第三章-储层岩石的物理性质.doc

第三章-储层岩石的物理性质.doc
第三章-储层岩石的物理性质.doc

第三章储层岩石的物理性质

3-0 简介

石油储集岩可能由粒散的疏松砂岩构成,也可能由非常致密坚硬的砂岩、石灰岩或白云岩构成。岩石颗粒可能与大量的各种物质结合在一起,最常见的是硅石、方解石或粘土。认识岩石的物理性质以及与烃类流体的相互关系,对于正确和评价油藏的动态是十分必要的。

岩石实验分析是确定油藏岩石性质的主要方法。岩心是从油藏条件下采集的,这会引起相应的岩心体积、孔隙度和流体饱和度的变化。有时候还会引起地层的润湿性的变化。这些变化对岩石物性的影响可能很大,也可能很小。主要取决于油层的特性和所研究物性参数,在实验方案中应考虑到这些变化。

有两大类岩心分析方法可以确定储集层岩石的物理性质。

一、常规岩心实验

1、孔隙度

2、渗透率

3、饱和度

二、特殊实验

1、上覆岩石压力,

2、毛管压力,

3、相对渗透率,

4、润湿性,

5、表面与界面张力。

上述岩石的物性参数对油藏工程计算必不可少,因为他们直接影响这烃类物质的数量和分布。而且,当与流体性质结合起来后,还可以研究某一油藏流体的流动状态。

3-1 岩石的孔隙度

岩石的孔隙度是衡量岩石孔隙储集流体(油气水)能力的重要参数。

一、孔隙度定义

岩石的孔隙体积与岩石的总体积之比。绝对孔隙度和有效孔隙度。

特征体元和孔隙度:对多孔介质进行数学描述的基础定义是孔隙度。定义多孔介质中某一点的孔隙度首先必须选取体元,这个体元不能太小,应当包括足够的有效孔隙数,又不能太大,以便能够代表介质的局部性质。 ,

称体积△U 0为多孔介质在数学点M 处的特征体元—多孔介质的质点。这样的定义结果,使得多孔介质成为在每个点上均有孔隙度的连续函数。若这样定义的孔隙度与空间位置无关,则称这种介质对孔隙度而言是均匀介质。对于均匀介质,孔隙度的简单定义为:

绝对孔隙度:

有效孔隙度:

孔隙度是标量,有线孔隙度、面孔隙度、绝对孔隙度、有效孔隙度之分。区分两类孔隙类型非常重要,一种是相互连通的有效孔隙,另一种是相对孤立的、不联通的死孔隙。相当大孔隙度由于缺乏相互连通的孔隙,使得液体无法流动,油藏工程计算中,用的就是有效孔隙度。

孔隙度可以根据诱导孔隙成因的不同来划分。原始孔隙是在物质的沉积过程中形成的。而次生孔隙则在岩石沉积以后的地质过程中形成的。砂岩的粒间孔隙、某些石灰岩的鱼网状和鲕滩孔隙就是典型的原始孔隙。在页岩和石灰岩中发现的裂缝以及通常在石灰岩中发现的溶洞就是典型的次生孔隙。据有原始孔隙的岩石物性分布要比其他大部分的岩石均匀。

石油工程师感兴趣的是有效孔隙。因此,要重视孔隙度的测定方法。

1、 现用已知密度的流体100%饱和岩样,然后测量由于饱和流体后岩石增量的重量来确定——有效孔隙。因为饱和的流体只能进入相互连通的

孔隙空间。

2、 用砚钵或碾锥压碎岩样样本,从而确定岩心样本中的真实固体部分的体积——绝对孔隙,因为所有的孤立孔隙空间在压碎过程中均会消失。

二、评价指标 定性评价

孔隙度(%) 可忽略

较差

较好

很好 0-5 5-10 10-15 15-20 20-25 〉25

三、测定

实验室为了确定岩样的体积、孔隙体积和颗粒体积,采用多种方法。常用:气体法、液体法和颗粒密度法等。近年来,根据波义尔定律,利用

气体法测量孔隙度占了绝对优势,主要原因:简单可靠,误差精度控制在0.5%之内。

三、孔隙度加权平均

U

0多孔介质孔隙度的定义 φ 0 1

油藏岩石一般在垂直方向孔隙度有较大变化,但在与岩石层面平行的方向上变化不大。在这种情况下,可用算术平均孔隙度或厚度加权孔隙度来描述油藏的平均孔隙度。而沉积条件的变化则会引起油藏某一部分的孔隙度与另一部分的孔隙度相差很远。则用面积加权或体积加权的孔隙度来表示平均孔隙度。

算术平均:;厚度加权平均:;

面积加权平均:;体积加权平均:

3-2 岩石流体的饱和度

一、基本定义

1、饱和度定义:储层岩石孔隙中某种流体所占的体积百分比。表征孔隙空间被某种流体占据的程度。

所有饱和度是基于孔隙介质而不是总油藏体积。

2、原始含油饱和度:油藏投入开发前所测得的原始含油体积占岩石孔隙体积的百分数。

原生(束缚)水饱和度:

原生(束缚)水饱和度比较重要,主要它占据了油气之间的空间,一般来说,它并不是在整个油藏中均匀分布,因为它随着渗透率、岩性以及自由水面的高度而变化。

另一种特殊的相饱和度是临界饱和度,它与每种油藏流体有关。每种相临界饱和度的定义不同。

二、临界油饱和度Soc

如果油要流动,其油饱和度必须超过某一特定值,也就是临界油饱和度,在这种饱和度以下,油不流动。

三、残余油饱和度Sor

在原油系统的油气注入驱替过程中,将有剩余油存在,并用大于临界油饱和度的残余油饱和度S or来描述。这些石油在数量上用一大于临界油饱和度的值来表征。这种饱和度的值就称为残余油饱和度。当被润湿相驱替时,残余油饱和度通常与非润湿相有关。

四、可动油饱和度Som

定义为:可动油占据孔隙体积的百分比,

——原生水饱和度;

——临界油饱和度。

五、临界气饱和度Sgc

当油藏压力降至泡点压力以下时,气体逐渐从油相中分离出来,随油藏压力的进一步下降,气体饱和度上升,当气相饱和度超过某一特定饱和度时,气体开始流动。这种饱和度的值就称为临界气饱和度。

六、临界水饱和度Swc

临界水饱和度、原生水饱和度和不可降低的水饱和度经常互换使用,并用它们来定义水保持不流动时的最大饱和度。

七、平均饱和度

利用层段厚度和层段孔隙度加权来计算平均饱和度。

;;

八、测定方法

(1)油基泥浆密闭取心分析法:通过高压密闭油基泥浆钻井,将油层的岩心取出,可以避免泥浆对岩心中流体的冲洗侵害,能保持地层岩心中流体的原始状态,在实验室对岩心进行专门仪器的蒸馏与冷却,测定冷却后束缚水的体积量。

(2)、测井资料解释法:利用测井资料,先确定原始含水饱和度,在确定原始含油饱和度。著名的阿尔奇(Archie)公式:

Rw——地层水的电阻率,;

R t——地层的真电阻率(使用深电阻率测井),;

m——胶结指数;1.4-2.8,一般使用2.0;对于软地层m=2.15;对于硬地层m=2.2;对于裂缝性地层m=1.4;对于碳酸盐地层m=1.87+0.19Φ;

n——饱和指数,变化范围为1.4-10,一般取2.0,和m的指数相同。

(3)、最小孔吼半径法:利用压汞法测毛管力,并计算不同毛管力下的孔吼半径大小,最高的毛管压力,对应于最小的孔吼半径和最低的含水饱和度(束缚水饱和度)。

3-3 岩石的渗透率

一、岩石的绝对渗透率

1、定义

渗透率是储层岩石让流体通过的能力。1856年法国工程师Henry Darcy公布了他稳态试验的结果,后人把他的成果归纳和总结,称之为达西定律(Darcy Law)。

达西稳态线性关系是:

达西单位制:Q—cm3/s;A——cm2;L——cm;u——mPa.s;P——atm;K——um2(达西)

Darcy 定律流量表达式:

Darcy 定律微分形式:

Darcy 定律矢量形式:

,

2、渗透率含义

渗透率K是Darcy定律中的比例系数,它是反应多孔介质结构特性的一个参数表示为(L是沿流动方向):

渗透率(k)是流体通过多孔介质能力的重要量度。它是表征多孔介质孔隙特征的重要参数。渗透率定义为单位时间内,在单位压力梯度下,粘度为1个单位的流体通过单位横截面积孔隙介质的体积流量。渗透率单位取决于表示达西定律中的各量的单位。但渗透率在量纲上与面积量纲相同,在SI 标准单位制中渗透率的单位是μm2(平方微米)。

岩石的渗透率是一个二阶对称张量,一般来说储层岩石不是各向同性的,而是各向异性的。就砂岩储层来说,除了水平和垂直方向的渗透率有差异外,在平面上各个方向上的渗透率往往也有差异。有时,储层砂岩在水平方向上各方向的渗透率差异不大,可以认为是水平方向各向同性。当岩石中存在天然裂缝时,渗透率的各向异性更为突出。

3、评价指标

定性评价孔隙度(mD)

特致密

致密

较致密

很好

极好

0.01-0.1

0.1-1

1-10

10-100

100-1000

>1000

4、Darcy定律适用范围

(1)单相流体饱和;(2)流体与岩石不发生任何物理和化学反应;(3)稳态层流(粘性流)。(4)有关限制:包括速度限制、密度限制。

速度上限(高速情形):Fanning摩擦系数对Renolds数关系曲线f~Re图

△P/△L

v

岩石物理性质

岩石物理性质 地球物理勘探中所涉及的各类岩石和矿物的物理性质。岩石的密度、弹性波传播速度、磁化率、电阻率、热导率、放射性等,是形成各种地球物理场的基础(表1)。 磁性常用的岩石磁性参数是磁化率、磁化强度、剩余磁化强度矢量,以及剩余磁化强度同感应磁化强度的比值Q。 矿物按其磁性的不同可分为3类: ①反磁性矿物,如石英、磷灰石、闪锌矿、方铅矿等。磁化率为恒量,负值,且较小。 ②顺磁性矿物,大多数纯净矿物都属于此类。磁化率为恒量,正值,也比较小。 ③铁磁性矿物,如磁铁矿等含铁、钴、镍元素的矿物。磁化率不是恒量,为正值,且相当大。也可认为这是顺磁性矿物中的一种特殊类型。 岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。一般说,橄榄石、辉长石、玄武岩等基性、超基性岩浆岩的磁性最强;变质岩次之;沉积岩最弱。 ①岩浆岩的磁性取决于岩石中铁磁性矿物的含量。结构构造相同的岩石,铁磁性矿物含量愈高,磁化率值愈大。铁磁性侵入岩的天然剩余磁化强度,按酸性、中性、基性、超基性的顺序逐渐变大。铁磁性侵入岩的特点是Q值一般小于1。由接触交代作用而形成的岩石,Q值可达1~3,甚至更大。 ②沉积岩的磁性主要也是由铁磁性矿物的含量决定的。分布最广的沉积岩造岩矿物,如石英、方解石、长石、石膏等,为反磁性或弱 1顺磁性矿物。菱铁矿、钛铁矿、黑云母等矿物之纯净者是顺磁性矿物;含铁磁性矿物杂质者具有强顺磁性。沉积岩的磁化率和天然剩余磁化强度值都比较小。

③变质岩的磁性是由其原始成分和变质过程决定的。原岩为沉积岩的变质岩,磁性一般比较弱;原岩为岩浆岩的变质岩在变质作用相同时,其磁性一般比原岩为沉积岩的变质岩强。大理岩和结晶灰岩为反磁性变质岩。岩石变质后,磁性也发生变化。蛇纹石化的岩石磁性比原岩强;云英岩化、粘土化、绢云母化和绿泥石化的岩石,磁性比原岩减弱。 岩石磁性的各向异性是岩石的层状结构造成的。磁化率高,变质程度深的岩石,磁各向异性很明显。褶皱区沉积岩的磁各向异性一般要比地台区的大。 岩石的天然剩余磁化强度矢量是在岩石形成过程中,按当时当地的地磁场方向“冻结”下来的。这个矢量的指极性与现代地磁场方向一致的称为正极性。岩石的年代愈古老,它的剩余磁化强度矢量的成分愈复杂。岩石剩余磁性由各种天然磁化过程形成。岩石在磁场中从居里点以上温度冷却时获得的剩余磁性称为热剩余磁性;岩石中的铁磁性物质在磁场中由于磁粘滞性而获得的剩余磁性称粘滞剩余磁性;沉积岩中的微小磁性颗粒在沉积过程中受磁场作用采取定向排列因而获得的剩余磁性称为沉积剩余磁性;沉积物中的铁矿物沉积后,在磁场中经化学变化而获得的剩余磁性称化学剩余磁性;还有等温剩余磁性是常温下磁性物质在磁场中获得的剩余磁性(见岩石磁性)。岩石的剩余磁性是古地磁学赖以建立的基础。 岩石和矿物的磁性与温度、压力有关系。顺磁性矿物的磁化率与温度的关系遵循居里定律。铁磁性矿物的居里温度一般为300~ 2700℃,其磁化率一般随温度升高而增大(可达50%),至居里温度附近则迅速下降。铁磁性矿物的磁化率与温度的关系有两种类型:一为可逆型,即在矿物加热和冷却过程中温度相同时磁化率值相同,如纯磁铁矿、钛铁矿。另一种为不可逆型,即矿物加热和冷却过程中温度相同时磁化率值不同,如对升温不稳定的铁磁性矿物。岩石加热时,磁化率也逐步升高,至200~400℃迅速下降。岩石的磁化率和磁化强度值都随压力的增大而减小。 密度和孔隙度矿物的密度是由构成该矿物各元素的原子量和矿物的分子结构决定的。大多数造岩矿物如长石、石英、辉石等具有 3

岩石物性资料

岩石物性资料

岩(矿)石物性资料 (2008年12月11日) 一、密度: 表1-1 常见矿物的密度 名称 密度/g.3cm - 名称 密度/g.3cm -石英 2.65 金刚石 2.6-2.9 正长石 2.55-2.63 重晶石 4.4-4.7 钠长石 2.63 刚玉 3.9-4.0 钙长石 2.76 岩盐 3.1-3.2 方解石 2.72-2.94 硬石膏 2.7-3.0 白云石 2.86-2.93 石膏 2.2-2.4 白云母 2.77-2.88 霞石 2.55-2.65 黑云母 2.7-3.3 绿高岭石 1.72-2.5 角闪石 3.62-3.65 白榴石 2.45-2.5 透闪石 2.99-3.00 硅灰石 2.79-2.91 阳起石 3.1-3.2 蛇纹石 2.5-2.6 星叶石 3.0-3.15 赤铁矿 4.5-5.2 钠闪石 3.3-3.46 磁铁矿 4.8-5.2 纳钙闪石 3.3-3.46 黄铁矿 4.9-5.2 钛铁矿 4.5-5.0 磁黄铁矿 4.3-4.8 铬铁矿 3.2-4.4 黄铜矿 4.1-4.3 辉铜矿 5.5-5.8 斑铜矿 4.9-5.2 海绿石 2.2-2.9 石墨 2.09-2.25 多水高岭土 1.9-2.6 蛋白石 1.9-2.5 钾盐 1.99 叶绿泥石 2.6-3.0 硬绿泥石 3.3-3.6 金红石 4.18-4.23 锰矿 3.4-6.0 钨酸钙矿 5.9-6.2 铝矾土 2.4-2.5 煤 1.2-1.7 褐煤 1.1-1.3 表1-2 常见岩石密度 名称 密度/g.3cm - 名称 密度/g.3 cm -纯橄榄岩 2.5-3.3 橄榄岩 2.5-3.6 玄武岩 2.6-3.3 辉长岩 2.7-3.4 安山岩 2.5-2.8 辉绿岩 2.9-3.2 鞍山玢岩 2.6-2.9 花岗岩 2.4-3.1 石英岩 2.6-2.9 流纹岩 2.3-2.7 片麻岩 2.4-2.9 云母片岩 2.5-3.0 千枚岩 2.7-2.8 蛇纹岩 2.6-3.2 大理岩 2.6-2.9 白云岩 2.4-2.9

储层岩石力学概述

储层岩石力学概述 发表时间:2019-09-11T14:30:47.063Z 来源:《基层建设》2019年第11期作者:王祥程 [导读] 摘要:岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。 成都理工大学能源学院 610059 摘要:岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。深入了解研究岩石力学的性质和相关参数对于工程上的开发具有十分重要的作用。 关键词:岩石力学;石油工程;研究方法 1. 岩石力学的概述 岩石包括组成岩石的固体骨架、孔隙、裂缝以及其中的流体,因此岩石力学往往会应用到弹性力学、塑性力学、流体力学、渗流力学等力学学科的诸多理论方法。岩石的性质几乎牵涉到所有力学分支,岩石力学的研究是各种力学理论的综合运用。不同岩石力学问题的研究,可能包括瞬时变形运动,也可能包含与地质演化时间相关的长期变形运动。 岩石力学是力学的一部分。岩石材料赋存于地下,其力学性质难于直接测试和观察,而若将其取至地面进行测试则岩石的力学性质往往发生了较大的变化,加之岩石中的流体存在于裂隙或孔隙之中,与岩石骨架相互作用,使岩石的受力情况更加复杂。 2.岩石力学的研究方法 岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。岩石具有特殊的固体介质力学特性,这个特殊的力学性质与它所处的环境有关,如天然岩石所处应力状态一般称为岩石的初始应力状态。在岩石受到工程活动扰动后,岩体的应力出现了变化,这时岩石所处的应力状态称为次生应力状态。此时将岩石力学和工程地质相结合进行研究是十分重要和必要的。对于节理岩体,特别需要了解岩体结构面的分布、网络特性、岩体结构类型,才能进行岩体的数值模拟和分析。 一般而言,岩石力学的研究方法可分为如下四大类: (1)地质研究方法:对岩体进行地质方面的研究始终是岩石力学研究的基础,在整个岩石工程过程中,地质性质的研究应当列在第一位。①岩石岩相、盐层特征的研究,如软弱岩体的成分、可溶盐类、含水蚀变矿物、不抗风化岩体成分以及原生结构。②岩体结构的地质特性研究,如断续结构面的几何特征、岩体力学特征、软弱面的充填物及地质特性。③赋存地质环境的研究,如地应力的成因、地下水分布与化学特征以及地质构造对环境的影响。 (2)物理力学研究方法:①岩体结构的探测,应用地球物理化学方法和技术来探查各种结构面的力学特征和化学特征。②地质环境的物理性质分析与测量,如地应力的形成机制及分布、地质环境中热力与水力存在的性状、水化学的分布特征,应用大规模地质构造层析技术、地质雷达探测技术确定岩体构造。③岩体物理力学性质的测定,如岩块力学特性的室内试验、原位岩体的力学性质测试、钻孔测试、工程变形监测、位移反分析等。主要运用的手段是基于震动的动态测试,如超声波测试、地震波测试、电磁波测试、计算机层析方法(CT)测试。这些测试利用岩体的波动特性,来研究岩体的力学特性。 (3)数学力学分析方法:岩石力学的研究,除了以上地质方法、物理力学方法的研究外,还要进行数学力学方法研究,从而构成岩石力学的理论基础,包括:①岩石本构关系的研究-对岩石进行宏观到细观甚至微观的力学特性研究。②数值分析方法。由于计算机计算性能的发展,岩石力学的数值分析方法得到了大力发展。在数值分析方法方面,由岩体连续力学发展到非连续力学,出现了离散元法(DEN)和不连续变形分析法(DDA)、流形法(BEM)、无单元法(EFM)和快速拉格朗日法(FLAC)。③多元统计和随机分析。这两种方法可以深人地研究因岩体介质的随机分布特性而造成传统方法难以解决的问题。④物理和数值模拟仿真分析。 (4)整体综合分析法:就整个工程进行多种分析的方法,并以系统工程为基础的综合分析。 3.石油工程岩石力学研究对象及特点 石油工程岩石力学所研究的,所涉及的地层深度大多在8000m范围内,研究对象主要是沉积岩层,岩石处于较高的围压、温度和孔院压力作用下其性质已完全不同于浅部地层,它可能经过脆-塑性转变成塑性,也可能由于高孔院压力的作用呈现脆性破坏。 (1)石油工程岩石力学所涉及的围压可达200MPa。非均匀的原地应力场形成了地层之间的围压,若垂向应力源于地层自重,那么应力梯度平均为0.023MPa/m,多数地区最大水平应力往往大于垂向应力,且两个水平地应力梯度的比值通常达到1.4~1.5以上。在山前构造带地区,不但地应力梯度高,最大和最小水平地应力的比值也很大。因此在研究地应力分布规律(包括数值大小及主方向)时,主要依靠水力压裂、岩石剩磁分析、地震和构造资料反演、测井资料解释等间接方法。 (2)石油工程岩石力学所涉及的温度可达250℃。一般的地温梯度是3℃/100m,高的可超过4℃/100m,具体的地温梯度往往需要实际测定。当温度超过150℃后,温度对岩石性质的影响将变得十分明显。 (3)石油工程岩石力学中所涉及到的孔隙和裂隙中的高压流体的孔隙压力可高达200MPa.一般情况下,常规的静水孔隙压力梯度为 0.00981MPa/m,但是异常高压可超过0.02MPa/m。 4.结束语 岩石力学是一门十分重要的,它涉及到了工程领域的各个行业。因此,正确理解学习岩石力学的理论知识以及探究其影响等具有十分重要的意义。 参考文献 [1]王路,徐亮,王瑞琮.岩石力学在石油工程中的应用[J].石化技术,2017, 24(3):157-157. [2]陈勉.我国深层岩石力学研究及在石油工程中的应用[J].岩石力学与工程学报,2003,23(14):2455-2462. [3]杨永明,鞠杨,刘红彬,etal.孔隙结构特征及其对岩石力学性能的影响[J].岩石力学与工程学报,2009,28(10):2031-2038. [4]陈新,杨强,何满潮,etal.考虑深部岩体各向异性强度的井壁稳定分析[J].岩石力学与工程学报,2005(16):2882-2888. [5]陈德光,田军,王治中,etal.钻井岩石力学特性预测及应用系统的开发[J].石油钻采工艺,1995,17(5):012-16. [6]王大勋,刘洪,韩松,etal.深部岩石力学与深井钻井技术研究[J].钻采工艺,2006,29(3):6-10. [7]阎铁.深部井眼岩石力学分析及应用[D].2001. [8]陈新,杨强,何满潮,etal.考虑深部岩体各向异性强度的井壁稳定分析[J].岩石力学与工程学报,2005(16):2882-2888.

岩石类型及其物性特征差异

岩石类型及其物性特征差异 ————岩体的磁异常特征及其电阻率 岩石是在各种地质作用下,按一定方式结合而成的矿物集合体,它是构成地壳及地幔的主要物质。岩石虽然也有一定的化学成分和物理性质,但与矿物相比,其物质组成不固定,有一定的变化范围,物理性质也不均匀。 岩石的种类很多,但从成因和形成过程来看,一般被分为三大类:岩浆岩(注:火成岩是一些由岩浆作用而形成的岩浆岩和一些貌似岩浆岩而不是岩浆岩的岩,由于火成岩以岩浆岩为主,一般可以将火成岩称为岩浆岩)、沉积岩、变质岩。它们在地球上的分布情况,各不相同。沉积岩主要分布在地壳表层部分,占陆壳面积75%; 而距地表越深,火成岩和变质岩就越多,在地壳的深部和上地慢,主要由火成岩和变质岩构成。按体积计算,地壳中火成岩占64.7%,变质岩占27.4%,沉积岩占7.9%。 一.岩浆岩 岩浆是地下深处形成的高温高压熔融体,其成分主要为硅酸盐,富含挥发份。岩浆沿着地壳薄弱地带侵入地壳甚至喷出地表,随着温度降低,岩浆最后冷凝固结成岩石,形成岩浆岩。 当岩浆喷出地表后冷凝形成的岩石称喷出岩,或称火山岩。分熔岩和火山碎屑岩。岩浆在地表以下冷凝形成的岩石称侵入岩。在较深处形成的侵入岩叫深成岩,在较浅处形成的侵入岩叫浅成岩。 岩浆岩的种类很多,组成岩浆岩的矿物种类也各不相同。但最主要的矿物有:石英、长石、云母、角闪石、辉石、橄榄石等。 石英、长石中含SiO2,Al2O3高,颜色浅,称浅色矿物; 角闪石、辉石、橄榄石中氧化铁, 氧化镁含量高,硅铝含量少,颜色较深,称为暗色矿物。 现在已经发现700多种岩浆岩,大部分是在地壳里面的岩石。常见的岩浆岩有花岗岩、闪长岩、辉长岩、橄榄岩、流纹岩、安山岩及玄武岩等。一般来说,岩浆岩易出现于板块交界地带的火山区 花岗岩:是酸性火山岩,是一种岩浆在地表以下凝结冷却形成的火成岩, 主要成分是长石和石英。 花岗岩体上的磁异常特征:花岗岩类一般磁性较弱。多数花岗岩体上只有数百纳特的磁异常,有时仅几十纳特,曲线起伏跳跃较小。少数岩体也有数千纳特异常的。花岗岩体有不同的岩相带,形成不同的磁场特征,且边缘相磁异常往往较高。花岗闪长岩磁性较花岗岩为高,其磁异常与闪长岩相近。 闪长岩:是中性火山岩,主要由斜长石(中-更长石)和一种或几种暗 色矿物组成,后者总量一般为20~35%。不含或仅含少量的钾长石,一般不超过长石总量的10%。不含或含极少量石英,其量不超过浅色矿物总量的 5%。暗色矿物以角闪石为主,有时有辉石和黑云母。 闪长岩体上的磁异常特征:闪长岩体常具中等强度的磁性,在出露岩体上可以产生1000~3000nT的磁异常。当磁性均匀时,异常曲线跳跃较小,磁性不

岩石物理分析

第一篇地震岩石物理学及在储层预测的应用 Seismic Rock physics Theory and the Application in Reservor Discrimination 摘要 储层预测研究主要在于弄清储层构造特征、岩性特征及储层参数,进而减少勘探开发风险。储层参数包括孔隙度、渗透率、流体类型等,而地震资料提供的是地震波旅行时和振幅信息,再通过反演可得到弹性参数。地震岩石物理学则为储层参数和弹性参数之间搭建桥梁。横波速度是重要的地球物理参数在近些年发展起来的叠前地震储层弹性参数反演及流体检测方面起着重要的作用。地震横波速度估计技术是根据地震岩石物理建立的目标岩石模量计算模式,利用计算出的模量重建纵波曲线,与实测曲线建立迭代格式修正岩石模量,实现横波速度等关键参数估计。在方法实现上利用了Xu-White模型为初始模型。流体因子是识别储层流体的重要参数,常规流体因子多是基于单相介质理论提出的,而从双相介质岩石物理理论出发可以更好的研究孔隙流体对介质岩石弹性性质的影响,为敏感流体因子的构建提供更好的指导。本文采用了Gassmann流体因子,并分析了其敏感性。 关键词:等效介质模量,孔隙度,横波速度估算,Xu-White模型,Gassmann流体因子。

Seismic Rock physics Theory and the Application in Reservor Discrimination Abstract The study of reservoir prediction is mainly to investigate the characteristics of reservoir structure,lithologic features and reservoir parameters,aim to reduce the risk of exploration. Reservoir parameters include porosity,permeability,fluid type,etc,But seismic data only reflects on seismic traveltime,amplitude information,and elastic parameters which can be obtained throuth seismic inversion.Seismic rock physics builds bridges for reservoir parameters elastic.S-wave velocity, an important geophysical parameter,plays an important role in pre-stack seismic reservoir elastic parameter inversion and fluid detection witch developed in recent years.The seismic shear wave velocity estimation technique is based on the rock mass calculation model established by the seismic rock physics, reconstructs the longitudinal wave curve with the calculated modulus, establishes the iterative pattern with the measured curve to correct the rock modulus, and obtain the key parameters such as the shear wave velocity.The Xu-White model was used as the initial model in the method implementation. Fluid factor is an important parameter to identify reservoir fluid. Conventional fluid factors are mostly based on the theory of single-phase medium. From the theory of biphasic medium rock physics, it can be better to study the effect of pore fluid on the elastic properties of fluid The construction of fluid factors provides better guidance. In this paper, the Gassmann fluid factor is used and its sensitivity is analyzed. Key word:Equivalent medium modulus, porosity,Shear wave velocity estimation, Xu-White model, Gassmann fluid factor

测定岩石标本物性参数

测定岩(矿)石标本磁物性参数技术方法及工作细则 陕西省核工业地质调查院 2014年四月

测定岩(矿)石标本磁物性参数技术方法及工作细则 一、物性参数 σ) SI 单位为千克每立方米,符号为kg / m 3 换算单位: 103kg / m 3=1 g / cm 3 (2) 磁性单位 :磁化率的单位为:SI(k) 与CGSM 单位换算如下:4πSI(k) = 1 CGSM(k) :磁化强度的单位为:安培每米(A/m ) 与CGSM 单位换算为:A/m=10-3 CGSM( M ) (D)与磁倾角(I)的单位均为:°(度) (3)、电性单位 ρ):电阻率的单位为:Ω·m (欧姆·米) η):极化率的单位为:% (百分数) 可见,岩矿石物性标本应具有地质单元的代表性、统计样本的代表性、空间分布的代表性。岩矿石物性数据应具有地质描述的准确性,参数测定的精确性,数理统计的合理性,构造岩矿石物性数据的可靠性。 专门的岩矿石物性调查工作应单独进行技术设计编写,物探中的物性工作可参考专门的岩矿石物性调查工作编写技术设计,也可作为相应项目的一部分编写设计。 误差计算公式有两种: a) 平均相对误差为:%100Bi Ai -n 1i i n 1i ?+B A =∑=μ

b) 均方误差为: n B A n i i i 2) ( 12 ∑=- ± = ε 式中:μ—平均相对误差;ε—均方误差;n —检查样品数;A i ——第i件样品一次测量结果; B i ——第i件样品另一次测量结果。 二、测定物性参数的仪器设备 (1) 密度测定仪器 ①、密度测定仪器 其种类包括:大称、密度计和电子天平等。大称宜用于第四系松散沉积物的密度测定;密度计和电子天平宜用于固结岩矿石的密度测定。 ②、测定密度仪器的测程为1000~7000kg / m3。 ③、仪器检查与性能测定:按仪器使用说明书规定进行仪器检查与性能测定。根据样品质量的范围,在测定过程中应使用相应质量大小的砝码进行仪器标定。 ④、仪器维护:维护砝码的清洁,以保证砝码质量的稳定。 (2) 磁性测定仪器 ①、磁性测定仪器:类型主要有:无定向磁力仪、线圈感应式岩样磁力仪、卡帕桥、旋转式磁力仪、磁勘查所使用的高精度磁力仪等。 ②、磁性仪器灵敏度要求:专门测定磁性仪器要求的灵敏度不低于 10-6SI,其他类仪器的灵敏度应为10-6SI 量级,能够测量强磁性样品的磁性。 ③、仪器检查与性能测定 按仪器使用说明书规定进行仪器检查与性能测定。根据磁性强弱,应有相应测程的标准磁性样品进行仪器标定。 ④、仪器维护与使用 宜在无磁空间或磁场稳定的空间使用磁性测定仪器,使用中应注意仪器的防尘、防潮,防止电磁干扰 (3) 电性测定仪器 ①、电性测定仪器 种类主要有:改进的微机激电仪、电阻率桥等。

岩石物性资料

岩(矿)石物性资料 (2008年12月11日) 一、密度: 表1-1 常见矿物的密度 名称 密度/g.3cm - 名称 密度/g.3cm -石英 2.65 金刚石 2.6-2.9 正长石 2.55-2.63 重晶石 4.4-4.7 钠长石 2.63 刚玉 3.9-4.0 钙长石 2.76 岩盐 3.1-3.2 方解石 2.72-2.94 硬石膏 2.7-3.0 白云石 2.86-2.93 石膏 2.2-2.4 白云母 2.77-2.88 霞石 2.55-2.65 黑云母 2.7-3.3 绿高岭石 1.72-2.5 角闪石 3.62-3.65 白榴石 2.45-2.5 透闪石 2.99-3.00 硅灰石 2.79-2.91 阳起石 3.1-3.2 蛇纹石 2.5-2.6 星叶石 3.0-3.15 赤铁矿 4.5-5.2 钠闪石 3.3-3.46 磁铁矿 4.8-5.2 纳钙闪石 3.3-3.46 黄铁矿 4.9-5.2 钛铁矿 4.5-5.0 磁黄铁矿 4.3-4.8 铬铁矿 3.2-4.4 黄铜矿 4.1-4.3 辉铜矿 5.5-5.8 斑铜矿 4.9-5.2 海绿石 2.2-2.9 石墨 2.09-2.25 多水高岭土 1.9-2.6 蛋白石 1.9-2.5 钾盐 1.99 叶绿泥石 2.6-3.0 硬绿泥石 3.3-3.6 金红石 4.18-4.23 锰矿 3.4-6.0 钨酸钙矿 5.9-6.2 铝矾土 2.4-2.5 煤 1.2-1.7 褐煤 1.1-1.3 表1-2 常见岩石密度 名称 密度/g.3cm - 名称 密度/g.3 cm -纯橄榄岩 2.5-3.3 橄榄岩 2.5-3.6 玄武岩 2.6-3.3 辉长岩 2.7-3.4 安山岩 2.5-2.8 辉绿岩 2.9-3.2 鞍山玢岩 2.6-2.9 花岗岩 2.4-3.1 石英岩 2.6-2.9 流纹岩 2.3-2.7 片麻岩 2.4-2.9 云母片岩 2.5-3.0 千枚岩 2.7-2.8 蛇纹岩 2.6-3.2

第二节 储层岩石的孔隙度

第二节 储层岩石的孔隙性(3学时) 一、教学目的 掌握孔隙的分类、定义、 测量方法和影响因素。 二、教学重点、难点 教学重点 1、孔隙的分类和定义 教学难点 1、孔隙的分类和定义 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的数据和图表 四、教学内容 本节主要介绍四个方面的问题: 一、孔隙度的定义和分类 二、孔隙度的测量 三、影响孔隙度的因素 (一)、孔隙度的定义和分类 1、孔隙度的定义 岩石的孔隙度是指岩石的孔隙体积与岩石外观体积的比值,常用百分数表示,记为φ 式中: Vr——岩石的骨架体积,米3,cm3 Vp——岩石的孔隙体积,米3,cm3 V f——岩石的视体积,米3,cm3 φ——岩石的孔隙度,% 2、孔隙度的分类 我们已知讲过,孔隙空间可以分为有效孔隙和无效孔隙,所以相应地,孔隙度也可以分为: A、绝对孔隙度,φa 绝对孔隙度是指岩石所有孔隙体积(有效+无效)与岩石视体积之比。 Vap——总孔隙体积,=V有效+V无效 V f——岩石的视体积 φa——岩石的绝对孔隙度

B、有效孔隙度 由于储油岩石孔隙的复杂性,所以在岩石孔隙中,并非所有的孔隙都是有用的,比如说函端孔隙和孔道半径很小(r<0.0001mm)的孔隙,这样的孔隙实际上对流体的流动毫无价值,所以人们将流体能在其中流动且相互连通的孔道称为有效孔隙,有效孔隙与岩石视体积的比值称为有效孔隙度。 Vep——岩石有效孔隙体积 V f——岩石的外观体积 φe——岩石的有效孔隙度 大家值得注意的是:由于流体只能在大于0.0001mm半径的孔道中流动,因此,孔道小于0.0001mm的那些孔隙也被看作是死孔隙,同样被这些微小孔道包围的大孔道当然也属于死孔隙之列。 另外,从上面的分析中我们不难看出,还应当存在一种孔隙度。 C、流动孔隙度φm Vmp——流动孔隙度 V f——岩石的外观体积 φm——流动体积 很显然,流动体积是指有效孔隙中,允许流何流动的那一部分孔道体积。它不仅排除了死孔隙,也包括束缚水占据的部分以及岩石表面吸附流体所占据的孔道部分。可见,在相互连通的孔隙中并不是全部孔道都能让流体流动。直得注意的是被吸附流体的厚度有时相当可观,可把原来流动的孔道堵住,或者使渗重能力下降,这一点在三次采油中尤为重要。 综合上述的三种孔隙度不难看出: φa>φe>φm 对于砂岩:φa≈φe>φm 泥质砂岩:φa>>φe>φm 泥岩:φa>>>φe>φm 岩石孔隙度在油田中应用极广,通常在地质储量计算中用有效孔隙度φe,在计算可采储量时要用流动孔隙度,而绝对孔隙度只有岩石学上的意义,应用很少。 利用岩石的孔隙度(有效孔隙度)还可以用来进行油层评价,一般砂岩φe=10~25% φ 评价 5~10% 差

岩石物性资料21页

岩(矿)石物性资料 (2008年12月11日) 一、密度: 表1-1 常见矿物的密度 名称密度/g.3 cm-名称密度/g.3 cm-石英 2.65 金刚石2.6-2.9 正长石 2.55-2.63 重晶石4.4-4.7 钠长石 2.63 刚玉3.9-4.0 钙长石 2.76 岩盐3.1-3.2 方解石 2.72-2.94 硬石膏2.7-3.0 白云石 2.86-2.93 石膏2.2-2.4 白云母 2.77-2.88 霞石2.55-2.65 黑云母 2.7-3.3 绿高岭石1.72-2.5

角闪石 3.62-3.65 白榴石2.45-2.5 透闪石 2.99-3.00 硅灰石2.79-2.91 阳起石 3.1-3.2 蛇纹石2.5-2.6 星叶石 3.0-3.15 赤铁矿4.5-5.2 钠闪石 3.3-3.46 磁铁矿4.8-5.2 纳钙闪石 3.3-3.46 黄铁矿4.9-5.2 钛铁矿 4.5-5.0 磁黄铁矿4.3-4.8 铬铁矿 3.2-4.4 黄铜矿4.1-4.3 辉铜矿 5.5-5.8 斑铜矿4.9-5.2 海绿石 2.2-2.9 石墨2.09-2.25 多水高岭土 1.9-2.6 蛋白石1.9-2.5

钾盐 1.99 叶绿泥石2.6-3.0 硬绿泥石 3.3-3.6 金红石4.18-4.23 锰矿 3.4-6.0 钨酸钙矿5.9-6.2 铝矾土 2.4-2.5 煤1.2-1.7 褐煤 1.1-1.3 表1-2 常见岩石密度 名称密度/g.3 cm-名称密度/g.3 cm-纯橄榄岩 2.5-3.3 橄榄岩2.5-3.6 玄武岩 2.6-3.3 辉长岩2.7-3.4 安山岩 2.5-2.8 辉绿岩2.9-3.2 鞍山玢岩 2.6-2.9 花岗岩2.4-3.1 石英岩 2.6-2.9 流纹岩2.3-2.7 片麻岩 2.4-2.9 云母片岩

轻烃分析技术识别储层流体性质的应用

轻烃分析技术识别储层流体性质的应用 随着勘探开发工作的不断深入,油水层的识别评价工作越来越困难,逐渐由宏观识别向宏观、微观相结合的方向发展。本文提出一种利用轻烃分析技术识别油水层量化的方法,该项技术建立多参数综合解释模板自动进行储层流体性质的评价方法,对流体性质的解释符合率达到80%以上,为轻烃分析技术在储层评价中的应用提供了成功借鉴。建立了油水层识别、评价的应用方法。 标签:轻烃分析技术;油水层;参数选取;评价方法;识别 0 引言 輕烃分析是将气相色谱分离分析与样品的预处理相结合的一种简便、快速的分析技术。最新的油藏有机地球化学研究表明C6~C9左右的轻烃包含的油层信息最丰富。因此重点分析C1~C9组份的轻烃分析技术在储层评价中逐渐受到重视。 轻烃组分主要包括正构烷烃、异构烷烃、环烷烃和芳香烃四大类等103个单体烃类,这些组分经过色谱分离成各个单体烃,进行定性定量检测。然后进行数学处理,归纳为几十项轻烃参数,根据这些参数的变化进行油气藏的评价。 1 轻烃自动解释方法 1.1 轻烃评价参数的选择依据 轻烃的分析参数是可以检出和定性的103个化合物的保留时间、峰面积、峰高及峰面积的百分数。这些参数无法直接应用,其原因:一是参数多,二是这些参数也只反应每个组分丰度的大小。所以,必须根据需求,从大量的信息中归纳、提取出有用的信息。 C1~C4之间的烃类常温下为氣体,是评价气层的主要参数。C9以后的烃类其化学性质过于稳定,在轻烃评价储层性质时不予考虑。C5~C8之间的烃类组分最全,相对含量最高,准确定性、定量分析容易,是储层评价首选的参数。 1.2 储层原油烃类特征的主控因素及影响因素 储层原油由烃源岩受烃源岩有机质类型和热演化程度的控制,然后原油在储层中受各种蚀变作用即热演化作用、水洗作用、生物降解作用的改造而发生变化。. 在精细评价的时候,成因不同或演化程度不同的区块,需要建立不同的模板。而每一个模板的建立,都是一个统计的过程,做的数据越多,模板的解释符合率就越高。

页岩气储层岩石物理性质研究

页岩气储层岩石物理性质研究 学生:袁亚丽陈改杰蔡家琛李龙指导老师:樊振军 (数理学院) 【摘要】页岩气藏开采首先要对其进行评价,充分考虑其储层性质和开采能力。储层性质主要通过储层参数来描述,通过对相关参数的分析进一步评价储层的生产能力,制定相应的增产措施和开采方案。本实验以龙马溪组页岩为例,采用电阻率测试装置、YS-Hf岩电声波综合测试仪器等仪器对页岩气储层岩石的物理性质进行了测试,并分析总结页岩气储层物理参数对页岩气开采的指导意义,为提高我国页岩气岩石物理实验分析技术和研究水平,为我国页岩气勘探开发奠定坚实的基础。 【关键词】页岩气;电导率;横波;纵波;泊松比 【项目编号】2015AB061 【背景意义】页岩气藏开采首先要对其进行评价,充分考虑其储层性质和开采能力.储层性质主要通过储层参数来描述,通过对相关参数的分析评价储层的生产能力,制定相应的增产措施和开采方案。页岩气储层以纳米级孔隙为主的特性,使得页岩岩石物理基础实验及相关理论模型研究在页岩气储层测井评价中发挥举足轻重的作用。页岩气地质条件和形成机理完全不同于传统石油地质理论,国内外针对页岩气形成机理、富集规律和主控因素等尚未完全搞清。由于页岩储层低孔隙度、超低渗透率、以纳米级孔隙为主的特性,使得页岩气储层岩石物理基础实验及相关理论模型研究在页岩气储层评价中发挥重大的作用,而中国目前在这方面的研究尚处于起步阶段。因此,急需了解和借鉴国外相关实验技术和研究方法,提高我国页岩气岩石物理实验分析技术和研究水平,为我国页岩气勘探开发奠定坚实的基础。. 1.电阻率测井 页岩气储层识别所利用的常规测井方 法有: 自然伽马测井、声波时差测井、体密度测井、中子密度测井、岩性密度测井、电阻率测井、井径测井等[2],本实验采用电阻率的方法对页岩含有机质量进行了评价,有机质不导电,随 TOC含量增加电阻率增大。在测井中可采用电阻率测井对有机质含量进行评价。本实验采用电阻率测试装置对四川沙坝乡龙马溪组的页岩的电阻率进行了测试,数据如表1所示;天津蓟县页岩的数据如表2所示:

岩石物理学及岩石性质

岩石物理学及岩石性质 一、矿物 1.1矿物 矿物是单个元素或若干个元素在一定地质条件下形成的具有特定理化性质的化合物,是构成岩石的基本单元。矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。 1.2矿物的主要物理特性 1.2.1光学特性 (1)颜色:矿物的颜色由矿物对入射光的反映呈现出来。一般来说矿物的颜色是矿物对入射光吸收色的补色。 (2)条痕:条痕色指矿物经过在不涂釉的瓷板上擦划,在瓷板上留下的矿物粉粒的颜色。 (3)光泽:光泽是矿物表面对入射光所射的总光量。根据光泽有无金属感,将光泽分为金属光泽与非金属光泽。矿物光泽特性既与矿物组成和结构有关,又与矿物表面特征有关。 (4)透明度:透明度与矿物对矿物透射光的多少有关。 1.2.2力学性质 (1)硬度: 矿物的硬度是指矿物的坚硬程度。一般采用摩氏硬度法鉴别矿物硬度。即采用标准矿物的硬度对未知矿物进行相对硬度的鉴别。摩氏硬度中选取十种矿物作为标准矿物,将矿物分为10级,称为摩氏硬度计。这十种矿物硬度由1级到10级的顺序是:①滑石,②石膏,③方解石,④磷灰石,⑤萤石,⑥正长石,⑦石英,⑧黄玉,⑨刚玉,⑩金刚石。 (2)解理与断口: 矿物受力后产生破裂出现的没有一定方向的不规则的断开面,谓之断口。当晶质体矿物受力断开时,出现一系列平行的、平整的裂面时,称为解理。断口出现的程度跟解理的完善程度相互消长,解理程度越低的矿物越容易形成断口。因此,断口具有了非晶质体的基本含义。解理与晶质体内质点间距有明显的关系,

解理常出现在质点密度较大的方向上。 (3)延展性: 矿物的延展性,也可以称为矿物的韧性。其特征是表现为矿物能被拉成长丝和辗成薄片的特性。这是自然金属元素具有的基本特性。 1.3重要矿物 (1)自然元素矿物:这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫磺、金刚石(见图1)、石墨等。 图1金刚石 (2)硫化物类矿物:本类是金属元素与硫的化合物,大约200多种,Cu、Pb、Mo、Zn、As、Sb、Hg等金属矿床多有此类矿物富集而称,具有很大的经济价值。 方铅矿PbS。闪锌矿ZnS。黄铁矿FeS2(见图2) 图2黄铁矿 (3)氧化物及氢氧化物类矿物:本类矿物分布相当广泛,共约180多种,包括重要的造盐矿物如石英及Fe、Al、Mn、Cr、Ti、Sn、U、Th等的氧化物或氢

岩石物性资料

岩(矿)石物性资料 密度: 一. 表1-1 常见矿物的密度 名称 密度/g.3cm - 名称 密度/g.3cm -石英 2.65 金刚石 2.6-2.9 正长石 2.55-2.63 重晶石 4.4-4.7 钠长石 2.63 刚玉 3.9-4.0 钙长石 2.76 岩盐 3.1-3.2 方解石 2.72-2.94 硬石膏 2.7-3.0 白云石 2.86-2.93 石膏 2.2-2.4 白云母 2.77-2.88 霞石 2.55-2.65 黑云母 2.7-3.3 绿高岭石 1.72-2.5 角闪石 3.62-3.65 白榴石 2.45-2.5 透闪石 2.99-3.00 硅灰石 2.79-2.91 阳起石 3.1-3.2 蛇纹石 2.5-2.6 星叶石 3.0-3.15 赤铁矿 4.5-5.2 钠闪石 3.3-3.46 磁铁矿 4.8-5.2 纳钙闪石 3.3-3.46 黄铁矿 4.9-5.2 钛铁矿 4.5-5.0 磁黄铁矿 4.3-4.8 铬铁矿 3.2-4.4 黄铜矿 4.1-4.3 辉铜矿 5.5-5.8 斑铜矿 4.9-5.2 海绿石 2.2-2.9 石墨 2.09-2.25 多水高岭土 1.9- 2.6 蛋白石 1.9-2.5 钾盐 1.99 叶绿泥石 2.6-3.0 硬绿泥石 3.3-3.6 金红石 4.18-4.23 锰矿 3.4-6.0 钨酸钙矿 5.9-6.2 铝矾土 2.4-2.5 煤 1.2-1.7 褐煤 1.1-1.3 表1-2 常见岩石密度 名称 密度/g.3cm - 名称 密度/g.3cm -纯橄榄岩 2.5-3.3 橄榄岩 2.5-3.6 玄武岩 2.6-3.3 辉长岩 2.7-3.4 安山岩 2.5-2.8 辉绿岩 2.9-3.2 鞍山玢岩 2.6-2.9 花岗岩 2.4-3.1 石英岩 2.6-2.9 流纹岩 2.3-2.7 片麻岩 2.4-2.9 云母片岩 2.5-3.0 千枚岩 2.7-2.8 蛇纹岩 2.6-3.2 大理岩 2.6-2.9 白云岩 2.4-2.9 石灰岩 2.3-3.0 页岩 2.1-2.8 砂岩 1.8-2.8 白垩岩 1.8-2.6 干砂岩 1.4-1.7 粘土 1.5-2.2 表土 1.1-2.0 花岗闪长岩 2.69

第一节 砂岩的物理性质

第一节砂岩的物理性质 一、名词解释。 1.岩石的比面S(rock specific surface): 2.岩石的骨架(rock framework): 3.岩石的粒度组成(rock grain size composition): 4.不均匀系数(nonuniformity coefficient): 5.分选系数(sorting coefficient): 二.判断题。 1.粒度组成愈均匀,则岩石孔隙度愈大。() 2.粒度组成分布曲线尖峰愈高,则粒度组成愈均匀。() 3.不均匀系数愈大,则粒度组成愈均匀。() 4.颗粒平均直径愈大,则岩石孔隙度愈大。() 5.分选系数愈大,则粒度组成愈均匀。() 6.砂岩粒度平均直径越大,比面越大。() 7.胶结物含量越大,则比面越大。() 三.选择题。 1.对比右图所示的A,B两个岩样的粒度组成曲线,A岩样的分选性 较,A岩样的平均颗粒直径较。 A.好,大 B.好,小 C.差,大 D.差,小 ( ) 2.若某岩样的颗粒分布愈均匀,即意味着不均匀系数愈,或者说其分选系数愈。 A.大,大 B.大,小

C.小,大 D.小,小 ( ) 3.岩石孔隙组成分选性越 ,迂回度愈 ,则岩石的渗透率愈低。 A. 好、大, B. 差、大 C. 好、小, D. 差、小 ( ) 4.三种岩石胶结类型的胶结强度由弱到强为 A.接触胶结<孔隙胶结<基底胶结 B.孔隙胶结<基底胶结<接触胶结 C. 基底胶结<接触胶结<孔隙胶结 D.孔隙胶结<接触胶结<基底胶结 ( ) 5.若f S ,p S ,S S 分别问以岩石的外表体积,孔隙体积,骨架体积为基准的避免,则三者关系为 A. f S >p S >S S B. S S >p S >f S C. p S >S S >f S , D. f S >S S >p S ( ) 6.岩石比面愈大,则岩石的平均颗粒直径愈 ,岩石对流体吸附阻力愈 。 A.大,大 B.小,小 C.小,大 D.小,小 ( )

煤储层及其基本物理性质

第二章煤储层及其基本物理性质 煤储层是指在地层条件下储集煤层气的煤层。煤储层具有双重孔隙介质、渗透性较低、孔隙比表面积较大、吸附能力极强、储气能力大等特点。 第一节主要内容: 煤储层是由固态、气态、液态三相物质所构成。 固态物质:是煤基质 液态物质:一般是煤层中的水(有时也含有液态烃类物质) 气态物质:即煤层气 一、煤储层固态物质组成: 1、宏观煤岩组成 煤是一种有机岩类,包括三种成因类型: ①主要来源于高等植物的腐植煤 ②主要有低等生物形成的腐泥煤 ③介于前两者之间的腐植腐泥煤 (自然界中以腐植煤为主,也是煤层气赋集的主要煤储层类型) 2、显微煤岩组成 显微煤岩组成包括显微组分和矿物质。 显微组分是在光学显微镜下能够识别的煤的基本有机成分,其鉴别标志包括:颜色,突起,反射力,光学各向异性,结构,形态等。 矿物质是煤及煤储层中含有数量不等的无机成分,主要为黏土类和硫化类矿物,其次为碳酸盐类、氧化硅类矿物以颗粒状。团块状散布于煤中,常见显微条带状产出的黏土矿物。 3、煤的大分子结构 煤中有机质大分子结构基本结构单元(BSU)的骨架结构由缩合芳香体系组成,其基本化学结构为芳香环。 煤中有机质大分子结构基本结构单元的缩聚过程主要起源于三种反应机制:芳构化作用、环缩合作用和拼叠作用。 芳构化作用是指:非芳香化合物经由脱氢生成芳香化合物的作用,可通过碳数不低于六个的链烃的闭环、五圆或六圆脂环和杂环的脱氢等方式实现,是煤中有机质生气的主要机理。 环缩合作用通过单个芳香环间联结、稠环芳香分子间或分子内联结、自由基分子间重新结合等方式得以实现,是中~高级无烟煤阶段芳香体系缩聚的主要机理。 拼叠作用是指基本结构单元之间相互联结而使煤中有机质化学结构短程有序化范围(有序畴)增大的作用,与自由基反应密切相关,是高级无烟煤阶段基本结构单元增大和秩理化程度增高的主要机理。 二、煤储层液态物质组成 煤储层中液态物质包括裂隙、大孔隙中的自由水(油)及煤基质中的束缚水。 在煤化学中,将煤中水划分为三类,即外在水分、内在水分和化合水。外在

岩石物理学

岩石物理学 讲义 贺振华编 成都理工大学 2009年

目录1 岩石物理学概论 (4学时) 1.1 岩石物理学的内容与特点 1.2 岩石物理学的研究方法 2 岩石与岩石的变形 (6学时) 2.1 地球上的岩石和矿物 2.2 应力与应变 2.3 岩石的本构关系 2.4 岩石物理实验 3 岩石中波的传播与衰减(10学时) 3.1 岩石中的波 3.2 岩石中波速的测量与应用 3.3 岩石中波的衰减 3.4 岩石模型 4 岩石的弹性 (12学时) 4.1 二相体的弹性 4.2 流体静压力下岩石裂纹对弹性的影响4.3 流体静压力下岩石孔洞对弹性的影响4.4 岩石中孔隙流体对弹性的影响 4.5 弹性波在双相体岩石中的传播 5 岩石的输运特性 (2学时) 5.1 达西(Darcy)定律和岩石的渗透率5.2 渗透率的测量 5.3 岩石的输运模型 6 岩石物理应用 (4学时) 6.1 Biot-Gassmann方程与流体替换 6.2 裂缝储层岩石物理 复习与考试(2学时)

1 岩石物理学概论 1.1 岩石物理的内容与特点 岩石物理学是以研究岩石物理性质的相互关系及应用为主的学科。重点研究: ·在地球内部特殊环境下岩石的行为及其物理性质。 ·研究那些与地球内部构造运动、能源和资源勘察与开发、地质灾害的成因与减灾,环境保护与监测等密切相关的问题。 对油气勘探、资源、环境等问题,R. E. Sheriff 对岩石物理学的定义为[1] 岩石物理学研究岩石物理性质之间的相互关系,具体地说,研究孔隙度,渗透率等是如何同地震波速度、电阻率、温度等参数相关联的。 岩石物理学与地质学、地球物理学、地球化学、力学、流体力学、材料力学、地热学、环境科学、工程学等众多学科密切相关,是一个高度的交叉、边缘学科。基础性,应用性都很强。一般情况下,人们把岩石物理学归属于地学学科。对油气资源的勘探开发而言,岩石物理是联系地质、地球物理、石油工程三个学科领域的共同基础和桥梁,见图1.1。 图1.1 岩石物理是地质、地球物理、石油工程的共同基础和桥梁 地球物理 地质结构 岩石物理

相关文档
最新文档