就可以明确的判断出该聚丙烯酰胺的分类。一般阴离子聚丙烯酰胺适用于浓度较高,带正电荷的悬浮物,PH值为中性或者碱性。

总结: 阳离子聚丙烯酰胺适用于带负电荷的悬浮物。非离子聚丙烯酰胺适用于有机,无机混合状态的悬浮物,PH值为中性或者酸性。适合大多数客户现场特定工艺设备要求,帮助客户优化各项污水处理指标。 PAM在水处理工业中的应用主要包括原水处理、污水处理和工业水处理三个方面。在原水处理中,PAM与活性炭等配合使用,可用于生活水中悬浮颗粒的凝聚和澄清;在污水处理中。 PAM可用于污泥脱水;在工业水处理中,主要用作配方药剂。 在原水处理中,用有机絮凝剂PAM代替无机絮凝剂,即使不改造沉降池,净水能力也可提高20%以上。所以目前许多大中城市在供水紧张或水质较差时,都采用PAM作为补充。 在污水处理中,采用PAM可以增加水回用循环的使用率。

聚丙烯酰胺的生产工艺

3 生产工艺 3.1 国外 3.1.1 丙烯酰胺生产技术 丙烯酰胺工业化生产的方法主要有两种:一种是化学法,即用骨架铜作催化剂生产;另一种是生化法,即用生物水和酶作催化剂生产丙烯酰胺。目前,国外丙烯酰胺单体生产装置以化学法为主,技术覆盖率在90%以上,其它为生化法技术。 3.1.1.1 化学法 目前国外主要采用化学法生产丙烯酰胺。早在20世纪60年代,美国氰胺公司和日本三菱化成公司先后开发硫酸水合法生产丙烯酰胺的技术,实现了丙烯酰胺的工业化生产。到了20世纪70年代中期,日本和美国同时开发了以铜为主的催化剂体系,建成直接水合法生产丙烯酰胺单体生产装置,取代了硫酸水合法,被称为丙烯酰胺第二代生产技术。 国外化学法生产丙烯酰胺两个比较有代表性的技术:一是三菱公司悬浮床连续催化生产工艺,产品为50%的丙烯酰胺水溶液;二是美国Dow化学公司为代表的固定床连续催化工艺技术,产品为25%-30%丙烯酰胺水溶液。这两种生产工艺的共同特点是采用丙烯腈催化水合法生产丙烯酰胺,丙烯腈转化率高,无副产品,产品质量好,催化剂和原材料的消耗指标都较低,三废排放量少。

3.1.1.2 生化法 生化法采用生物酶作催化剂,将丙烯腈、水和生物催化剂调配成水合溶液,在催化反应后分离出废催化剂就可得到丙烯酰胺产品。与铜催化水合法相比,其特点是:丙烯腈单程转化率极高,为99.99%;无需分离回收未反应丙烯腈;酶的特异性能使选择性极高,为99.98%,无副反应,无需铜分离工段,无需离子交换处理,使分离精制操作大为简化;产品浓度高,无需提浓操作;整个过程操作简便,设备投资少,生产经济效益高,利于小规模生产:特别适合于生产高粘度的超高相对分子质量的聚丙烯酰胺。到目前为止,生化法已经发展出以下三种具体工艺技术。 (1)应用膜技术的微生物法。包含的工序有微生物菌体培养、菌体重悬液的制备、用游离菌体作生物催化剂进行丙烯腈水合反应、分离反应所得的丙烯酰胺水合液。其特征是用微滤膜来洗涤净化发酵液中的菌体以制备菌体重悬液,用超滤膜来分离丙烯酰胺水合液及生物杂质。采用该工艺生产丙烯酰胺可以明显提高生产效率和菌体利用率,同时水合液产品中的生物杂质含量降低,得到的丙烯酰胺质量好、纯度高。 (2)微生物连续催化法。通过发酵生产含有腈水合酶的丙酸棒杆菌或其诱变株细胞,然后用游离细胞法或固定化细胞法催化丙烯腈水合成丙烯酰胺,然后处理得到高纯度的丙烯酰

阴离子聚丙烯酰胺(1)

聚丙烯酰胺 产品简介 阴离子聚丙烯酰胺(APAM )外观为白色粉粒,分子量从 600万 到2500万水溶解性好,能以任意比例溶解于水且不溶于有机溶剂。 有效的PH 值范围为7到14,在中性碱 性介质中呈高聚合物电解质的特性,与盐类电解质敏感,与高价金属离子能交联成不溶性凝胶体。 阴离子聚丙烯酰胺(APAM )产品特性: 增稠将更明显。 阴离子聚丙烯酰胺(APAM )主要用途: 工业废水处理:对于悬浮颗粒,较出、浓度高、粒子带阳电荷,水的 废水,电镀厂废 水,冶金废水,洗煤废水等污水处理,效果最好。饮用水处理:我国很多自来水厂的水源 来自江河,泥沙及矿物质含量高,比较浑浊,虽 经过沉淀过滤,仍不能达到要求,需要投加絮凝剂,投加 量是无机絮凝剂的1/50,但效果是无机絮凝剂的几倍,对于有机物污染严重的江河水可采用无机絮凝剂和 我公司的阳离子聚丙烯酰胺配合使用效果更好。淀粉厂及酒精厂的流失淀粉酒糟的回收:现在很多淀粉厂 的废 水内含淀粉很多,现投加阴离子聚丙烯酰胺,使淀粉微粒絮凝沉淀,然后将沉淀物经压滤机压滤变成 阴离子聚丙烯酰胺(APAM )产 品描述: 1) 絮凝性: PAM 能使悬浮物质通过电中和,架桥吸附作用,起絮凝作用。 2) 粘合性: 能通过机械的、物理的、化学的作用,起粘合作用。 3) 降阻性: PAM 能有效地降低流体的摩擦阻力,水中加入微量 PAM 就能降阻50-80%。 4) 增稠性: PAM 在中性和酸性条件下均有增稠作用, 当PH 值在10以上PAM 易水解,呈半网状结构时, PH 值为中性或碱性的污水,钢铁厂

饼状,可作饲料,酒精厂的酒精也可采用阴离子聚丙烯酰胺脱水,压滤进行回收。用于河水泥浆沉降。用 于造纸干强剂。 用于造纸助剂、助率剂。在造纸前泵口式储浆池中加入微量 与细小纤维在网上存留提高 20-30%。每吨可节约纸浆 20-30kg 。 值,但靠自然沉降,费时费力,同时水也不清。 1)用于污泥脱水根据污泥性质可选用本产品的相应牌号,可有效在污泥进入压滤之前进行污泥脱水,脱水 时,产生絮团大,不粘滤布,压滤 时不散,流泥饼较厚,脱水效率高,泥饼含水率在 2)用于生活污水和有机废水的处理,本产品在配性或碱性介质中均呈现阳电性,这样对污水中悬浮颗粒带 阴电荷的污水进行絮凝沉淀,澄清 很有效。如生产粮食酒精废水,造纸废水,城市污水处理厂的废水,啤 酒废水,味精厂废水,制糖废水,有机含量高 废水、饲料废水,纺织印染废水等,用阳离子聚丙烯酰胺要 比用阴离子、非离子聚丙烯酰胺或无机盐类效果要高数倍或数十倍,因为这类废水普遍带阴电荷。 3)用于以江河水作水源的自来水的处理絮凝剂,用量少,效果好,成本低,特别是和无机絮凝剂复合使用 效果更好,它将成为治长江、黄河 及其它流域的自来水厂的高效絮凝剂。 4)造纸用增强剂及其它助剂。 5)用于油田经学助剂,如粘土防膨剂,油田酸化用稠化剂。 PAM-ASG-3阴离子聚丙烯酰胺可使水中填料 举例:在洗煤过程中产生大量废水,直接排放污染环境, 必须沉清后循环利用,回收水中煤泥,也很有价 处理前 加PAM 处理后 含煤3-5% 4ppm 清水回用 处理前 加PAM 处理后 含煤泥30% 20ppm 含煤泥70% 阳离子聚丙烯酰胺(CPAM )产 品特性: 阳离子聚丙烯酰胺(CPAM )外观为白色粉粒,离子度从 20%到 55%水溶解性好,能以任意比例溶解于水且不溶于有机溶剂。 呈高聚合物电解质的特性,适用于带阴电荷 及富含有机物的废水处理。适用于染色、造纸、食品、建筑、 冶金、选矿、煤粉、油田、水产加工与发酵 等行业有机胶体含量较高的废水处理,特别适用于城市污水、 城市污泥、造纸污泥及其它工业污泥的脱水 处理。 阳离子聚丙烯酰胺(CPAM )主要用途: 80%以下。 洗煤废水 尾煤泥 ?5

聚丙烯酰胺生产线

聚丙烯酰胺特点:聚丙烯酰胺分子中具有阳性集团(-CONH2),能与分散于溶液中的悬浮粒子吸附和架桥,有着极强的絮凝作用,因此广泛用于水处理以及冶金、造纸、石油、化工、纺织、选矿等领域。PAM用作污水处理,对水中有机物去除效率高,用量少,沉降速度快,制水成本低,是其它絮凝剂无法替代的产品。 聚丙烯酰胺的分子能与分散于溶液中的悬浮粒子架桥吸附,有着极强的絮凝作用。本公司聚丙烯酰胺产品分作:阴离子型、阳离子型、非离子型、两性离子型不同分子量不同离子度的四种系列产品。广泛用于水处理以及冶金、造纸、石油、化工、纺织、制糖、医药、洗煤、选矿等领聚丙烯酰胺(Polyscrylamide)简称PAM,俗称絮凝剂或凝聚剂,分阳离子、阴离子、非离子型,分子量在300-2000万之间,产品外观为白色或略带粉末,易溶于水。特别对酸性和偏酸性水中的有机悬浊物和赤泥起絮凝沉淀及泥液分离作用,用量少、制水成本低,是其它絮凝剂无法替代的产品。聚丙烯酰胺外观:固体产品外观为白色或略带粉末,液态为无色黏稠胶体状,易溶于水,温度超过120℃易分解。聚丙烯酰胺性质:聚丙烯酰胺(Polyscrylamide)简称PAM,俗称絮凝剂或凝聚剂,分子式为+CH2-CHn是线状高分子聚合物,分子量在300-2000万之间。 域。 聚丙烯酰胺指标要求: 阳离子聚丙烯酰胺PAM分子量300-2200(万) 离子度10-70 (%)外观白色颗粒粉末。 阴离子聚丙烯酰胺PAM 分子量300-2200万外观白色颗粒粉末。 聚丙烯酰胺使用方法:使用形态为0.1-0.2℅水溶液,必须用PH≤7的水配制,配成稀溶液后极易水解。应随配随用或在当天用完,不宜长时间存放。PAM用于水处理可以单独使用,也可以和PAC配合使用,但两者搅拌必须分开进行,用根据各自情况确定稀释加水量和投加量大小。 聚丙烯酰胺使用方法及注意事项: 1.配成0.2%浓度的水溶液以使用中性不含盐的水为宜。 2.因本品适用的水体PH值范围比较广泛,一般投加量为0.1-10ppm(0.1-10mg/l)。 3.充分溶解。要求溶解时将水体充分搅拌起来后再缓慢、均匀加入药粉,防止出现大块絮团和鱼眼现象而引起的阻塞管道和泵。 4.搅拌速度一般为200转/分钟为宜,时间不少于60分钟,适当提高水温20-30摄氏度,可加速溶解。药液最高温度应小于60度。 5.确定最佳口药量。使用前先通过实验确定最佳用量。因用量过低,不起作用,用量过高,反而起反作用,超过一定浓度时,PAM不但不絮凝,反而分散稳定使用。 6.本品应储存在阴凉、干燥的地方,防止受潮。 7.工作场地要经常用水冲洗,保持清洁。因其枯度大,散落地下的PAM遇水地面光滑,防止操作人员滑跌引发安全事故。 8.本产品内衬塑料袋,外层用塑料复膜编织袋,每袋25kg。 聚丙烯酰胺(Polyacrylamide)简称PAM,由丙烯酰胺单体聚合而成,是一种水溶性线型高分子物质。单体丙烯酰胺化学性质非常活泼,在双键及酰胺基处可进行一系列的化学反应,

相关文档
最新文档