特殊四边形动点问题的解题方法—图解法

特殊四边形动点问题的解题方法—图解法
特殊四边形动点问题的解题方法—图解法

特殊四边形动点问题的解题方法—图解法

区铁基

摘要:图解法数学思想依据是数形结合思想。它的应用能使复杂问题简单化、抽象问题具体化。特殊四边形的几何问题,很多困难源于问题中的可动点。如何合理运用各动点之间的关系,同学们往往缺乏思路,常常导致思维混乱。实际上求解特殊四边形的动点问题,关键是是利用图解法抓住它运动中的某一瞬间,寻找合理的代数关系式,确定运动变化过程中的数量关系,图形位置关系,分类画出符合题设条件的图形进行讨论,就能找到解决的途径,有效避免思维混乱。本文试论从三个方面探究特殊四边形动点问题的解题方法—图解法。以提高同学们的解题能力。

关键词:图解法;动态图形;静态图形;化“动”为“静”。

一、单动点问题

“数学是思维科学,数学教学是数学思维的教学”[1]。图解法数学思想依据是数形结合思想。而特殊四边形的几何问题,很多困难源于问题中的可动点。如何合理运用各动点之间的关系,同学们往往缺乏思路,常常导致思维混乱。实际上求解特殊四边形的动点问题,关键是要充分发挥空间想象的能力,不要被“动”所迷惑,而是要“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找合理的代数关系式,确定运动变化过程中的数量关系,图形位置关系,通过点动带线动,利用图解法,分类画出符合题设条件的图形进行求解,就能找到解决的途径,有效避免思维混乱。 如图1所示,已知 ABCD 中,AD=4cm ,CD=6cm ,∠A=450

,点P 从点A 沿射线 AB 运动,速度为1cm/s ,若设运动时间为t(s),连接PC ,当t 为何值时△PBC 为等 腰三解形?

本题以平行四边形为背景,结合特殊角,等腰三角形,勾股定理等知识编制 而成,当动点

P 沿射线AB 运动时,探求等腰三角形的几种情况。

通常人们都是在给出的原始动态图形中进行求解。同学们往往缺乏思路, 导致运算混乱。而我是利用图解法,通过点P 动带线动,抓住等腰三角形的腰与底的分类从动态图形中画出四种不同的静态图形进行求解,化“动”为“静”。

解:1, 如图2所示,当BP=BC 时△PBC 为等腰三角形

则:6-t=4 ∴2, 如图3所示,当BP=BC 时△PBC 为等腰三角形 则:t -6=4 ∴t=10(s) 3,

如图4所示,当CB=CP 时△PBC 为等腰三角形

∵ ABCD ∴∠CBP=∠A=450

,BC=AD=4

∵CB=CP ∴∠

BPC=∠CBP=450

∴∠BCP=1800-450-450=900

在Rt △BCP 中

24442

2

=+=BP

)()246(s t +=∴

4, 如图5所示,当PB=PC 时△PBC 为等腰三角形

∵ ABCD ∴∠CBP=∠A=450

,BC=AD=4

∵PB=PC ∴∠BCP=∠CBP=450

∴∠BPC=1800-450-450=900

在Rt △BPC 中设PB=PC=x, D D D

A

D D

则x 2+x 2=42

22=,x 解得

)()226(s t +=∴

综上所述当t=2(s)或t=10(s)或t=(6+42)(s)或t=(6+22)(s)时△PBC 为等腰三角形。

动态几何题,是指以几何知识和几何图形为背景,渗透运动变化观点的一类试题,揭示了“运动”与“静止”、“一般”与“特殊”的内在联系,以及在一定条件下可以互相转化的辩证关系,通过几何图形的运动变化,使学生经历由观察、想象、推理等发现、探索的过程,是中考数学试题中,考查学生的创新意识、创新能力的重要题型,解决这类问题的关键是善于探索动点的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动,从一般位置与特殊位置的比较中发现解题的方法和思路,或根据运动过程中的特殊位置,进行合理的分类[2]。

二、双动点问题

如图6所示, OABC 的顶点O 为坐标原点,A 点在x 轴正半轴上,∠COA=450

,OA=4cm ,OC= cm,点P 从C 点出发沿CB 方向,以1cm/s 的速度向点B 运动,点Q 从A 点同时出发沿AO 方向,以2cm/s 的速度向原点O 运动,其中一个动点到达端点时,另一个动点也随之停止运动。 1,求点C ,B 的坐标

2,从运动开始,经过多少时间,四边形OCPQ 是平行四边形,

3,在点P,Q 运动的过程中,四边形OCPQ 有可能成为直角梯形吗?若能,求出运动时间,若不能,请说明理由,

本题同样也是以平行四边形为背景,但它是以双动点为载体的动点问题,我是在2010-2011学年广东省广州市白云区八年级(下)期末数学试题中第23题改编而成的一道题。在平时的教学中,开始我也是在题目给出的原始动态图形中进行解题讲解,发现效果很差,特别是双动点问题,学生不理解。后来我同样也是利用图解法,根据平行四边形,直角梯形的特征与性质分类画出以双动点P ,Q 为边的平行四边形和直角梯形进行讲解效果很好。

解:从动态图形中分类画出两种静态图形进行讨论: 1,如图6所示,过点C 作CE ⊥x 轴于点E 在Rt △OCE 中,∵∠COA =45°,

∴∠OCE =90°-45°=45°,

∴EO=EC 设EO= x 由勾股定理得,222)2(=+x x

解得x 1=1 x 2=-1(舍去) ∴C 点的坐标为C (1,1),

∵CB =OA ,∴B 点的坐标为B (5,1); 2,如图7所示,∵CP ∥OQ , 要使四边形OCPQ 是平行四边形, 只需CP =OQ ,而OQ =OA -AQ .

设经过t 秒后,四边形OCPQ 是平行四边形,

则有t =4-2t ,解得t =

34

(秒). 即当运动开始后,经过3

4

秒时,四边形OCPQ 是平行四边形;

3,可以.

如图8所示,∵CP ∥OQ ,要使四边形OCPQ是直角梯形,

2

只需PQ ⊥x 轴,即点P 的横坐标与点Q 的横坐标相同即可. 点P 的横坐标为t +1,点Q 的横坐标为4-2t , 得t +1=4-2t ,解得t =1(秒),

所以当开始运动到1秒时,四边形OCPQ 是直角梯形;

三、多动点问题

有一些比较抽象的题目,学生感到无从下手,原因是学生缺乏画图帮助解题的意识,如果根据题意转换成辅助图,就会化难为易,使问题直观化和形象化,降低学生思考问题的难度[3]。

如图9所示,在矩形ABCD 中,BC=24cm ,P ,Q ,M ,N 分别从A ,B ,C ,D 出发沿AD ,BC ,CB ,DA 方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x ≠0),则AP=2xcm ,CM=3xcm ,DN=x 2cm . 1,当x 为何值时,以PQ ,MN 为两边,以矩形的边 (AD 或BC )的一部分为第三边构成一个三角形; 2,当x 为何值时,以P ,Q ,M ,N 为顶点的四边形 是平行四边形;(结果用根号表示)

3,以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?

如果能,求x 的值;如果不能,请说明理由.

本题我是从2009年淄博市中考题中最后一道题的第25题改编而成。它是以矩形为背景,4个动点为

载体的动点问题。第(1)小题的必须条件是点P ,N 重合且点Q ,M 不重合,此时AP+ND=AD ,即2x+x 2=24cm ,BQ+M C <BC ,即x+3x <24cm ,或者点Q ,M 重合点P ,N 不重合,此时AP+N D <AD ,即cm x x 2422<+,BQ+MC=BC ,即x+3x=24cm ,所以可以根椐这两种情况来求解x 的值。而第2小题是要把P ,N 两点分两种情况讨论:(1)点P 在点N 的左侧,(2)点P 在点N 的右侧。第3小题是利用等腰梯形同一底上的两条高的特征进行讨论判断。

同样如果单独利用题中给出的原始图形进行解题讲解,学生基本不理解,感觉是非常难的一道题,但我还是利用图解法,分类画出符合题设条件的相关图形进行解题讲解,化“动”为“静”,学生很乐意接受,效果也很好。特别是第3问,如果不分类画出相关图形,学生根本不明白。 解:从动态图形中分类画出五种静态图形进行讨论: 1,当点P 与点N 重合或点Q 与点M 重合时,以PQ ,

MN 为两边,以矩形的边(AD 或BC )的一部分为 第三边可能构成一个三角形.

(1)如图10所示,当点P 与点N 重合时, 由2422=+x x ,得)(6421舍去-==x x

因为BQ +CM =x+3x=4x=16<24,此时点Q 与点M 不重合.所以x=4符合题意.

(2)当点Q 与点M 重合时, x+3x=24 ∴x=6

此时24362>==x DP ,不符合题意. 故点Q 与点M 不能重合.所以所求x 的值为4.

2,由1知,点Q 只能在点M 的左侧,

(1)如图11所示,当点P 在点N 的左侧时,

由)2(24)3(242x x x x +-=+-,解得120()2x x ==舍去,. 当x=2时四边形PQMN 是平行四边形.

图9

D 图

10

11

)如图12所示,当点P在点N的右侧时,

由24

)

2(

)

3

(

242-

+

=

+

-x

x

x

x,

解得.)

(

57

3

57

3

2

1

舍去

-

-

=

+

-x

x

当57

3+

-

=

x时四边形NQMP是平行四边形.

所以当57

3

2+

-

=

=x

x或时,

以P,Q,M,N为顶点的四边形是平行四边形.

3,如图13所示,过点Q,M分别作AD的垂线,垂足分别为点E,F.

由于2x>x,所以点E一定在点P的左侧.

如图14所示,若以P,Q,M,N为顶点的四边形是等腰梯形,

则点F一定在点N的右侧,且PE=NF,

即x

x

x

x3

22-

=

-.

解得2

)

(

2

1

=

=x

x舍去.

由于当x=2时,以P,Q,M,N为顶点的四边形是平行四边形,

所以以P,Q,M,N为顶点的四边形不能为等腰梯形.

总之特殊四边形动点问题,无论是单动点,双动点,还是多动点,利用图解法,善于探索动点的运动特点和规律,分类画出符合题设条件的图形进行讨论。在分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置),寻找合理的代数关系式,确定运动变化过程中的数量关系,图形位置关系,就能找到解决的途径,有效避免思维混乱。

参考文献:

[1] 陶维林,数学教学是思维的教学[J],数学通报, 2008年3期。

[2] 袁亚平, 2010年中考数学中的动态几何压轴题赏析[J],中学数学, 2010年16期。

[3] 郑大江,画画就明白—图解法在解题中的作用[J],《中学生物学》, 2012年05期。

作者简介:

区铁基:中学一级教师,华南师范大学数学专科毕业,从事初中数学教学和研究36年。

图12

图13图14

初二数学-特殊四边形中的动点问题(教师版)

特殊四边形中的动点问题及解题方法 1、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D 以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts. (1)当t为何值时,四边形PQCD为平行四边形? (2)当t为何值时,四边形PQCD为等腰梯形? (3)当t为何值时,四边形PQCD为直角梯形? 分析: (1)四边形PQCD为平行四边形时PD=CQ. (2)四边形PQCD为等腰梯形时QC-PD=2CE. (3)四边形PQCD为直角梯形时QC-PD=EC. 所有的关系式都可用含有t的方程来表示,即此题只要解三个方程即可. 解答: 解:(1)∵四边形PQCD平行为四边形 ∴PD=CQ ∴24-t=3t 解得:t=6 即当t=6时,四边形PQCD平行为四边形. (2)过D作DE⊥BC于E 则四边形ABED为矩形 ∴BE=AD=24cm ∴EC=BC-BE=2cm ∵四边形PQCD为等腰梯形 ∴QC-PD=2CE 即3t-(24-t)=4 解得:t=7(s) 即当t=7(s)时,四边形PQCD为等腰梯形. (3)由题意知:QC-PD=EC时, 四边形PQCD为直角梯形即3t-(24-t)=2

解得:t=6.5(s) 即当t=6.5(s)时,四边形PQCD为直角梯形. 点评: 此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中. 2、如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点 F,交∠ACB内角平分线CE于E. (1)试说明EO=FO; (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论; (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论. 分析: (1)根据CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根据等边对等角得OE=OC,同理OC=OF,可得EO=FO. (2)利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形. (3)利用已知条件及正方形的性质解答. 解答: 解:(1)∵CE平分∠ACB, ∴∠ACE=∠BCE, ∵MN∥BC, ∴∠OEC=∠ECB, ∴∠OEC=∠OCE, ∴OE=OC, 同理,OC=OF, ∴OE=OF. (2)当点O运动到AC中点处时,四边形AECF是矩形. 如图AO=CO,EO=FO, ∴四边形AECF为平行四边形, ∵CE平分∠ACB, ∴∠ACE= ∠ACB, 同理,∠ACF= ∠ACG, ∴∠ECF=∠ACE+∠ACF= (∠ACB+∠ACG)= ×180°=90°, ∴四边形AECF是矩形. (3)△ABC是直角三角形 ∵四边形AECF是正方形,

初中数学特殊平行四边形的证明及详细答案模板

初中数学特殊平行四边形的证明 一.解答题(共30小题) 1.(2015?泰安模拟)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于 D,交AB于E,F在DE上,并且AF=CE. (1)求证:四边形ACEF是平行四边形; (2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论. 2.(2015?福建模拟)已知:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF. 求证:四边形BCFE是菱形. 3.(2015?深圳一模)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD 交AB于E. (1)求证:四边形AECD是菱形; (2)若点E是AB的中点,试判断△ABC的形状,并说明理由. 4.(2015?济南模拟)如图,四边形ABCD是矩形,点E是边AD的中点.

求证:EB=EC. 5.(2015?临淄区校级模拟)如图所示,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cosα=,AB=4,则AC的长为多少? 6.(2015春?宿城区校级月考)如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.求证:BD=BE. 7.(2014?雅安)如图:在?ABCD中,AC为其对角线,过点D作AC的平行线与BC 的延长线交于E. (1)求证:△ABC≌△DCE; (2)若AC=BC,求证:四边形ACED为菱形. 8.(2014?贵阳)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC. (1)求证:四边形ADCF是菱形;

特殊四边形动点问题专题训练及答案解析汇编

特殊四边形动点问题专题训练及答案解析 (一)已知,如图,点D是△ABC的边AB的中点,四边形BCED是平行四边形, (1)求证:四边形ADCE是平行四边形; (2)当△ABC满足什么条件时,平行四边形ADCE是矩形? 证明:(1)因为四边形BCED是平行四边形, 所以BD=CE且BD∥CE, 又因为D是△ABC的边AB的中点, 所以AD=BD,即DA=CE, 又因为CE∥BD, 所以四边形ADCE是平行四边形. (2)当△ABC为等腰三角形且AC=BC时,四边形ADCE是矩形 理由:∵AC=BC,D是△ABC的边AB的中点 ∴CD⊥AD,即∠ADC=90°, 由(1)可知,四边形ADCE是平行四边形 ∴四边形ADCE是矩形. (二)如图,已知E是?ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE. (2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.

(三)如图,O为△ABC的边AC上一动点,过点O的直线MN∥BC,设MN分别交 ∠ACB的内、外角平分线于点E、F。 (1)求证:OE=OF (2)若CE=12,CF=5,求OC的长 (3)当点O在AC边上运动到何处时,四边形AECF是矩形?证明你的结论 (4)在(3)的条件下,当△ABC满足什么条件时,四边形AECF为正方形,并说明你的理由。 (1)证明:∵CE平分∠ACB ∴∠ACE=∠BCE ∵MN∥BC ∴∠OEC=∠BCE, ∴∠ACE=∠OEC, ∴OE=OC, 同理:OF=OC ∴OE=OF (2)∵CE平分∠ACB ∴∠ACE=∠ACB/2 ∵CF平分∠ACD ∴∠ACF=∠ACD/2 ∴∠ECF=∠ACE+∠ACF=∠ACB/2+∠ACD/2=(∠ACB+∠ACD)/2=180/2=900 在Rt△ECF中,EF2= CE2+ CF2= 122+ 52=169 ∴EF=13 由(1)可知OE=OF ∴OC=EF/2=13/2 (3)、当O运动到AC的中点时,AECF是矩形 证明: ∵O是AC的中点 ∴AO=CO ∵OE=OF ∴四边形AECF是平行四边形 由(2)可知∠ECF=900 ∴四边形AECF是矩形 3、△ABC为直角三角形,且∠ACB=90时,四边形AECF是正方形 证明: ∵∠ACB=900,MN∥BC ∴∠AOM=∠ACB=900,

四边形中的动点问题带答案

) 带答案(四边形中的动点问题. 四边形中的动点问题 1、如图,把矩形ABCD沿EF翻折,点B恰

好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是 _____________

2、如图,在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________ 3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是 AC上一动点,则DQ+PQ的最小值为____________ 4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA 方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方 2 / 20

向以2 cm/s的速度向点B匀速运动,当其 中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF. (1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由; (3)当t为何值时,△DEF为直角三角形?请说明理由 5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以 1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速 3 / 20 度运动,设运动时间为t. (1)连接EF,

当EF经过AC边的中点D时, (1)求证:△ADE≌△CDF;: (2)当t为______s时,四边形ACFE是菱形;

初中数学特殊平行四边形知识点总结

特殊的平行四边形 一、平行四边形(复习):中心对称图形,非轴对称图形 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形 平行四边形的性质 (1)平行四边形的对边平行且相等。(对边) (2)平行四边形相邻的角互补,对角相等(对角) (3)平行四边形的对角线互相平分。(对角线) (4)平行四边形是中心对称图形,对称中心是对角线的交点。 补充: (1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。 (2)推论:夹在两条平行线间的平行线段相等。 (3)平行线分线段成比例定理:两条直线被一组平行线所截,截得的对应线段的长度成比例。 推论:平行于三角形一边的直线,截其他两边(或两边延长线)所得的对应线段成比例 平行四边形的判定 (1)定义:两组对边分别平行的四边形是平行四边形。(对边) (2)定理1:两组对边分别相等的四边形是平行四边形。(对边) (3)定理2:一组对边平行且相等的四边形是平行四边形。(对边) (4)定理3:两组对角分别相等的四边形是平行四边形。(对角) (5)定理4:对角线互相平分的四边形是平行四边形。(对角线) 两条平行线的距离:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。 注意:平行线间的距离处处相等。 平行四边形的面积:S平行四边形=底边长×高=ah 二、菱形:特殊平行四边形,有平行四边形一切性质 菱形的定义:有一组邻边相等的平行四边形叫做菱形 菱形的性质 (1)菱形的四条边相等,对边平行。(边) (2)菱形的相邻的角互补,对角相等。(对角) (3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。(对角线) (4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对 称轴有两条,是对角线所在的直线。 菱形的判定 (1)定义:有一组邻边相等的平行四边形是菱形。 (2)定理1:四边都相等的四边形是菱形。(边) (3)定理2:对角线互相垂直的平行四边形是菱形。(对角线) (4)定理3:对角线垂直且平分的四边形是菱形。(对角线) 菱形的面积:S菱形=底边长×高=两条对角线乘积的一半 三、矩形:特殊平行四边形,具有平行四边形的一切性质。矩形就是长方形 矩形的定义:有一个角是直角的平行四边形叫做矩形。 矩形的性质 (1)矩形的对边平行且相等。(对边) (2)矩形的四个角都是直角。(内角) (3)矩形的对角线相等且互相平分。(对角线) (4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

特殊平行四边形:动点问题

特殊四边形:动点问题 题型一: 1.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为( ) A 、17 17 2 B 、 17174 C 、 17 178 D 、3 2.如图4,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时, 以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 3.如图,在梯形ABCD 中,AD ∥BC,E 是BC 的中点,AD=5,BC=12,CD=42,∠C=0 45,点P 是BC 边上一动点,设PB 长为x. (1)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为直角梯形. (2)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为平行四边形. (3)点P 在BC 边上运动的过程中,以点P 、A 、D 、E 为顶点的四边形能否构成菱形?试说明理由. 4.在一个等腰梯形ABCD 中,AD//BC ,AB=CD ,AD=10cm ,BC=30cm ,动点P 从点A 开始沿AD 边向点D 以每秒1cm 的速度运动,同时动点Q 从点C 开始沿CB 边向点B 以每秒3cm 的速度运动,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s. (1).t 为何值时,四边形ABQP 为平行四边形? (2).四边形ABQP 能为等腰梯形吗?如果能,求出t 的值,如果不能,请说明理由。

初二平行四边形的动点问题学案 (含答案经典)

第十一讲平行四边形中的动点问题时间:年月日刘满江老师学生姓名:一、兴趣导入 二、学前测试 1.如图,在平行四边形ABCD中,下列结论中错误的是() 2.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件: ①AD∥BC;②AD=BC;③OA=OC;④OB=OD

交AC于点H,则的值为() ∴= 三、方法培养: 知识要点: 平行四边形的概念:两组对边分别平行的四边形叫平行四边形 平行四边形的性质:边:对边平行且相等 角:内角和为______,外角和___________,邻角______,对角__________ 对角线:互相平分 平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离叫 性质:平行线之间的距离处处相等。 推广:夹在两条平行线之间平行线段相等 平行四边形的判定: 定义:两组对边分别平行的四边形是平行四边形 定理1:两组对角分别相等的四边形是平行四边形 定理2:两组对边分别相等的四边形是平行四边形 定理3:对角线互相平分的四边形是平行四边形

定理4:一组对边平行且相等的四边形是平行四边形 例11.如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16. 动点P 从点B 出发,沿射线BC 的方向以每秒2个单位长的速度运动,动点Q 同时 从点A 出发,在线段AD 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒). (1)当t 为何值时,四边形PQCD 的面积是梯形ABCD 的面积的一半; (2)四边形PQCD 能为平行四边形吗?如果能,求出t 的值;如果不能,请说明理由. (3)四边形PQCD 能为等腰梯形吗?如果能,求出t 的值;如果不能,请说明理由. 考点:等腰梯形的判定;平行四边形的判定;直角梯形。 专题:动点型。 分析:(1)根据:路程=速度×时间,表示线段的长度,再利用:S 梯形ABPQ =S 梯形PQDC ,列方程求解; (2)只要能满足DQ=PC 即可,由此建立等量关系,列方程求解; (3)当四边形PQCD 为等腰梯形时,作PE ⊥BC ,DF ⊥BC ,垂足为E 、F ,需要满足QE=CF , 由此建立等量关系,列方程求解. 解答:解:(1)由已知得:AQ=t ,QD=16﹣t ,BP=2t ,PC=21﹣2t , 依题意,得 12)22116(21 12)2(2 1?-+-=?+t t t t 解得 ; (2)能;当四边形PQDC 为平行四边形时, DQ=PC ,即16﹣t=21﹣2t 解得t=5; (3)不能 作QE ⊥BC ,DF ⊥BC ,垂足为E 、F , 当四边形PQCD 为等腰梯形时,PE=CF , 即t ﹣2t=21﹣16 解得t=﹣5,不合实际. 点评:本题考查了梯形计算面积的方法,根据平行四边形、等腰梯形的性质列方程求解的问题. 变式练习:如图所示,在直角梯形ABCD 中,AD ∥BC ,∠A=90°,AB=12,BC=21,AD=16.动点P 从点 B 出发,沿射线B C 的方向以每秒2个单位长的速度运动,动点Q 同时从点A 出发,在线段A D 上以每秒1个单位长的速度向点D 运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t (秒). (1)设△DPQ 的面积为S ,求S 与t 之间的函数关系式; (2)当t 为何值时,四边形PCDQ 是平行四边形? (3)分别求出当t 为何值时,①PD=PQ ,②DQ=PQ . 考点:直角梯形;勾股定理;平行四边形的判定与性质。 解答:(1)解:直角梯形ABCD 中,AD ∥BC ,∠A=90°,BC=21,AB=12,AD=16, 依题意AQ=t ,BP=2t ,则DQ=16﹣t ,PC=21﹣2t , 过点P 作PE ⊥AD 于E , 则四边形ADPE 是矩形,PE=AB=12, ∴S △DPQ =DQ ?AB=(16﹣t )×12=﹣6t+96. (2)当四边形PCDQ 是平行四边形时,PC=DQ ,

动点问题(四边形动点专题)

动态几何问题--------动点问题(四边形动点专题) 【动态几何问题的特点】 动态几何是以几何知识和几何图形为背景,渗透运动变化观点的一类试题;用运动的观点研究几何图形中图形的位置、角与角、线段与线段之间的位置及大小关系。 几何图形按一定的条件进行运动,有的几何量是随之而有规律地变化的,形成了轨迹和极值;而有的量是始终保持不变,也就是我们常说的定值。动态几何就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性;动态几何问题常常集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活、多变,动中有静,动静结合,能够在运动变化中发展空间想象能力,综合分析能力,是近几年中命题的热点。 【动态几何问题的解决方法】 解决动态几何题,通过观察,对几何图形运动变化规律的探索,发现其中的“变量”和“定量”。动中求静,即在运动变化中探索问题中的不变性;动静互化,抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系;这需要有极敏锐的观察力和多种情况的分析能力,加以想象、结合推理,得出结论。解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动。解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系. 【动态几何问题的分类】 动态几何问题是以几何图形为背景的,几何图形有直线型和曲线型两种,那么动态几何也有直线型的和曲线型的两类,即全等三角形、相似三角形中的动态几何问题,也有圆中的动态问题。有点动、线动、面动,就其运动形式而言,有平移、旋转、翻折、滚动等。根据其运动的特点,又可分为: (1)动点类(点在线段或弧线上运动)也包括一个动点或两个动点; (2)动直线类; (3)动图形问题。 【典型例题】 例1.如图,在梯形ABCD 中,3545 AD BC AD DC AB B ====?∥,,,.动 点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒. (1)求BC的长; (2)当MN AB ∥时,求t的值; (3)试探究:t为何值时,MNC △ C

(完整)初中数学平行四边形经典例题讲解(3套)

平行四边形经典例题(附带详细答案) 1.如图,E F 、是平行四边形ABCD 对角线AC 上两点,BE DF ∥, 求证:AF CE =. 【答案】证明:平行四边形ABCD 中,AD BC ∥,AD BC =, ACB CAD ∴∠=∠. 又BE DF ∥, BEC DFA ∴∠=∠, BEC DFA ∴△≌△, ∴CE AF = 2.如图,四边形ABCD 中,AB ∥CD ,∠B=∠D ,, 求四边形ABCD 的周长. 【答案】 解法一: ∵ ∴ 又∵ ∴ ∴∥即得是平行四边形 ∴ ∴四边形的周长 解法二: 3 ,6==AB BC AB CD ∥?=∠+∠180C B B D ∠=∠?=∠+∠180D C AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B D C A B E F

连接 ∵ ∴ 又∵ ∴≌ ∴ ∴四边形的周长 解法三: 连接 ∵ ∴ 又∵ ∴ ∴∥即是平行四边形 ∴ ∴四边形的周长 3.(在四边形ABCD 中,∠D =60°,∠B 比∠A 大20°,∠C 是∠A 的2倍, 求∠A ,∠B ,∠C 的大小. 【关键词】多边形的内角和 【答案】设x A =∠(度),则20+=∠x B ,x C 2=∠. 根据四边形内角和定理得,360602)20(=++++x x x . 解得,70=x . AC AB CD ∥DCA BAC ∠=∠B D AC CA ∠=∠=,ABC △CDA △36AB CD BC AD ====,ABCD 183262=?+?=BD AB CD ∥CDB ABD ∠=∠ABC CDA ∠=∠ADB CBD ∠=∠AD BC ABCD 36AB CD BC AD ====,ABCD 183262=?+?=A D C B A D C B

动点问题与特殊平行四边形(1)

例一:如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=?x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC=AC,连接OA,OB,BD和AD. (1)若点A的坐标是(?4,4). ①求b,c的值; ②试判断四边形AOBD的形状,并说明理由; (2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A 的坐标;若不存在,请说明理由。 例二:如图,抛物线y=ax2+bx+c的图象经过点A(?2,0),点B(4,0),点D(2,4),与y轴交于点C,

作直线BC,连接AC,CD. (1)求抛物线的函数表达式; (2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标; (3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长。 例三:如图,在平面直角坐标系xOy中,抛物线y=ax2?2ax?3a(a<0)与x轴交于A,B

两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC. (1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示); (2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为5 4 ,求a的 值; (3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由。 例四:如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于

四边形动点问题(初二用平行四边形和面积问题总结)

四边形动点问题(初二用平行四边形和面积问题总结)

2015-2016学年度???学校3月月考卷 1.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ, △DKM, △CNH 的面积依 次为S 1,S 2 ,S 3 .若S 1 +S 3 =20,则S 2 的值为 ( ). A.6 B. 8 C. 10 D. 12 2.如右图所示,ABCD是一个正方形,其中几块阴影部分的面积如图所示,则四边形BMQN 的面积为。

3.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A 出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t. (1)求CD的长; (2)当四边形PBQD为平行四边形时,求四边形PBQD的周长; (3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由. 4.如图,△AEF中,∠EAF=45°,AG⊥EF于点G,现将△AEG沿AE折叠得到△AEB,将△AFG沿AF折叠得到△AFD,延长BE和DF相交于点C.

H G N M F E D C B A (1)求证:四边形ABCD 是正方形; (2)连接BD 分别交AE 、AF 于点M 、N ,将△ABM 绕点A 逆时针旋转,使AB 与AD 重合,得到△ADH ,试判断线段MN 、ND 、DH 之间的数量关系,并说明理由. (3)若EG=4,GF=6,BM=32,求AG 、MN 的长. 5.正方形ABCD 的顶点A 在直线MN 上,点O 是对角线AC 、BD 的交点,过点O 作OE ⊥MN 于点E ,过点B 作BF ⊥MN 于点F . (1)如图1,当O 、B 两点均在直线MN 上方时,易证:AF+BF=2OE (不需证明) (2)当正方形ABCD 绕点A 顺时针旋转至图2、图3的位置时,线段AF 、BF 、OE 之间又有怎样的关系?请直接写出你的猜想, 并选择一种

四边形中动点问题的解题策略

四边形中动点问题的解题策略 动点问题集代数、几何知识于一体,有较强的综合性,题型灵活多变,解题方法渗透了分类讨论、数形结合、转化等数学思想.本文以四边形中的动点问题为例,谈谈此类问题的解题策略,供读者参考. 策略一动中寻静 在“静”中探求“动”的一般规律,获得图形在运动过程中具有的某种性质,从而抓住变化中的不变因素. 例1 如图1,在四边形ABCD中,点E、F分别是AP、BP的中点,当点P在线段CD上从点C向点D移动时,线段EF的长度将______.(填“变大”、“变小”或“不变”) 分析当点P在CD上运动时,线段E F始终为△ABP的中位线,所以,总有EF=1 AB,因此线段EF的长度不变. 2 例2 如图2,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D是BC上一动点,以AC为对角线的所有≌ABCD中,DE最小的值为( ) (A)2 (B)3 (C)4 (D)5

分析当点D在BC上运动时,在□ABCD中总有DE=2OD.易知,OD取最小值时 OD上BC,且此时OD=1 2 AB,这样,DE最小值=2· 1 2 AB=AB=3. 注例1中抓住不变量EF=1 2 AB,例2中抓住不变量DE=2OD.这些等量关系不 随动点位置的改变而改变. 策略二化动为静 “静”只是“动”的瞬间,化动为静就是抓住动的瞬间,将一般转化为特殊,从而找到动与静的关系. 例3 如图3,已知正方形ABCD的边长为8,点M在DC上,且DM=2,点N在线段AC上运动,求DN+MN 的最小值. 分析结合正方形的性质和轴对称相关知识,不难找到DN+MN取最小值时点N的位置,如图4.此时,DN+MN=BN+MN=BM. 在Rt△BMC中,根据勾股定理,得 BD= 10 = ∴(DN+MN)最小值=BM=10. 注处理好动态几何中的最值问题,不能被动点所迷惑,要通过猜想与证明,确定满

人教版八年级下学期 第18章 平行四边形——动点问题(尖子生必练)(无答案)

八年级下学期第18章平行四边形——动点问题 1、如图,在边长为4的菱形 ABCD 中,BD=4,E 、F 分别是AD 、CD 上的动点(包含端点),且AE+CF=4,连接BE 、EF 、FB . (1)试探究BE 与BF 的数量关系,并证明你的结论; (2)求EF 的最大值与最小值. 2、在四边形ABCD 中,AD ∥BC,∠B=90°,AD=24cm ,AB=8cm ,BC=26cm ,动点P 从点A 开始,沿AD 边,以1cm/秒的速度向点D 运动;动点Q 从点C 开始,沿CB 边,以3cm/秒的速度向B 点运动。 已知P 、Q 两点分别从A 、C 同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t 秒,问: (1)t 为何值时,四边形PQCD 是平行四边形? (2)在某个时刻,四边形PQCD 可能是菱形吗?为什么? , 3、如右图,在矩形ABCD 中,AB=20cm ,BC=4cm ,点P 从 A 开始沿折线A — B — C — D 以4cm/s 的速度运动,点Q 从C 开始沿CD 边1cm/s 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达点D 时,另一点也随之停止运动,设运动时间为t(s),t 为何值时,四边形APQD 也为矩形? A B C D P Q

A M O F N E B C D 4、如图所示,△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN//BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于F 。 (1)求证:EO FO =; (2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论。 5、(1)如图1,纸片□ABCD 中,AD =5,S □ABCD =15,过点A 作AE ⊥BC ,垂足为E ,沿AE 剪下△ABE ,将它平移至△DCE '的位置,拼成四边形AEE 'D ,则四边形AEE 'D 的形状为( ) A .平行四边形 B .菱形 C .矩形 D .正方形 (2)如图2,在(1)中的四边形纸片AEE 'D 中,在EE '上取一点F ,使EF =4,剪下△AEF ,剪下△AEF ,将它平移至△DE 'F '的位置,拼成四边形AFF 'D . ①求证:四边形AFF 'D 是菱形;②求四边形AFF 'D 的两条对角线的长。 C B A E E'D E E' F F'D A 图1 图2 6、在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H (点H 与点D 不重合).通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于E ,延长EG 交CD 于F . (1)如图①,当点H 与点C 重合时,可得FG FD .(大小关系) (2)如图②,当点H 为边CD 上任意一点时,猜想FG 与FD 的数量关系,并说明理由. (3)在图②中,当AB=8,BE=3时,利用探究的结论,求CF 的长。

四边形之动点问题(习题及答案)

四边形之动点问题(习题) ?例题示范 例1:如图,直线y = 3x +6 与x 轴、y 轴分别交于点A,B,与 直线y =- 3 x 交于点C.动点E 从点B 出发,以每秒1 个单位长3 度的速度沿BO 方向向终点O 运动,动点F 从原点O 同时出发,以每秒1 个单位长度的速度沿折线OC-CB 向终点B 运动,当其中一点停止时,另一点也随之停止.设点F 运动的时间为t(秒).(1)求点C 的坐标; (2)当3 ≤t ≤6 时,若△BEF 是等腰三角形,求t 的值. 1

3 ? 【思路分析】 1. 研究背景图形 由直线表达式 y = 3x + 6 , y = - 3 x ,可知两直线垂直, 3 且 OA = 2 3,OB = 6,∠ABO = 30 o , 得到∠COB = 60o ,OC = 3,BC = 3 ; C ? - 3 3 3 ? 同时,联立直线表达式可知, ? 如图, , . 2 2 ? 2. 分析运动过程,分段,定范围 ①分析运动过程:动点 E 和 F 运动的起点,终点,速度;状态转折点;时间范围;所求目标.根据状态转折点 C 对运动过程进行分段,确定每段对应的时间范围分别为0 ≤ t < 3 和 3 ≤ t ≤ 6 .如图, ②分段之后可知,当3 ≤ t ≤ 6 时,点 F 在线段 BC 上;分析 △BEF ,B 是定点,E ,F 是动点.若使△BEF 是等腰三角形, 需要分三种情况考虑:BE =BF ,BE =EF ,BF =EF .

3 3 2 2 ? ? 3 ? 3 3 ? ∴ C - , ? 3 (1)∵直线 y = 3x + 6 与直线 y = - 3 x 交于点 C 3. 分析几何特征、表达、设计方案求解 ①当 BE =BF 时,画出符合题意的图形从动点的运动开始表达,可得 BE =t , BF = 3 + 3 到 t 值. - t ,根据 BE =BF 即可得 此时, t = 3 + 3 3 2 ②当 BE =EF 时,画出符合题意的图形;从动点的运动开始表达,可得 BE =t ,BF = 3 + 3 - t ,根据 BE =EF 且∠OBA =30°,利用等腰三角形三线合一,过点 E 作 EN ⊥BC 于点 N ,在Rt △BEN 中建立等式即可得到 t 值. 此时,t =3 ③当 BF =EF 时,画出符合题意的图形;从动点的运动开始表达,可 得 BE =t , BF = 3 + 3 - t , 根据 BF =EF ,且∠OBA =30°,利用等腰三角形三线合一,过点 F 作 FM ⊥ BO 于点 M ,在 Rt △BFM 中建立等式即可得到 t 值. 此时, t = 3 【过程书写】 3 3

八年级数学四边形动点问题练习.doc

中考数学动点专题 所谓“动点型问题”是指题设图形中存在一个或多个动点 , 它们在线段、射线或弧线上运动的一 类开放性题目 . 解决这类问题的关键是动中求静 , 灵活运用有关数学知识解决问题 . 关键 : 动中求静 . 数学思想:分类思想函数思想方程思想数形结合思想转化思想注重 对几何图形运动变化能力的考查 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。 选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的 情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路 , 这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容 包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:( 1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等. 1、已知:等边三角形 ABC 的边长为 4 厘米,长为 1 厘米的线段 MN 在△ ABC 的边 AB 上沿 AB 方向以 1 厘米 / 秒的速度向 B 点运动(运动开始时,点 M 与点 A 重合,点 N 到达点 B 时运动终止), 过点 M 、N 分别作 AB 边的垂线,与△ ABC 的其它边交于P、Q两点,线段 MN 运动的时间为 t 秒. (1)、线段 MN 在运动的过程中, t 为何值时,四边形MNQP恰为矩形并求出该矩形的面积; (2 )线段 MN 在运动的过程中,四边形MNQP 的面积为S,运动的时间为t.求四边形 MNQP 的面 积 S 随运动时间 t 变化的函数关系式,并写出自变量t 的取值范围. C Q P A M N B 2.梯形 ABCD中, AD∥BC,∠ B=90°, AD=24cm, AB=8cm,BC=26cm,动点 P 从点 A 开始,沿AD边,以 1 厘米 / 秒的速度向点 D运动;动点 Q从点 C开始,沿 CB边,以 3 厘米 / 秒的速度向 B 点运动。

四边形中的动点问题(带答案)

四边形中的动点问题 1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是_____________ 2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________ 3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________ 4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s 的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF. (1)求证:AE=DF; (2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由

5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t. (1)连接EF,当EF经过AC边的中点D时, (1)求证:△ADE≌△CDF;: (2)当t为______s时,四边形ACFE是菱形; 6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明

初中数学特殊的平行四边形

特殊的平行四边形 中考要求 知识点睛 1.菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2.菱形的性质 菱形是特殊的平行四边形,它具有平行四边形的所有性质,?还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等. ③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形. 菱形的面积等于底乘以高,等于对角线乘积的一半. 点评:其实只要四边形的对角线互相垂直,其面积就等于对角线乘积的一半. 3.菱形的判定 判定①:一组邻边相等的平行四边形是菱形. 判定②:对角线互相垂直的平行四边形是菱形. 判定③:四边相等的四边形是菱形. 4.三角形的中位线 中位线:连结三角形两边的中点所得的线段叫做三角形的中位线. 也可以过三角形一边的中点作平行于三角形另外一边交于第三边所得的线段也是中位线. 以上是中位线的两种作法,第一种可以直接用中位线的性质,第二种需要说明理由为什么是中位线,再用中位线的性质. 中点中点平行 中点 定理:三角形的中位线平行第三边且长度等于第三边的一半. 5.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形. 6.正方形的性质 正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质: ① 边的性质:对边平行,四条边都相等. ② 角的性质:四个角都是直角. ③ 对角线性质:两条对角线互相垂直平分且相等,?每条对角线平分一组对角. ④ 对称性:正方形是中心对称图形,也是轴对称图形. 平行四边形、矩形、菱形和正方形的关系:(如图)

正 方形 菱形 矩形平行四边形 7.正方形的判定 判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形. 例题精讲 板块一、菱形 【例1】 已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的 大小是 【解析】如图,过点A 作AE BC ⊥于E ,则 1 2 AC BD BC AE ?=?,又2AC BD AB ?=,得1 302 AE AB ABC = ∠=?,,150BAD ∠=? E D C B A 【答案】150? 【例2】 已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=?,18BAE ∠=?.求: CEF ∠的度数. F E D C B A 【解析】连接AC ,∵四边形ABCD 为菱形 ∴AB BC CD AD === ∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=?, ∵60EAF ∠=? ∴BAE CAF ∠=∠ ∴ABE ACF △≌△

第一章 特殊平行四边形专训2 利用特殊四边形的性质巧解动点问题(含答案)

专训2利用特殊四边形的性质巧解动点问题 名师点金:利用特殊四边形的性质解动点问题,一般将动点看成特殊点解决问题,再运用从特殊到一般的思想 .........,将特殊点转化为一般点(动点)来解答. 平行四边形中的动点问题 1.如图,在?ABCD中,E,F两点在对角线BD上运动(E,F不重合),且保持BE=DF,连接AE,CF.请你猜想AE与CF有怎样的数量关系和位置关系,并说明理由. (第1题) 菱形中的动点问题 2.如图,在菱形ABCD中,∠B=60°,动点E在边BC上,动点F在边CD上. (1)如图①,若E是BC的中点,∠AEF=60°,求证:BE=DF; (2)如图②,若∠EAF=60°,求证:△AEF是等边三角形. (第2题)

矩形中的动点问题 3.在矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为O. (1)如图①,连接AF,CE.试说明四边形AFCE为菱形,并求AF的长. (2)如图②,动点P,Q分别从A,C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,已知点P 的速度为5 cm/s,点Q的速度为4 cm/s,运动时间为t s,当以A,C,P,Q四点为顶点的四边形是平行四边形时,求t的值. (第3题) 正方形中的动点问题 4.如图,正方形ABCD的边长为8 cm,E,F,G,H分别是AB,BC,CD,DA上的动点,且AE=BF=CG=DH. (1)求证:四边形EFGH是正方形; (2)判断直线EG是否经过一个定点,并说明理由. (第4题)

2016—2017学年八年级数学四边形动点问题期末复习及答案

2016—2017学年八年级数学四边形动点问题期末复习及答案 1、如图,E 是正方形ABCD 对角线AC 上一点,EF ⊥AB ,EG ⊥BC ,F 、G 是垂足,若正方形ABCD 周长为a ,则EF +EG 等于 。 2、如图,P 是正方形ABCD 内一点,将△ABP 绕点B 顺时针方向旋转能与△CBP′重合,若PB=3,则PP′= 3、在Rt △ABC 中 ∠C=90° AC=3 BC=4 P 为AB 上任意一点 过点P 分别作PE ⊥AC 于E PE ⊥BC 于点F 线段EF 的最小值是 4、如图,菱形ABCD 中,AB=4,∠BAD =60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是 。 5、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为 C A B P F E E D C A P A D E P B C

6、如图,正方形ABCD的边长为4cm,正方形AEFG的边长为1cm.如果正方形AEFG绕点A旋转,那么C、F两点之间的最小距离为cm. 7、如图,在菱形ABCD中,对角线AC、BD相交于点O,且AC=12,BD=16,E为AD的中点,点P在BD上移动,若△POE为等腰三角形,则所有符合条件的点P共有个. 8、已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为。 9、如图,在边长为10的菱形ABCD中,对角线BD=16.点E是AB的中点,P、Q是BD上的动点,且始终保持PQ=2.则四边形AEPQ周长的最小值为_________.(结果保留根号)

相关文档
最新文档