切换参数优化分析

切换参数优化分析
切换参数优化分析

无线参数设置优化分析

(切换参数部分)

目录

一、频繁切换统计方法 (2)

二、频繁切换问题分析 (2)

2.1伞状切换和功率预算切换 (2)

2.2电平切换与功率预算切换 (4)

2.3质差原因导致频繁切换 (5)

2.4邻区间功率预算频繁切换 (7)

三、频繁切换优化分析工单汇总 (8)

一、频繁切换统计方法

通过Traffica可采集系统通话过程中的切换数据,通过一定的规则(如两小区间隔7秒内切换,反复5次以上)可进行乒乓切换分析。

由于受限于Traffica采集设备,本文频繁切换数据统计仅基于TCH切换占用次数与TCH 呼叫占用次数比例。频繁切换小区定义:TCH占用(呼叫)/ TCH占用(切换)> 10次,即切换与呼叫(起呼与被叫)模型严重不合理。宁波主城区频繁切换区域地理分布如下图:

二、频繁切换问题分析

2.1伞状切换和功率预算切换

PBGT切换是基于路径损耗的切换,其切换算法实时地寻找是否存在一个路径损耗更小、并且满足一定系统要求的小区,并判断是否需要进行切换;AUCL伞状切换参数,在BOOSTER 基站的覆盖层打开伞状切换时,AUCL是指覆盖层对容量层的切换电平门限。

YZ万里行政楼-2(CI= 29961)小区同时开启伞状切换与PBGT切换功能。分析该小区忙时TCH占用情况发现,TCH占用次数(切换)达到835次,而TCH占用次数(呼叫)仅57次,即

TCH占用(切换/呼叫)比例高达15:1,即该小区存在切换频繁现象。

统计YZ万里行政楼-2邻区间切换情况发现,YZ万里行政楼-2(CI= 29961)小区与其共站DCS1800小区YZ万里行政楼18-2(CI=29675)之间切换异常频繁。统计该小区对参数设置如下:

覆盖小区YZ万里行政楼-2到容量小区YZ万里行政楼18-2间伞状切换门限AUCL设为-70,很容易触发900到1800的伞状切换;由于PBGT的切换是发生在同层间的切换,查ACL 参数发现这两个小区虽然是900M和1800M,但是它们却是共站同层的两个小区,覆盖层29961小区信号电平较强,从而容易触发从容量层小区29675到覆盖层小区29961间PBGT 切换。最终产生覆盖层与容量层共站小区之间频繁切换。

解决建议:

1、同时开启伞状与PBGT切换功能,容易造成乒乓切换问题,建议调整YZ万里行政楼-2至YZ万里行政楼18-2伞状切换门限AUCL(-70→-60);

2、关闭29675小区到29961小区间PBGT切换功能(PMRG调至极限或着更改相邻小区间同层参数ACL),使得MS占容量层小区时只通过电平或质量切换至覆盖层小区。

2.2电平切换与功率预算切换

统计YZ望春工业区18-2(CI=29915)小区忙时TCH占用情况发现,该小区忙时TCH占用次数(切换)达到1082次,而TCH占用次数(呼叫)仅78次,即TCH占用(切换/呼叫)比例高达14:1,即该小区存在切换频繁现象。

分析YZ望春工业区18-2小区邻区间切换情况发现,该小区与其共站的YZ望春工业区-2(CI=19171)小区之间切换异常频繁,其中YZ望春工业区18-2小区触发上行电平切换比例高达68.21%。相关联小区间的参数如下:

该小区对中29171到29915的PBGT参数设为0db,从而容易实现从YZ望春工业区-2到YZ望春工业区18-2间切换;而YZ望春工业区18-2主打覆盖方向地形空旷,容易产生电平弱化的特征,从而产生YZ望春工业区18-2触发上行电平切换返回其共站的YZ望春工业区-2小区。该小区所处位置示意图如下:

解决建议:

1、调整YZ望春工业区18-2(CI=29915)小区上行切换电平门限LUR(-95→-98),判决条件LUP/LUN(2/3→3/4),以增加该小区上行电平切换难度;

2、调整YZ望春工业区-2(CI=29171)小区到YZ望春工业区18-2(CI=29915)功率预算切换门限PMRG(0→4),避免该小区对间频繁触发PBGT切换;

3、容量型小区YZ望春工业区18-2(每线话务量0.2erl),且位于高铁沿线,现网PI设

为N,即没有开启C2重新算法,而覆盖型YZ望春工业区-2话务量较高(每线话务量0.51erl),为防止其发生拥塞,建议调整YZ望春工业区-2小区REO(0→2),PET(20→640),此时C2=C1-REO,以降低MS占用该小区的起呼概率。

2.3质差原因导致频繁切换

统计HS清林闲庭-1 (CI=10501)小区忙时TCH占用情况发现,该小区忙时TCH占用次数(切换)达到187次,而TCH占用次数(呼叫)仅8次,即TCH占用(切换/呼叫)比例高达22:1,即该小区存在切换频繁现象。分析HS清林闲庭-1小区邻区间切换情况发现,该小区与其邻区之间切换分布均匀且切换成功率普遍较低,下行质量切换比例高达43.44%,明显存在质差引起频繁切换现象。邻区间切换指标如下表:

HS清林闲庭-1与其各邻区间切换成功率普遍较低,且该小区话务量很低,每线仅0.08er,忙时TCH呼叫占用仅8次,掉话4次,掉话率高达50%,由此判断是HS清林闲庭-1小区自身存在问题,统计该小区KPI指标如下表:

统计该小区载频级语音质量指标发现,该小区TRX3、TRX4语音质量较差,分析频率规划未发现问题,初步还有该小区存在载频隐性故障。查看告警信息发现,该小区存在7745号告警。由于3、4载频同事存在质差,且掉话分布在不同载频上,初步怀疑该小区AFE或RTC某个通道存在问题。告警信息如下:

分析HS清林闲庭-1小区邻区间切换情况发现,该小区与其相邻小区间切换较为频繁。该小区下行语音质量差触发下行质量切换比例高达43.44%,在HS清林闲庭-1主覆盖范围,MS占用容易在信号电平很好的条件下,触发下行质量切换至相邻小区,然后又因功率预算切换(同层小区)回切至本小区,如此产生小区间频繁切换。相关联小区间的参数如下:

解决建议:

1、通过重起HS清林闲庭-1小区BTS或BCF的办法看告警能否消除,若仍存在告警,建议上站排查硬件问题(重点排查分合路单元硬件问题)。

2、在解决硬件问题之前,建议调整HS清林闲庭-1小区质量切换门限QDR(3→5),判决门限QDP/QDN(3/4→4/5),该小区与其所有邻区间质量切换磁滞QMRG(0→3),以缓解该问题小区频繁质差切换问题;

3、调整10492_10501、30524_10501、38107_10501小区对间功率预算切换门限PMRG (6→10),防止各邻小区因功率预算频繁回切至HS清林闲庭-1小区。

2.4邻区间功率预算频繁切换

统计HS兴宁宾馆18-2 (CI=20245)小区忙时TCH占用情况发现,该小区忙时TCH占用次数(切换)达到798次,而TCH占用次数(呼叫)仅78次,即TCH占用(切换/呼叫)比例高达11:1,即该小区存在切换频繁现象。

分析HS兴宁宾馆18-2小区邻区间切换情况发现,该小区与其邻区JD统园宾馆-3、HS 兴宁宾馆-1之间切换较为频繁。HS兴宁宾馆18-2小区PBGT切换比例高达85.89%,而与其切换频繁的10046、38436小区PBGT切换比例也很高。相关联小区间的参数如下:

10046与20245小区间功率预算切换门限设为0,查ACL参数发现这两个小区虽然是900M和1800M,但是它们却是同层小区,很容易触发JD统园宾馆-3至HS兴宁宾馆18-2间PBGT切换;20245_10046小区对PMRG设为6,而覆盖层小区信号电平普遍强于容量层小区,从而容易触发从容量层20245小区到10046小区间的PBGT切换,最终导致该小区对间频繁触发功率预算切换。该小区所处位置示意图如下:

解决建议:

1、调整20245_10046小区对间PMRG(6→15),20245_38436小区对间PMRG(8→15),减少容量层小区向覆盖层小区间功率预算切换次数;

2、覆盖层小区话务压力较小,调整10046_20245小区对PMRG(0→4),38436_20245小区对PMRG(2→4),避免覆盖层小区10046、38436小区向HS兴宁宾馆18-2小区频繁切换。

三、频繁切换优化分析工单汇总

频繁切换问题分析

工单汇总.xls

华为LTE 重要指标参数优化方案

华为LTE 重要指标参数优化方案 优化无线接通率 1、下行调度开关&频选开关 此开关控制是否启动频选调度功能,该开关为开可以让用户在其信道质量好的频带上传输数据。该参数仅适用于FDD及TDD。 MOD CELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=FreqSelSwitch-1; 2、下行功控算法开关&信令功率提升开关 用于控制信令功率提升优化的开启和关闭。该开关打开时,对于入网期间的信令、发生下行重传调度时抬升其PDSCH的发射功率。该参数仅适用于TDD。 MOD CELLALGOSWITCH:LOCALCELLID=1,DLPCALGOSWITCH=SigPowerIncre aseSwitch-1; 3、下行调度开关&子帧调度差异化开关

该开关用于控制配比2下子帧3和8是否基于上行调度用户数提升的策略进行调度。当开关为开时,配比2下子帧3和8采取基于上行调度用户数提升的策略进行调度;当开关为关时,配比2下子帧3和8调度策略同其他下行子帧。该参数仅适用于TDD。 MOD CELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=SubframeSchDiffS witch-1; 4、下行调度开关&用户信令MCS增强开关 该开关用户控制用户信令MCS优化算法的开启和关闭。当该开关为开时,用户信令MCS优化算法生效,对于FDD,用户信令MCS与数据相同,对于TDD,用户信令MCS参考数据降阶;当该优化开关为关时,用户信令采用固定低阶MCS。该参数仅适用于FDD及TDD。MOD CELLALGOSWITCH:LOCALCELLID=1,DLSCHSWITCH=UeSigMcsEnhanceS witch-1; 5、下行调度开关&SIB1干扰随机化开关 该开关用于控制SIB1干扰随机化的开启和关闭。当该开关为开时,SIB1可以使用干扰随机化的资源分配。该参数仅适用于TDD。

汽车动力传动系参数优化设计

汽车理论Project 第一章汽车动力性与燃油经济性数学模型立 1.汽车动力性与燃油经济性的评价指标 1.1 汽车动力性评价 汽车的动力性是指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。汽车的动力性主要可由以下三方面的指标来评定: (1)最高车速:最高车速是指在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶速度。它仅仅反映汽车本身具有的极限能力,并不反映汽车实际行驶中的平均车速。 (2)加速能力:汽车的加速能力通过加速时间表示,它对平均行驶车速有着很大影响,特别是轿车,对加速时间更为重视。当今汽车界通常用原地起步加速时间与超车加速时间来表明汽车的加速能力。原地起步加速时间是指汽车由第I挡或第II挡起步,并以最大的加速强度(包括选择适当的换挡时机)逐步换至最高挡后达到某一预定的距离或车速所需要的时间。超车加速时间是指用最高挡或次高挡内某一较低车速全力加速至某一高速所需要的时间。 (3)爬坡能力:汽车的爬坡能力是指汽车满载时用变速器最低挡

在良好路面上能爬上的最大道路爬坡度。 1.2 汽车燃油经济性评价 汽车的燃油经济性是指在保证汽车动力性能的前提下,以尽量少的燃油消耗量行驶的能力。汽车的燃油经济性主要评价指标有以下两方面: (1)等速行驶百公里燃油消耗量:它指汽车在一定载荷(我国标准规定轿车为半载、货车为满载)下,以最高挡在良好水平路面上等速行驶100km的燃油消耗量。行驶的燃油消耗量。 (2)多工况循环行驶百公里燃油消耗量:由于等速行驶工况并不能全面反映汽车的实际运行情况。汽车在行驶时,除了用不同的速度作等速行驶外,还会在不同情况下出现加速、减速和怠速停车等工况,特别是在市区行驶时,上述行驶工况会出现得更加频繁。因此各国都制定了一些符合国情的循环行驶工况试验标准来模拟实际汽车运行 状况,并以百公里燃油消耗量来评价相应行驶工况的燃油经济性。1.3 汽车动力性与燃油经济性的综合评价 由内燃机理论和汽车理论可知,现有的汽车动力性和燃油经济性指标是相互矛盾的,因为动力性好,特别是汽车加速度和爬坡性能好,一般要求汽车稳定行驶的后备功率大;但是对于燃油经济性来说,后备功率增大,必然降低发动机的负荷率,从而使燃油经济性变差。从汽车使用要求来看,既不可脱离汽车燃油经济性来孤立地追求动力性,也不能脱离动力性来孤立地追求燃油经济性,最佳地设计方案是在汽车的动力性与燃料经济性之间取得最佳折中。目前,在进行动力

汽车动力传动系统参数优化匹配方法

1 机械传动汽车动力传动系统参数的优化通常包括发动机性能指标的优选,机械变速器传动比的优化和驱动桥速比的优化,以下分别阐述。 7.1汽车发动机性能指标的优选方法 在汽车设计中,发动机的初选通常有两种方法: 一种是从保持预期的最高车速初步选择发动机应有功率来选择的,发动机功率应大体上等于且不小于以最高车速行驶时行驶阻力功率之和;一种是根据现有的汽车统计数据初步估计汽车比功率来确定发动机应有的功率。 在初步选定发动机功率之后,还需要进一步分析计算汽车动力性和燃料经济性,最终确定发动机性能指标(如发动机最大转矩,最大转矩点转速等)。 通常在给定汽车底盘参数、整车性能要求(如最大爬坡度max i ,最高车速m ax V ,正常行驶车速下百公里油耗Q ,原地起步加速时间t 等),以及车辆经常运行工况条件下,就可以选择发动机的最大转矩T emax ,及其转矩n M ,最大功率max e P 及其转速P n ,发动机最低油耗率min e g 和发动机排量h V 。 在优选发动机时常常遇到两种情况:一种情况是有几个类型的发动机可供选择,在整车底盘参数和车辆经常行驶工况条件确定时,这属于车辆动力传动系合理匹配问题,可用汽车动力传动系统最优匹配评价指标来处理。 第二种情况是根据整车性能要求和汽车经常行驶工况条件来对发动机性能提出要求,作为发动机选型或设计的依据,而这时发动机性能是未知的。 对于计划研制或未知性能特性指标的发动机性能可看作为发动机设计参数和运行参数的函数,此时,外特性和单位小时燃油消耗率可利用表示发动机的简化模型。 优选汽车发动机参数的方法: (1) 目标函数F (x ) 目标函数为汽车行驶的能量效率最高。 (2) 设计变量X ],,,,[max h M p e em V n n P T X

ADAMS VIEW 参数化和优化设计实例详细讲解

ADAMS/VIEW 参数化和优化设计实例详解 本例通过小球滑落斜板模型,着重详细说明参数化和优化设计的过程。 第一步,启动adams/view(2014版),设置工作路径,设置名称为incline。 名称 存储路径第二部,为满足模型空间,设置工作网格如图参数。 修改尺寸 第三部创建斜板。点击Bodies选项卡,选择BOX,然后建模区点击鼠标右键,分别设置两个点,坐标为(0,0,0)和(-500,-50,0),创建完模型,然后右键Rename,修改名称为xieban。

右键输入坐标,创建点BOX rename 输入xieban

第四部创建小球。点击Bodies选项卡,选择Sphere,然后建模区点击鼠标右键,分别设置两个点,球心坐标为(-500,50,0)和半径坐标(-450,50,0),创建完模型,然后右键Rename,修改名称为xiaoqiu。 输入两点 Rename,及创建效果 第五部创建圆环。点击Bodies选项卡,选择Torus,然后建模区点击鼠标右键,分别设置两个点,圆环中心坐标为(450,-1000,0)和大径坐标(500,-1000,0),创建完模型,然后右键Rename,修改名称为yuanhuan。完成后效果如下图: 第六部修改小球尺寸及位置。首先修改小球半径为25mm,在小球上右键,选择球体,点击Modify,然后设置如下图;然后修改小球位置,将Y坐标移到25mm处,选择Marker_2点,

右键点击Modify,然后设置坐标位置如下图。 右键编辑球半径 修改半径为25 改后效果 修改球的位置

设置球坐标 完成修改后效果 第七部修改圆环尺寸及位置。将圆环绕X轴旋转90度,选择Marker_3点,右键点击Modify,然后设置坐标位置如下图。修改圆环尺寸,大径为40mm,截面圆环半径为12mm,右键,选择圆环体,点击Modify,然后设置如下图。至此,模型建立完毕。 修改圆环位置

LTE切换优化专题-参数功能和优化思路

内容:参数功能及设置、切换原理、信令流程、优化案例等。 1LTE切换原理 1.1Intra-eNodeB切换 触发事件:A3事件(同频切换),A5事件(异频切换) 当UE从当前所处的服务小区切换到同一eNodeB下的另一小区时,会发生Intra-eNodeB切换。 基于X2接口的切换 触发事件:A3事件(同频切换),A5事件(异频切换) 当两个eNodeB之间存在X2接口时,UE从当前所驻留的服务小区切换到另一eNodeB时,可采用基于X2接口的切换。 基于S1接口的切换 触发事件:A3事件(同频切换),A5事件(异频切换) 当两个eNodeB之间不存在X2接口,或X2接口不可用时,UE从当前所驻留的服务小区切换到另一eNodeB时,可采用基于S1接口的切换。 1.1.1LTE到3G的切换 实现LTE到3G的切换首先需要满足几个前提: 1.网络侧,LTE系统和3G系统均支持LTE到3G的PS切换 2.UE侧,UE需要支持LTE到3G的PS切换,UE的Feature Group Indicator bit 位8 和bit位22数值必须为1。 LTE到3G切换的流程概述: 1.LTE基站如果收到UE上报的A2测量报告,发现LTE的覆盖较差。 2.LTE基站通过RRC重配置消息对UE配置B2事件的测量的相关参数。 3.LTE基站收到B2事件的测量报告后,通过MobilityFromEutranCommand通 知UE发起到3G的切换。 4.LTE基站收到UE上发的MobilityToUtranComplete,切换成功。 主要的LTE RRC空口信令: ●UE上报B2测量报告:Measurement Report ●UE在LTE小区收到往3G切换命令:MobilityFromEutranCommand ●UE向LTE小区反馈到3G切换成功:MobilityToUtranComplete

汽车传动系参数的优化匹配研究(精)

汽车传动系参数的优化匹配研究 课题分析: 汽车的动力性、燃油经济性和排放特性是汽车的重要性能。如何在保证汽车具有良好动力性的同时尽量降低汽车的油耗并获得良好的排放特性,是汽车界需要解决的重大问题。传动系参数的优化匹配设计是解决该问题的主要措施之一。 汽车传动系参数的优化匹配设计是在汽车总质量、质量的轴荷分配、空阻及滚阻等量已确定的情况下,合理地设计和选择传动系参数,从而大幅提高匹配后汽车的动力性、燃油经济性和排放特性。 以往传动系统参数设计依靠大量的实验和反复测试完成,耗时长,费用高,计算机的广泛应用和新的计算方法的出现,使得以计算机模拟计算为基础的传动系设计可在新车的设计阶段就较准确地预测汽车的动力性、经济性和排放特性,经济且迅速。 目前国内围绕汽车传动系参数的设计和优化,主要在以下几个方面展开工作:①汽车传动系参数优化匹配设计评价指标的研究;②汽车传动系各部分数学模型的研究,特别是传动系各部分在非稳定工况下模型的研究;③按给定工况模式的模拟研究;④按实际路况随机模拟的研究;⑤传动系参数优化模型的研究;⑥模拟程序的开发和研究。 检索结果: 所属学科:车辆工程 中文关键字:汽车传动系参数匹配优化 英文关键字:Power train;Optimization;Transmission system; Parameter matching; 使用数据库:维普;中国期刊网;万方;Engineering village;ASME Digital Library 文摘: 维普: 检索条件: ((题名或关键词=汽车传动系)*(题名或关键词=参数))*(题名或关键词=优化)*全部期刊*年=1989-2008 汽车传动系统参数优化设计 1/1 【题名】汽车传动系统参数优化设计 【作者】赵卫兵王俊昌 【机构】安阳工学院,安阳455000 【刊名】机械设计与制造.2007(6).-11-13 【文摘】主要研究将优化理论引入到汽车传动系参数设计中,以实现汽车的发动机与传动系的最佳匹配,达到充分发挥汽车整体性能的目的。 汽车发动机与传动系优化匹配的仿真研究 【题名】汽车发动机与传动系优化匹配的仿真研究

【Adams应用教程】第10章ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计

本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及ADAMS/View 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。其中DOE是通过ADAMS/Insight来完成,设计研究和优化分析在ADAMS/View中完成。通过本章学习,可以初步了解ADAMS参数化建模和优化的功能。 10.1 ADAMS参数化建模简介 ADAMS提供了强大的参数化建模功能。在建立模型时,根据分析需要,确定相关的关键变量,并将这些关键变量设置为可以改变的设计变量。在分析时,只需要改变这些设计变量值的大小,虚拟样机模型自动得到更新。如果,需要仿真根据事先确定好的参数进行,可以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真,以便于观察不同参数值下样机性能的变化。 进行参数化建模时,确定好影响样机性能的关键输入值后,ADAMS/View提供了4种参数化的方法: (1)参数化点坐标在建模过程中,点坐标用于几何形体、约束点位置和驱动的位置。点坐标参数化时,修改点坐标值,与参数化点相关联的对象都得以自动修改。 (2)使用设计变量通过使用设计变量,可以方便的修改模型中的已被设置为设计变量的对象。例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。当设计变量的参数值发生改变时,与设计变量相关联的对象的属性也得到更新。 (3)参数化运动方式通过参数化运动方式,可以方便的指定模型的运动方式和轨迹。 (4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。当以上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。 参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动,而且可以达到对模型优化的目的。参数化机制是ADAMS中重要的机制。 10.2 ADAMS参数化分析简介 参数化分析有利于了解各设计变量对样机性能的影响。在参数化分析过程中,根据参数化建模时建立的设计变量,采用不同的参数值,进行一系列的仿真。然后根据返回的分析结果进行参数化分析,得出一个或多个参数变化对样机性能的影响。再进一步对各种参数进行优化分析,得出最优化的样机。ADAMS/View提供的3种类型的参数化分析方法包括:设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。 10.2.1 设计研究(Design study) 在建立好参数化模型后,当取不同的设计变量,或者当设计变量值的大小发生改变时,仿真过程中,样机的性能将会发生变化。而样机的性能怎样变化,这是设计研究主要考虑的内容。在设计研究过程中,设计变量按照一定的规则在一定的范围内进行取值。根据设计变

优化环境配置参数,加快CATIA启动

优化环境配置参数,加 快C A T I A启动 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

1.优化环境配置参数,加快C A T I A启动优化CATIA的环境配置参数,可以让你的CATIA启动更快。 下面我们看看CATIA中的环境配置文件放在哪里?如图所示: 打开Envdir文件,这是环境配置文件放置的路径,根据这个路径找到环境配置文件CATenv。

按照图示操作。 参数如下: !---------------------------------------------------------- CNEXTBACKGROUND=no ! 开始时不显示蓝天背景 CATNoStartDocument=no ! 启动时不加载CATProduct 工作台 CNEXTSPLASHSCREEN=no ! 不显示启动行星动画,如果你想更换为自己的LOGO可替换如下文件即可! ! 。。。。。。。\intel_a\resources\graphic\splashscreens\ !CNEXTOUTPUT=console ! 显示DOS命令和日志窗口,如果不需要出现DOS窗口可设 =no CATLM_ODTS=1 ! 启动时禁止license 错误信息 L_WILSON_LAN=1 ! 使用 Wilson's spline 曲线 CGM_ROLLINGOFFSET=1 ! 使用旋转偏移选项(GSD) TAILLE_MEMOIRE_CHOISIE=1 ! 优化IGES输出内存 SHOW_CST_CHILDREN=1 ! 草图绘制中,父级说明强调显示 MM_NO_REPLACE=1 ! 无关联组件装配复位 IRD_PRODUCTTOPART=1 ! 把 product转为PART的工具,要使用此命令,到装配设计工作台----tools--- Convert Product To Catpart MFG_MULTI_MP_APPLY=1 ! multi instantation the manufacturing process MFG_CATMFG_REMOVE_MOTION_TOOL_CHANGE=1 ! remove th GOTO X Y Z during toolchange in APT file !---------------------------------------------------------- ! V4/V5移植变量: KEEP_HIDDEN_ELEMENT=1 ! No Show Elements are migrated cleanV4Topology=1 ! It cleans topology automatically CATMigrSolidMUV4AsPart=1 ! By Pasting "As_SPEC" It migrates SolidM into CATPart REPORT_BREP_INFO=1 ! It makes migration report V5V4SaveAsVolume=1 ! It migrates *SOL to *VOL

切换优化操作手册

切换优化操作手册 在测试过程中,我们一般会遇到较多的切换问题,如强信号质差、切换失败、切换频繁等等切换问题,下面我们对测试过程中的一些切换问题的进行总结,希望对大家有所帮助。 一、切换基本原理: 切换就是指将一个正处于呼叫建立状态或BUSY状态的MS转换到新的业务信道上的过程。MS在通话过程中,不断地向所在小区的基站报告本小区和相邻小区基站的无线环境参数,同时BTS也在不停的测量上行信号的强度和质量,以及TA值。而后由BTS把测量报告送往BSC中进行locating运算,由BSC决定是否进行。 二、切换类型及触发条件 网络中的切换有很多种类型,现网中主要见到的有: 1)正常切换:这种切换通常是由于相邻小区能提供更好的链路。 2)质差或超TA紧急切换:主要是当前情况下出现链路质量非常差,或者时间提前量TA太大,将导致紧急切换。 3)小区内切:这种切换行为主要是为了提高C/I的载干比,当信号电平足够高,而误码足够大时就发生小区内切换。 三、常见切换问题 日常的测试过程中主要遇到的切换问题有切换失败、切换频繁等问题。 切换失败问题:

1)对于测试过程中遇到的切换失败问题,主要从以下几方面着手分析:是否存在较强邻区,但是不切换;是否有切换命令,但是切换不成功的; 2)对于有较强邻区,但是不切换的问题,可以从以下几方面着手考虑:有无定义邻区关系。用RLNRP检查是否定义相邻关系。 邻区关系定义是否正确,主要是考虑同MSC不同BSC之间切换,有 无在BSC定义外部小区,或定义是否正确(用RLDEP等指令检查); 不同MSC之间切换的,有无在MSC(用MGOCP等指令检查)和BSC (用RLDEP等指令检查)定义外部小区,或定义是否正确。 参数设置是否正确,影响较大的主要是层切换的参数,layer,layerthr, layerhyst等; 目标小区是否有硬件问题。可以通过分析话务统计数据、拨测、查 看小区故障记录等手段定位,提交基站检测单。 3)对于已经有切换命令,但是切换不成功的问题,可以从以下几方面着手考虑; 查看话务统计(主要是TCH拥塞率、话务量、数据业务相关统计等

05 Maxwell_RMxprt参数化与优化设置

5 参数化分析和优化分析 优化设计由参数化分析(Parametric Analysis)和优化分析(Optimization)两部分构成。使用优化器optimetrics,用户可以从众多可行方案中找出一个最优解。一般原始设计方案,是一个初步的设计方案,需要将原始设计方案中的一些设计参数用变量定义,然后对这些变量进行优化。 Parametric Analysis(参数化分析):定义一个或多个扫描变量,并给每个扫描变量定义取值范围。优化器会在所有变量取值点进行计算,得到一系列的计算结果,这样用户就可以对结果进行比较从而确定每个设计变量对最终设计性能的影响。参数化分析常常可以用作优化分析的前期处理,因为它可以为优化分析提供变量的合理取值范围。 Target Optimization(目标优化):先确定优化目标和成本函数,优化器通过优化设计参数值来满足优化目标要求。 以上两个模块既可以单独使用,也可以结合使用。此外,优化器还具有良好的通用性,可用于与所选电机类型无关的其他优化设计。 5.1 RMxprt中的变量和参数 通过输入或输出参数,RMxprt界面可以与RMxprt求解器交换数据。RMxprt求解器从RMxprt 界面接收输入参数和设计参数,并返回输出参数(或简称为参数)给RMxprt界面。在RMxprt界面中,我们可以定义输入变量(或简称为变量)和输出变量。变量用来给设计参数赋值,而输出变量用来接收输出参数的值。 变量可以是一个数值,也可以是其他变量的函数。数值变量是一个独立变量,而函数变量则是一个相关变量。给设计参数赋值的变量可以是独立变量,也可以是相关变量,还可以是数学表达式。在下列几种情形中,变量是非常有用的: 1.当需要改变设计参数的值时。 2.当需要对不同的设计参数使用相同的值时。 3.在参数化分析中,需指定了一系列具有一定取值范围的扫描变量时。 4.在优化分析中,优化设计参数时。 在RMxprt中有两种类型的变量:project variables和design variables。 project variables(项目变量):项目变量在整个Maxwell项目都有效,项目变量可以赋值给该项目中的任何设计变量。在RMxprt中,通过在项目变量名称上加上前缀符号$,来区分项目变量和设计变量。用户可以在创建它时就手动的将符号$添加到项目变量中,或者RMxprt 自动添加。 design variables(设计变量):设计变量是与RMxprt设计有关的。设计变量可以赋值给RMxprt设计中的任何设计参数。 5.1.1 项目变量 5.1.1.1 添加项目变量 添加项目变量的步骤如下:

程序化参数优化问题

如何解决在程序化交易中参数优化的问题程序化交易的书籍在市面上层出不穷,大多数打算进行程序化交易的朋友都会去阅读一两本或者更多。我敢肯定通过阅读大家会发现,这些书里面每一本都会提到交易模型的参数优化的问题。这是由于现代的计算机处理技术发展的同时也带来了一些困惑,程序化交易可以说是建立在计算机和通讯技术的基础之上的一种交易手段,如果没有这些基础设施,那么程序化交易也就不能存在。正是有了可以高速运行的CPU才使我们可以对参数进行优化。光凭技术手段并不足以解决所有交易的问题,这就是为什么说交易是一门艺术之所在,而我们使用机械的交易方法是为了尽可能的避免人为的判断和情绪对交易的不良影响,在我们没有形成自己的一套交易体系之前通过机械的方法来进行交易无疑可以少走很多弯路,把时间和金钱留给我们用来积累更多的经验,让我们首先确保在市场中生存,再去追求如何使交易变成艺术。因此作为一个力求以科学和规律的方法解决交易的问题的人,我试图通过本文来解决大家在程序化交易中参数优化这个矛盾的问题。 什么是参数优化 在这里首先我们介绍一下什么是参数优化,以便一些刚刚接触程序化交易的朋友阅读本文,已经了解这方面知识的朋友可以掠过本段。 对于一些模型来说会有一些参数,这些参数设置的主要含义可能是为模型提供一个周期,举个例子来说象n日均线上穿N日均线(n为短周期均线参数,N为长周期均线参数,一般短周期的移动平均要比长周期的变化要快,所以我们通过这两个不同周期的均线来制定交易计划),n和N参数的意义就是指定周期,一般来说参数的意义都与时间有关系(周期),但也有其他的用途。参数优化实际上就是利用计算机的处理能

发动机传动系统动力总成优化设计

发动机传动系统动力总成优化设计 发动机相当于汽车的心脏,在车辆整车总布置设计中,对发动机传动系统传动轴角度的校核是一项重要工作。如果发动机传动轴初始工作角度选取不当,会使其工作夹角很容易超出合理范围,造成传动轴零件的损坏,降低其使用寿命,恶化整车平顺。为保证传动轴设计寿命和整车性能,在设计初期就应对各传动轴夹角进行校核。 标签:发动机;参数化设计;传动轴夹角;动力优化 引言: 动力传动系统的弯曲共振是导致动力总成或传动系统的失效及车内振动噪声大的重要原因之一。系统的约束方式和状态对其固有频率和振型有重要影响。针对某轻卡在高速行驶工况出现的动力总成附件失效问题进行试验诊断,确定为动力传动系统弯曲共振导致。通过研究不同约束方式对动力转动系弯曲模态的影响,建立最符合整车实际运行状态的弯曲模态识别步骤及方法。悬置系统设计理论人体对低频振动比较敏感,在车辆前期开发过程中,对整车怠速工况下方向盘及座椅的振动进行预估并进行优化控制对于整车厂尤为重要,也是悬置系统前期开发设计时主要考虑的问题。 1悬置系统数学模型 动力总成悬置系统的固有模态频率一般在20Hz以下,动力总成的最低阶弹性体模态频率一般在150Hz以上,可将动力总成和车身视为刚体,动力总成悬置系统简化为刚体六自由度振动系统。建立动力总成质心坐标系,X轴与发动机曲轴线平行并指向发动机前端,Z轴与气缸中轴线平行并垂直向上,Y轴按右手定则确定。动力总成空间刚体的6个自由度为沿动力总成质心坐标系x、y、z轴3个方向的平动及绕x、y、z轴的转动角θx、θy、θz,其广义坐标的向量形式为[Q]T=[xyzθxθyθz],利用拉格朗日方程可推导系统的振动微分方程为 忽略怠速工况下悬置系统的阻尼影响,式(1)可写成 式中:[M],[K]——系统质量矩阵和刚度矩阵。利用动力总成质量、转动惯量、质心位置及悬置刚度参数,可求得系统的模态频率及振型。 1.2能量解耦理论动力总成 六自由度之间的振动一般是耦合的,施加在动力总成上的激励会激起系统的多个模态,使发动机的振幅加大,共振频率带变宽。根据(2)式求得的系统模态频率ωi(i=1,...,6)及振型矩阵准,用系统在各阶振动时各自由度方向振动能量占该阶振动总能量的百分比作为系统模态解耦的评价指标,用矩阵形式表示,可得到系统的能量分布矩阵。系统以第j阶模态频率振动时的最大能量为

汽车动力传动系统参数优化匹配方法.

机械传动汽车动力传动系统参数的优化通常包括发动机性能指标的优选,机械变速器传动比的优化和驱动桥速比的优化,以下分别阐述。 7.1汽车发动机性能指标的优选方法 在汽车设计中,发动机的初选通常有两种方法:一种是从保持预期的最高车速初步选择发动机应有功率来选择的,发动机功率应大体上等于且不小于以最高车速行驶时行驶阻力功率之和;一种是根据现有的汽车统计数据初步估计汽车比功率来确定发动机应有的功率。 在初步选定发动机功率之后,还需要进一步分析计算汽车动力性和燃料经济性,最终确定发动机性能指标(如发动机最大转矩,最大转矩点转速等)。通常在给定汽车底盘参数、整车性能要求(如最大爬坡度imax,最高车速Vmax,正常行驶车速下百公里油耗Q,原地起步加速时间t等),以及车辆经常运行工况条件下,就可以选择发动机的最大转矩Temax,及其转矩nM,最大功率Pemax及其转速nP,发动机最低油耗率gemin和发动机排量Vh。 在优选发动机时常常遇到两种情况:一种情况是有几个类型的发动机可供选择,在整车底盘参数和车辆经常行驶工况条件确定时,这属于车辆动力传动系合理匹配问题,可用汽车动力传动系统最优匹配评价指标来处理。 第二种情况是根据整车性能要求和汽车经常行驶工况条件来对发动机性能提出要求,作为发动机选型或设计的依据,而这时发动机性能是未知的。 对于计划研制或未知性能特性指标的发动机性能可看作为发动机设计参数和运行参数的函数,此时,外特性和单位小时燃油消耗率可利用表示发动机的简化模型。 优选汽车发动机参数的方法: (1)目标函数F(x) 目标函数为汽车行驶的能量效率最高。 (2)设计变量X X [Tem,Pemax,np,nM,Vh] (3)约束条件 1)发动机性能指标的要求 发动机转矩适应性要求: 1.1≤Tem/TP≤1.3 转矩适应性系数也可参考同级发动机试验值选取。发动机转速适应性要求: 1.4≤np/nM≤ 2.0 如果nM取值过高,使np/nM<1.4,则可能使直接档稳定车速偏高,汽车低速行驶稳定性变差,换档次数增多。 2)汽车动力性要求 最大爬坡度要求:

注水系统优化运行方案研究

Journal of Oil and Gas Technology 石油天然气学报, 2018, 40(6), 100-104 Published Online December 2018 in Hans. https://www.360docs.net/doc/fb3302179.html,/journal/jogt https://https://www.360docs.net/doc/fb3302179.html,/10.12677/jogt.2018.406127 Study on Optimized Operation Scheme of Water Injection System Jiajun Xu1, Dongxu He1, Yuanfa Zhang1, Xinchang Yu2, Tao Ding3, Shouqin Li3 1Shengli Oil Production Plant, Shengli Oilfield Company, SINOPEC, Dongying Shandong 2College of Petroleum Engineering, China University of Petroleum (Huadong), Dongying Shandong 3Dongxin Oil Production Plant, Shengli Oilfield Company, SINOPEC, Dongying Shandong Received: Sep. 30th, 2018; accepted: Oct. 28th, 2018; published: Dec. 15th, 2018 Abstract In consideration of the actual situation of pressure loss and energy consumption of the water in-jection system in the oil production plant, by using the finite element analysis and hydraulic prin-ciple, according to the topological structure characteristics of the oilfield water injection system, the mathematical model of the injection pump combination optimization and the simulation mod-el of the oilfield water injection system were established, and the graphic methods of parallel op-eration of water injection pump were proposed. Based on the technical principle of simulation and optimization for oilfield water injection system, the water injection system management and op-timization platform is established, the optimal scheme of pump station operation is found through optimization model, and the purpose of energy saving and consumption reduction in water injec-tion system is achieved. Keywords Water Injection System, Mathematical Model, Simulation Model, Optimized Management Platform, Optimized Operation Plan

ADAMS参数化建模及优化设计

第10章 ADAMS参数化建模及优化设计 本章将通过一个具体的工程实例,介绍ADAMS/View的参数化建模以及 提供的3种类型的参数化分析方法:设计研究(Design study)、试验设计((Design of Experiments, DOE)和优化分析(Optimization)。其中DOE是通过ADAMS/Insight 计研究和优化分析在ADAMS/View中完成。通过本章学习,可以初步了解ADAMS 建模和优化的功能。 10.1 ADAMS参数化建模简介 ADAMS 键变量,并将这些关键变量设置为可以改变的设计变量。在分析时, 以由程序预先设置好一系列可变的参数,ADAMS自动进行系列仿真, 值下样机性能的变化。 进行差数参数化建模时,在确定好影响样机性能的关键输入值后,ADAMS/View 了4种参数化的方法: (1)参数化点坐标 点坐标参数化时,修改点坐标值时,与参数化点相关联的对象都得以自动修改。 (2)使用设计变量通过使用设计变量,可以方便的修改模型中的以已被设置为设计变量的对象。例如,我们可以将连杆的长度或弹簧的刚度设置为设计变量。 值发生改变时,与设计变量相关联的对象的属性也得到更新。 (3)参数化运动方式 (4)使用参数表达式使用参数表达式是模型参数化的最基本的一种参数化途径。 上三种方法不能表达对象间的复杂关系时,可以通过参数表达式来进行参数化。 参数化的模型可以使用户方便的修改模型而不用考虑模型内部之间的关联变动, 以达到对模型优化的目的。参数化机制是ADAMS中重要的机制。 10.2 ADAMS参数化分析简介 参数化分析有利于了解各设计变量对样机性能的影响。在参数化分析过程中, 化建模时建立的设计变量,采用不同的参数值,进行一系列的仿真。 果进行参数化分析,得出一个或多个参数变化对样机性能的影响。然后再进一步对各种参数进行优化分析,得出最优化的样机。ADAMS/View提供的3 设计研究(Design study)、试验设计(Design of Experiments, DOE)和优化分析(Optimization)。

优化滤池运行参数的几点做法(精)

优化滤池运行参数的几点做法 上海南汇自来水有限公司李梅,顾春平 摘要青草沙原水切换后,对水厂的生产和水质管理要求更高,通过发挥在线水质仪表的作用,加强过程监控,及时发现和解决航头水厂一期滤池运行中出现的问题,确保出厂水质安全、稳定。 关键词:在线水质仪表监测气水反冲洗均质滤料滤池反冲洗程序过滤周期1引言 随着青草沙原水的切换,原水水质的改 善,对制水生产的管理和水质控制指标的要求 有了进一步的提高,近期通过发挥在线水质仪 表的监测作用,加强水质指标数据的分析,发 现航头水厂一期滤池在反冲洗过程中存在滤后 水浊度突变的现象,对此,通过原因排查分 析,进行滤池清水阀门维修,科学调控反冲洗 程序,优化调整过滤周期,有效解决了滤后水 浊度突变问题,确保了出厂水质安全、稳定。 2航头水厂一期滤池基本情况及出现的问题 航头水厂一期滤池原设计为普通快滤池, 处理规模12万吨/天,共有10个滤格,成双

行排列,每行5格,中间是管廊,单格滤池 面积83.64m2(滤砂面积71.40m2)。2001 年改造成气水反冲均质滤料滤池。设计滤速 7.84 m/h,石英滤砂粒径0.8~1.0mm,滤料 厚度1.20m,支撑层滤砂粒径2.0mm,厚度 0.05m;滤池反冲洗采用气、水反冲加表扫方 式;池体结构由于条件限制未作大的改动。 自2012年12月初开始,在线滤后及出厂 浊度仪读数显示,航头水厂一期滤池反冲洗 过程中存在滤后水浊度明显升高的现象,有 6~7个滤格反冲时,滤后水浊度由冲洗前的 0.15NTU左右,一路飙升至2NTU以上,从 而对出厂水造成一定的水质波动,见图1。 3原因查找分析 针对以上问题,通过逐一分析排查,找出 问题症结所在。 3.1清水阀门渗漏 在排除在线浊度监测仪表问题的情况下,图1异常情况下航头出厂水浊度曲线首先考虑为清水阀门渗漏致使部分冲洗高浊度水流入清水总渠引起滤后水浊度升高,对此,通过手动控制滤格运行状态,关闭进水阀和清水阀,测试3分钟内滤格液位变化值,液位均有不同程度下降,严重者3分钟液位下降10cm以上,证明清水阀门的确存在渗漏,于是对阀门进行调节和维修,基本解决了清水阀渗漏问题。但滤格反冲洗过程引发滤后水浊度波动的现象仍然存在,可见,清水阀门渗漏并非根本原因所在。3.2池体改造不彻底,反冲洗程序设置存在不适应一期滤池改造时由于条件限制,只是将配水系统由大阻力配水改为小阻力配水,将滤料改为石英砂均质滤料,单一水反冲洗改为气水反冲洗,而池体结构基本未作改动;反冲洗控制程序上采用与二期V型滤池相同的设置,即:启动程序—关闭进水阀—清水阀开度调至100%,降低滤池水位至目标值—气冲3分钟—气水混冲5分钟—水冲6分钟。考虑到二期V型滤池反冲洗时并未发现滤后浊度猛增的情况,那么很可能是滤池结构上改造不彻底,是遗留问题引起的。为了进一步查找问题原因,寻求解决措施,直接对滤后 管路开孔取样,检测反冲洗全过程滤后管路内

ADAMS VIEW 参数化和优化设计实例详解资料讲解

A D A M S V I E W参数化和优化设计实例详解

ADAMS/VIEW 参数化和优化设计实例详解本例通过小球滑落斜板模型,着重详细说明参数化和优化设计的过程。 第一步,启动adams/view(2014版),设置工作路径,设置名称为incline。 名称 存储路第二部,为满足模型空间,设置工作网格如图参数。 修改尺 第三部创建斜板。点击Bodies选项卡,选择BOX,然后建模区点击鼠标右键,分别设置两个点,坐标为(0,0,0)和(-500,-50,0),创建完模型,然后右键Rename,修改名称为xieban。

右键输入坐标,创建BOX rename 输入xieban

第四部创建小球。点击Bodies选项卡,选择Sphere,然后建模区点击鼠标右键,分别设置两个点,球心坐标为(-500,50,0)和半径坐标(-450,50,0),创建完模型,然后右键Rename,修改名称为xiaoqiu。 输入两点 Rename,及创建效 第五部创建圆环。点击Bodies选项卡,选择Torus,然后建模区点击鼠标右键,分别设置两个点,圆环中心坐标为(450,-1000,0)和大径坐标(500,-1000,0),创建完模型,然后右键Rename,修改名称为yuanhuan。完成后效果如下图:

第六部修改小球尺寸及位置。首先修改小球半径为25mm,在小球上右键,选择球体,点击Modify,然后设置如下图;然后修改小球位置,将Y坐标移到25mm处,选择Marker_2点,右键点击Modify,然后设置坐标位置如下图。 右键编辑球半径 修改半径为25

W切换参数总结版(重点必看)

参数筛选汇总 一、切换参数 1、BISC Verification功能开关:将此功能开关打开后,UE进行3G向2G切换时,首先较检查目的小区的BSIC是否正确,BSIC正确后才开始切换过程。 2、GsmHandoverNrtPS功能开关:PS业务切换开关,0表示不支持非实时业务PS切换,1为打开。 3、AdjgRxLevMinHO:此值表述GSM小区接入的最低门限,只用当GSM小区RSSI >= AdjgRxLevMinHO时才能进行3G向2G的切换。此值越大,在进行3G到2G切换时对GSM小区的电平质量要求越高 异系统切换失败原因 1、Relocation Preparaqtion Failure(CS切换失败消息) (1)失败原因是no-resource-available(无有效资源),最后确认是核心网MSC Server数 据配置的问题。 (2)失败原因是Unknown-target-rnc(找不到目标RNC) (3)Unspecified-failure(未知原因),是在跨RNC切换时失败 2、Cell Change Order From UTRAN Failure(PS切换失败消息) (1)失败原因是Physical Channel Failure(物理信道失败) 对于3G 2G系统间切换掉话的常见原因大概如下:1. 邻区漏配置,可以通过配置邻区解决;2. 信号变化太快导致掉话;3. 手机问题,比如UE回切换失败或者UE没有上报异系统测量报告导致掉话等;4. 物理信道重配置时发生最优小区发生变更导致掉话,需要产品算法进行优化;5. 异系统小区配置过多导致掉话,可以通过优化邻区数目解决;6. LAC区配置错误导致的掉话,可以通过数据配置检查解决。 1、同频切换管理参数 1.1同频测量滤波系数FilterCoef 层3滤波应尽量滤除随机冲击的能力,使得滤波后的测量值反映实际测量的基本变化趋势,由于输入层3滤波器的测量值已经经过层1滤波,基本消除了快衰落的影响,因此层3应对阴影衰落和少量快衰落毛刺进行平滑滤波,以为事件判决提供更优的测量数据。

优化掺水系统运行参数 防止管线堵塞

优化掺水系统运行参数降低管线堵塞 任灿升李建厂 摘要:针对王集油田存在的原油含蜡量高、凝固点高、产出液温度低,而掺水系统因部分管线老化不能提高压力,容易堵塞管线的现状,通过优化掺水系统运行参数,并结合超导洗井、套管加药等措施,有效地降低了油井及管线堵卡情况的发生,提高了生产时率,保证系统的平稳运行,创造了一定的经济效益。 关键词:凝固点高;管线堵;掺水;优化 1王集油田掺水系统运行现状 王集油田的掺水系统由王集和柴庄两部分组成。王集掺水系统为1、2、3、7、8号站的油井提供掺水,它由一台离心掺水泵提供动力,通过低压蒸气换热器加热。柴庄掺水系统为4、5、6号站提供掺水,由燃气水套炉供热,具体情况见下表: 表二王集油田掺水系统状况 整个系统除通往1号计量站掺水干线安装了流量计外,其余井站都未配置,掺水的配参主要通过压力调整,不能够准确计量,造成有些掺水量不足,有些则存在掺水过量,没有做到合理配置,系统运行不科学。 这两个分系统都存在部分掺水管线老化,耐压强度不够的情况,其中2、3、4、5、6、7号计量站管线较老,掺水压力只能限定在一定范围,导致有些油井掺水量不足,而温度不能保障。1、8号计量站管线虽然投运较晚,但是距离远,最远的单井距掺水泵有4-5公里,导致掺水热量、能量损失多,有些达不到加热降凝的目的。因此管线堵塞时有发生,不仅影响了产量,而且造成成本的浪费。 表二王集油田部分井站分布概况 2掺水系统工艺原理 王集油田的原油存在含蜡量较高、凝固点高、产出液温度较低的特点,这与其井深较浅、

油藏温度低以及目前注的常温的清水有关。具体见下表一。 表一王集油田原油物性及注水情况表 由上表可以看出,王集油田生产系统中产出液温度一般低于原油的凝固点,这样原油凝结的可能性很大,地面管线就很可能经常因产出液结蜡及粘度增大而使回压上升甚至出现管线堵塞。为保证系统正常运转,目前采用掺热水的工艺。 王集油田的掺水工艺就是在井口掺入由中转站经加热后的三相分离器脱出污水,使油井产出液温度升高,从而能够顺利输至计量站、中转站。 3优化的措施 经我们调查发现,容易发生堵塞情况的单井管线,往往是那些原油凝固点高、产出液含水低而且距离远的井,干线堵塞情况很少(这也可以说明掺水的总量是充足的,有优化的空间)。因此主要从这些井入手,具体分为三种方案。 3.1.一些距离较远的井站,一般管线较新,耐压强度高,主要采取加大掺水压力,提高掺水量。这样不仅提高了流速,而且温度损失降低,如1号站。 3.2.对于管线老化严重,承压强度低的井站,采取对单井调整不同的压力和水量,并增加热洗清蜡次数,通过热洗清蜡油井管柱,经常清洗地面管线内的结蜡,从而减低回压,增加掺水量,提高产出液温度。 3.3.对于那些含水极低,但产量较高的重点井,则在尽可能加大掺水压力的基础上,结合热洗清蜡、套管加防蜡剂的方法。 在上述方案的基础上,实行冬夏不同的运行参数来保证整个生产系统的安全平稳。 4实施情况及效果 首先根据井站的距离、管线的承压程度及油井的产量、含水、温度,在掺水泵分流阀组进行首次优化,对那些需要较高掺水量的站按预先经估算的参数进行调整,使该站的管压达到需求。第二步就是在计量站计量间分水阀组进一步调整,这一步较为关键。有些井含水较高(高于70%)、回压低,不需很多掺水量,对于这样的井,我们一般控制掺水量一般控制在与产出液量为0.5~1:1;这样多余的水就可以掺入那些含水低、油量较高的大头井,产

相关文档
最新文档