线性代数选择填空计算题解读

线性代数选择填空计算题解读
线性代数选择填空计算题解读

(一)单项选择题

1.设A ,B 为n 阶方阵,且()E AB =2

,则下列各式中可能不成立的是( )

(A )1-=B A (B)1-=B ABA (C)1

-=A BAB (D)E BA =2)( 2.若由AB=AC 必能推出B=C (A ,B ,C 均为n 阶矩阵)则A 必须满足( ) (A)A ≠O (B)A=O (C )0≠A (D) 0≠AB 3.A 为n 阶方阵,若存在n 阶方阵B ,使AB=BA=A ,则( ) (A) B 为单位矩阵 (B) B 为零方阵 (C) A B

=-1

(D ) 不一定

4.设A 为n ×n 阶矩阵,如果r(A)

(A) A 的任意一个行(列)向量都是其余行(列)向量的线性组合 (B) A 的各行向量中至少有一个为零向量

(C )A 的行(列)向量组中必有一个行(列)向量是其余各行(列)向量的线性组合 (D)A 的行(列)向量组中必有两个行(列)向量对应元素成比例 5.设向量组s ααα,,2,1 线性无关的充分必要条件是

(A) s ααα,,2,1 均不为零向量

(B) s ααα,,2,1 任意两个向量的对应分量不成比例 (C) s ααα,,2,1 中有一个部分向量组线性无关

(D )

s ααα,,2,1 中任意一个向量都不能由其余S-1个向量线性表示

6.向量组的秩就是向量组的 (A) 极大无关组中的向量 (B) 线性无关组中的向量

(C ) 极大无关组中的向量的个数 (D) 线性无关组中的向量的个数 7.下列说法不正确的是( ) (A ) 如果r 个向量r ααα,,2,1 线性无关,则加入k 个向量k βββ,,2,1 后,

仍然线性无关 (B) 如果r 个向量r ααα,,2,1 线性无关,则在每个向量中增加k 个向量后所得向量组仍然线性无关 (C)如果r 个向量r ααα,,2,1 线性相关,则加入k 个向量后,仍然线性相关

(D)如果r 个向量r ααα,,2,

1 线性相关,

则在每个向量中去掉k 个分量后所得向量组

仍然线性相关

8.设n 阶方阵A 的秩r

(B) 任意r 个行向量均可构成极大无关组 (C) 任意r 个行向量均线性无关

(D) 任一行向量均可由其他r 个行向量线性表示 9.设方阵A 的行列式0=A ,则A 中

(A) 必有一行(列)元素为零 (B) 必有两行(列)成比例

(C ) 必有一行向量是其余行(列)向量的线性组合 (D) 任一行向量是其余行(列)向量的线性组合

10.设A 是m ×n 矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是( ) (A )A 的列向量线性无关 (B)A 的列向量线性相关 (C)A 的行向量线性无关 (D)A 的行向量线性相关

11.n 元线性方程组AX=b ,r (A ,b )

(A)无穷多组解 (B)有唯一解 (C)无解 (D )不确定 12.设A ,B 均为n 阶非零矩阵,且AB =O,则A 和B 的秩( ) (A) 必有一个等于零 (B)一个等于n ,一个小于n (C) 都等于n (D ) 都小于n 13.设向量组321,,ααα线性无关,则下列向量组中,线性无关的是

(A) 133221,,αααααα-++

(B) 3213221,,ααααααα++++ (C ) 1332213,32,2αααααα+++

(D)

321321321553,222,ααααααααα-++-++

14.向量组s ααα,,,21 线性无关的充分条件是 (A)s ααα,,,21 均不为零向量

(B)s ααα,,,21 中任意两个向量的分量均不成比例

(C )s ααα,,,21 中任意一向量均不能由其余s-1个向量线性表示 (D)s ααα,,,21 中有一部分向量线性无关

15.当向量组m ααα,,,21 线性相关时, 使等式02211=+++m m k k k ααα 成立的常数

m k k k ,,,21 为( )

(A)任意一组常数

(B)任意一组不全为零的常数 (C )某些特定的不全为零的常数 (D)唯一一组不全为零的常数 16.下列命题正确的是( )

(A) 若向量组线性相关, 则其任意一部分向量也线性相关 (B) 线性相关的向量组中必有零向量

(C) 向量组中部分向量线性无关, 则整个向量组必线性无关 (D ) 向量组中部分向量线性相关, 则整个向量组必线性相关 17.设向量组s ααα,,,21 的秩为r ,则 (A) 必定r

(B) 向量组中任意小于r 个向量部分组无关 (C) 向量组中任意r 个向量线性无关 (D ) 向量组任意r+1个向量线性相关

18.若s ααα,,,21 为n 维向量组,且秩(s ααα,,,21 )=r, 则 (A) 任意r 个向量线性无关 (B ) 任意r+1个向量线性相关

(C) 该向量组存在唯一极大无关组

(D) 该向量组在s>r 时, 由若干个极大无关组 19.向量组s ααα,,,21 线性无关的充分条件是 (A) s ααα,,,21 均为非零向量

(B) s ααα,,,21 中任意两个向量的分量不成比例 (C ) s ααα,,,21 中任意一个向量不能被其余向量线性表示 (D)

s ααα,,,21 中有一个部分组线性无关

20.设A 为n 阶方阵, 且r(A)=r

(C)任意r 个行向量构成极大无关组

(D)任意一个行向量都能被其他r 个行向量线性表示 21.A 是m ×n 矩阵, r(A)=r 则A 中必( )

(A)没有等于零的r-1阶子式至少有一个r 阶子式不为零 (B )有不等于零的r 阶子式所有r+1阶子式全为零 (C)有等于零的r 阶子式没有不等于零的r+1阶子式 (D)任何r 阶子式都不等于零任何r+1阶子式都等于零 22.能表成向量()1,0,0,

01=α,()1,1,1,02=α,()1,1,1,13=α的线性组合

的向量是( ) (A) ()1,1,0,

0 (B )()0,1,1,2 (C)()1,0,1,3,2- (D)()0,0,0,0,0

23.已知()3,2,

11=α, ()2,1,32-=α,()x ,3,23=α 则x=

( )时321,,ααα线性相关。

(A) 1 (B)2 (C) 4 (D ) 5

24.向量组()4,2,1,

11-=α,()2,1,3,02=α,()14,7,033=α

()0,2,1,14-=α的秩为

(A )1 (B )2 (C )3 (D )4

25.矩阵A 在( ) 时可能改变其秩

(A) 转置 (B) 初等变换

(C) 乘一个可逆方阵 (D ) 乘一个不可逆方阵 26.设A 为n 阶方阵,且0=A ,则

(A) A 中任一行(列)向量是其余各行(列)向量的线性组合 (B) A 必有两行(列)对应元素乘比例

(C ) A 中必存在一行(列)向量是其余各行(列)向量的线性组合 (D) A 中至少有一行(列)向量为零向量

27.向量组s ααα,,,21 线性相关的充要条件是( ) (A) s ααα,,,21 中有一零向量

(B) s ααα,,,21 中任意两个向量的分量成比例 (C ) s ααα,,,21 中有一向量是其余向量的线性组合 (D)

s ααα,,,21 中任意一个向量均是其余向量的线性组合

28.若向量β可由向量组s ααα,,,21 线性表出,则( )

(A) 存在一组不全为零的数s k k k ,,,21 ,使等式s s k k k αααβ+++= 2211成立 (B) 存在一组全为零的数s k k k ,,,21 ,使等式s s k k k αααβ+++= 2211成立 (C )向量s αααβ,,,,21 线性相关 (D) 对β 的线性表示不唯一

29.设A 是m ×n 矩阵,AX=0是非齐次线性方程组AX=b 所对应的齐次线性方程组,则下列结论正确的是

(A) 若AX=0仅有零解,则AX=b 有唯一解 (B) 若AX=0有非零解,则AX=b 有无穷多个解 (C) 若AX=b 有无穷多个解,则AX=0仅有零解 (D ) 若AX=b 有无穷多个解,则AX=0有非零解

30.要使????? ??=2011ζ,???

?? ??-=1102ζ都是线性方程组AX=0的解,只要系数矩阵A 为

(A ) ()1,1,2- (B) ???? ??-110102 (C) ????

??-210201 (D) ????

?

??---110224110

31.设矩阵n m A ?的秩为r(A)=m

(B)A 的任意个m 阶子式不等于零

(C)A 通过初等变换, 必可化为(m I ,0)的形式

(D )非齐次线性方程组AX=b 一定有无穷多组解

32.非齐次线性方程组AX=b 中未知数的个数为n ,方程个数为m ,系数矩阵A 的秩为r ,则( )

(A ) r=m 时, 方程组AX=b 有解 (B) r=n 时, 方程组AX=b 有唯一解 (C) m=n 时, 方程组AX=b 有唯一解 (D) r

33.设一个n 元齐次线性方程组的系数矩阵的秩r(A)=n-3, 且321,,ηηη为此方程组的三个线性无关的解, 则( )是此方程组的基础解系 (A)321,,ηηη

(B)133221,,ηηηηηη--- (C )321211,,ηηηηηη+++ (D)233121,,ηηηηηη+--

34.已知321,,ααα是齐次线性方程组AX=0的基础解系,那么基础解系还可以是( ) (A) 332211αααk k k ++ (B )

133221,,αααααα+++

(C)

,,3221αααα--

(D),,,233211αααααα-+-

35.向量组r ααα,,,21 线性无关,且可由向量组s βββ,,,21 线性表示,则 r(r ααα,,,21 )必( )r(s βββ,,,21 )

(A)大于等于 (B)大于 (C)小于 (D )小于等于

36.设n 元齐次线性方程组AX=0的通解为k (1,2,…,n )T

,那么矩阵A 的秩为( ) (A) r(A)=1 (B ) r(A)=n-1 (C) r(A)=n (D)以上都不是 110.向量组的秩就是向量组的 (A) 极大无关组中的向量 (B) 线性无关组中的向量

(C ) 极大无关组中的向量的个数 (D) 线性无关组中的向量的个数

37.一个向量组中的极大线性无关组( )

(A)个数唯一 (B) 个数不唯一 (C )所含向量个数唯一 (D) 所含向量个数不唯一

38.设n 维向量组r ααα,,,21 (Ⅰ)中每一个向量都可由向量组s βββ,,,21 (Ⅱ)线性表出,且有r>s, 则( )

(A) (Ⅱ)线性无关 (B) (Ⅱ)线性相关 (C) (Ⅰ)线性无关 (D ) (Ⅰ)线性相关 39.设n ααα,,,21 是n 个m 维向量,且n>m, 则此向量组n ααα,,,21 必定( ) (A ) 线性相关 (B) 线性无关 (C) 含有零向量 (D) 有两个向量相等 40.矩阵A 适合条件( )时,它的秩为r

(A)A 中任何r+1列线性相关 (B) A 中任何r 列线性相关

(C) A 中有r 列线性无关 (D ) A 中线性无关的列向量最多有r 个

41.已知矩阵A=???

?

? ??040020001,则R (A )=( )

(A)0 (B)1 (C )2 (D)3

42.若m ×n 阶矩阵A 中的个列线性无关 则A 的秩( )

(A)大于m (B)大于n (C )等于n (D) 等于m

43.若矩阵A 中有一个r 阶子式D ≠0,且A 中有一个含D 的r+1阶子式等于零,则一定有R (A )( )

(A ) ≥r (B)<r (C)=r (D) =r+1 44.要断言矩阵A 的秩为r ,只须条件( )满足即可 (A) A 中有r 阶子式不等于零 (B) A 中任何r+1阶子式等于零

(C) A 中不等于零的子式的阶数小于等于r

(D ) A 中不等于零的子式的最高阶数等于r

45.设m ×n 阶矩阵A ,B 的秩分别为21,r r ,则分块矩阵(A ,B )的秩适合关系式( ) (A ) 21r r r +≤ (B) 21r r r +≥ (C) 21r r r += (D) 21r r r = 46.R(A)=n 是n 元线性方程组AX=b 有唯一解( )

(A)充分必要条件 (B) 充分条件 (C ) 必要条件 (D) 无关的条件 47.矩阵A=?

??

?

??--1111的特征值为0,2, 则3A 的特征值为( ) (A) 2,2; (B ) 0,6; (C) 0,0; (D) 2,6; 48.A=?

??

?

??--1111的特征值为2,2, 则2

22A A I +--的特征值为( ) (A) 2,2; (B ) –2,-2; (C) 0,0; (D) –4,-4; 49.AP P B 1

-=,0λ是A,B 的一个特征值, α是A 的关于0λ的特征向量, 则B 的关于0λ的

特征向量是( ) (A)

α (B) αP (C ) α1-P (D) αP '

50.n 阶矩阵A 与对角矩阵相似的充分必要条件是( ) (A) 矩阵A 有n 个特征值

(B ) 矩阵A 有n 个线性无关的特征向量 (C) 矩阵A 的行列式0≠A (D) 矩阵A 的特征多项式没有重根

51.A 满足关系式O E A A =+-22

,则A 的特征值是

(A) λ=2 (B) λ= -1 (C ) λ= 1 (D) λ= -2是

52.已知-2是A=???

?

? ??----b x 2222

220的特征值,其中b ≠0的任意常数,则x=( ) (A) 2 (B) 4 (C) -2 (D ) -4

53.已知矩阵A=???

?

? ??----x 44174

147有特征值12,3321===λλλ,则x=( ) (A) 2 (B) - 4 (C) -2 (D ) 4

54.设A 为三阶矩阵,已知0=+E A ,02=+E A ,03=+E A ,则=+E A 4 (A ) 6 (B) - 4 (C) -2 (D)4

55.A 为n 阶矩阵,且I A =2

,则

(A) A 的行列式为1 (B) A 的特征值都是1 (C )A 的秩为n (D)A 一定是对称矩阵

56. 设A 为三阶矩阵,有特征值为1,-1,2,则下列矩阵中可逆矩阵是( ) (A) E-A (B) E+A (C) 2E-A (D ) 2E+A 57. 已知A 为n 阶可逆阵, 则与A 必有相同特征值的矩阵是( )

(A) 1

-A (B)2

A (C ) T

A (D) *

A 58.已知A 为三阶矩阵,r(A)=1, 则λ=0( )

(A)必是A 的二重特征根 (B ) 至少是A 的二重特征根 (C) 至多是A 的二重特征根 (D)一重,二重,三重特征根都可能

(二)计算题与填空题

1.0653

=+-I A A ,则=-1

A

( ) (()

I A 56

12

--

) 2. ????? ??=101020101A ,,2I A I AX +=+则=X ( ) (???

?? ??201030102)

3.????? ??=101041003A ,则()=--1

2I A ( ) (?

???

? ??-20001100221)

4.()()(),01,50,31321t

T

T

t t t

-=-=-=ααα =t ( )时, 向量组321,,ααα

线性无关. 5.设()()(),112,231,5121T

T T k

-=-==ααβ=k ( )时β可被向量

组21,αα线性表出。 (-8)

6.设()21,,1αα-=?n A r n n 是0=AX 的两个不同的解, 则0=AX 的通解是( ). (A)1αk (B)2αk (C)()21αα-k (D)()21αα+k (B)

7.()T

111-=ξ是????

? ??---=20135

212a A 的特征向量,则()()==b a ,. (-1,-3) 8.设()()()().111,111,111,22

1321T

T

T

T

-=-==-=αααβ则β是否为

向量组321,,ααα的线性组合? (是) 9.

(),3210T =α(),13221T =β(),21212T -=β

().21123T --=β 则β是否为的线性组合? (不是)

10. 确定b a ,为何值时,使下列非齐次线性方程组有解,并求其所有解.

??????

?=+++=+-+-=+--=+--b

x x x x x ax x x x x x x x x x x 432143214

32143217107141253032. 答: 当4,1=-=b a 时,解为

?

??????

??-+??????? ??-+???

????

?

??2017023100212121c c ,其中

21,c c 为任意非零常数; 当4,1=-≠b a 时,解为

?

?????? ??-+???

????

? ??2017002121k ,其中k 为任意常数; 方程组不存在唯一解.

11.已知11111

1111A -??

?

=- ? ?-??

,矩阵X 满足*12A X A X -=+,其中*A 是A 的伴随矩阵,求矩阵X .

答 :11010114101X ?? ?= ? ???

12. 求下列矩阵的特征值与特征向量. (1)????? ??--102010201

(2)

????

?

??-----112202213.

答案: (1) 1231,1,3λλλ==-=,

对应于11=λ的全部特征向量是()10,1,0T

k ,01≠k ;

对应于12-=λ的全部特征向量是()21,0,1T

k ,02≠k ; 对应于33=λ的全部特征向量是()31,0,1T

k -,03≠k . (2) 1230,1,λλλ===

对应于01=λ的全部特征向量是???

?

? ??1111k ,1k 为非零常数;

对应于132==λλ的全部特征向量为

???

?

? ??-+????? ??12002132k k ,23,k k 是不同时为零的常数; 13.设0322=--E A A ,求(2)n n ≥阶方阵A 的特征值.。

答案:121,3λλ=-=

14.

三阶矩阵A 的特征值为3,2,1321===λλλ,则()21

*

1

,,;A A

A A A +=--的特征值

为( ). (6; ;31,21,

1 ;2,3,6 2,.3

19,214) 15.向量组

321,,ααα线性无关,c b a ,,满足什么关系时,向量组

133221,,αααααα---c b a 必线性相关. (1=abc ) 16设矩阵????? ??=k k A 1012101有一个特征向量为???

?

?

??-121,求k 及A 的三个特征值.

答案:3=k ,A 的三个特征值为1,3,4. 17.已知向量组

()()()()()T T T T T a 7,4,0,3,6,,1,1,8,3,2,1,7,5,1,1,1,2,1,254321=-=-=--==ααααα

的秩为3,求a 及该向量组的一个极大无关组. 答案:421,,,2ααα=a 为一个极大无关组.

18.设,2B B =B I A +=.証明:A 可逆.

19. 设向量组()()()k k k ,1,1,1,2,1,1,,1321-=+=-=ααα, (1) k 为何值时,21,αα线性相关?线性无关? (2) k 为何值时,321,,ααα线性相关?线性无关?

(3) 当321,,ααα线性相关时,将3α表示为21,αα的线性组合. 答案:(1) 2-=k 时线性相关,2-≠k 时线性无关;

(2) 2,1--=k 或2时线性相关;1-≠k 且2-≠k 且2≠k 时线性无关; (3) 当1-=k 时,2130ααα?+=;当2=k 时, 2134

345ααα+

-=. 20设,11221

032

1???

?

? ??--=A 使得方程组b AX =总有解的b 是( ). (????

? ??-+??

????????-+????? ??123112201321k k k )

.

线性代数选择题(考试用题)

线性代数选择题道(含答案) 1.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 2.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 3.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 4.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则 必有() A. k≤3 B. k<3 C. k=3 D. k>3 5.下列矩阵中是正定矩阵的为() A. 23 34 ? ? ? ? ? B. 34 26 ? ? ? ? ? C. 100 023 035 - - ? ? ? ? ? ? ? D. 111 120 102 ? ? ? ? ? ? ? 6.下列矩阵中,()不是初等矩阵。 A. 001 010 100 ?? ?? ?? ?? ?? B. 100 000 010 ?? ?? ?? ?? ?? C. 100 020 001 ?? ?? ?? ?? ?? D. 100 012 001 ?? ?? - ?? ?? ??

线性代数考试题库及答案(五)

线性代数考试题库及答案 一、单项选择题(共5小题,每题2分,共计10分) 1.在111 ()111111 x f x x x -+=-+-展开式中,2x 的系数为 ( ) (A) -1 (B) 0 (C) 1 (D) 2 2.A 是m ×n 矩阵,(),r A r B =是m 阶可逆矩阵,C 是m 阶不可逆矩阵,且 ()r C r <,则 ( ) (A) BAX O =的基础解系由n-m 个向量组成 (B) BAX O =的基础解系由n-r 个向量组成 (C) CAX O =的基础解系由n-m 个向量组成 (D) CAX O =的基础解系由n-r 个向量组成 3.设n 阶矩阵,A B 有共同的特征值,且各自有n 个线性无关的特征向量,则( ) (A) A B = (B) ,0A B A B ≠-=但 (C) A B (D) A B 与不一定相似,但 A B = 4.设,,A B C 均为n 阶矩阵,且AB BC CA E ===,其中E 为n 阶单位阵,则 222A B C ++= ( ) (A) O (B) E (C) 2E (D) 3E 5.设1010,0203A B ???? == ? ????? ,则A B 与 ( ) (A)合同,且相似 (B)不合同,但相似 (C)合同,但不相似 (D )既不合同,又不相似

二、填空题(共 二、填空题(共10小题,每题 2分,共计 20 分) 1.已知11 122 233 30a b c a b c m a b c =≠,则1111 22223333 232323a b c c a b c c a b c c ++=+ 。 2.设 1 010 2010 1A ?? ?= ? ?? ? ,若三阶矩阵Q 满足2,AQ E A Q +=+则Q 的第一行的行向量是 。 3.已知β为n 维单位列向量, T β为β的转置,若T C ββ= ,则 2C = 。 4.设12,αα分别是属于实对称矩阵A 的两个互异特征值12,λλ的特征向量,则 12T αα= 。 5.设A 是四阶矩阵,A * 为其伴随矩阵,12,αα是齐次方程组0AX =的两个线 性无关解,则()r A *= 。 6.向量组1 23(1,3,0,5,0),(0,2,4,6,0),(0,3,0,6,9)T T T ααα===的线性关系 是 。 7.已知三阶非零矩阵B 的每一列都是方程组1231231 23220 2030 x x x x x x x x x λ+-=?? -+=??+-=?的解,则 λ= 。 8.已知三维向量空间3R 的基底为123(1,1,0),(1,0,1),(0,1,1)T T T ααα===,则向量 (2,0,0)T β=在此基底下的坐标是 。 9.设21110012100,112004A a a ?? ?? ? ?== ? ? ? ????? 则 。 10.二次型2 2 2 123123121323(,,)222222f x x x x x x x x x x x x =++++-的秩为 。

线性代数习题集(带答案)

第一部分专项同步练习 第一章行列式 一、单项选择题 1.下列排列是 5 阶偶排列的是( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列j1 j2 j n 的逆序数是k , 则排列j n j2 j1的逆序数是( ). n! (A) k (B) n k (C) k 2 n(n 1) (D) k 2 3. n 阶行列式的展开式中含a11a12 的项共有( )项. (A) 0 (B) n 2 (C) (n 2)! (D) (n 1)! 0 0 0 1 4. 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 0 0 1 0 5.0 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 2x x 1 1 6.在函数 1 x 1 2 f (x) 中 3 2 x 3 3 x 项的系数是( ). 0 0 0 1 (A) 0 (B) 1 (C) 1 (D) 2 1

7. 若 a a a 11 12 13 1 D a a a ,则 21 22 23 2 a a a 31 32 33 2a a 13 a 33 a 11 a 31 2a 12 2a 32 11 D 2a a a 2a ( ). 1 21 23 21 22 2a 31 (A) 4 (B) 4 (C) 2 (D) 2 a a 11 ,则 12 8.若 a a a 21 22 a 12 a 11 ka 22 ka 21 ( ). 2 (D) k2a (A) ka (B) ka (C) k a 9.已知 4 阶行列式中第 1 行元依次是4, 0, 1, 3, 第 3 行元的余子式依次为2, 5,1, x, 则x ( ). (A) 0 (B) 3 (C) 3 (D) 2 8 7 4 3 10. 若 6 2 3 1 D ,则D 中第一行元的代数余子式的和为( ). 1 1 1 1

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αα α α -=___________。 (3) 二阶行列式 2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 , C 1 , D 2 ,

(3)三阶行列式2 31 503 2012985 23 -=()。 A -70; B -63; C 70; D 82。 (4)行列式 000 000 a b a b b a b a =()。 A 4 4 a b -;B () 2 2 2a b -;C 4 4 b a -;D 44 a b 。 (5)n 阶行列式0100 0020 0001000 n n - =()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号:

(完整word版)线性代数考试题及答案解析

WORD 格式整理 2009-2010学年第一学期期末考试 《线性代数》试卷 答卷说明:1、本试卷共6页,五个大题,满分100分,120分钟完卷。 2、闭卷考试。 评阅人:_____________ 总分人:______________ 一、单项选择题。(每小题3分,共24分) 【 】1.行列式=----3111131111311113 (A)0 (B) 1 (C) 2 (D)3 【 】2.设A 为3阶方阵,数2-=λ,3=A ,则=A λ (A) 24 (B) 24- (C) 6 (D) 6- 【 】3.已知,,B A 为n 阶方阵,则下列式子一定正确的是 (A)BA AB = (B)2222B)(A B AB A ++=+ (C)BA AB = (D) 22))((B A B A B A -=-+ 【 】4.设A 为3阶方阵, 0≠=a A ,则=*A (A) a (B) 2a (C) 3a (D) 4a __ __ ___ __ __ ___ __ __ 系_ __ __ ___ __ 专业_ __ __ ___ __ _班级 姓名_ __ ___ __ __ ___ __ 学号__ ___ __ __ ___ __ _ ………… … … … … … … … … ( 密) … … … … … … … … … … … … ( 封 ) … … … …… … … … … … … … ( 线 ) … … … … … … … … … … … …

(A) )()(B R A R < (B) )()(B R A R > (C) )()(B R A R = (D) 不能确定)(A R 和)(B R 的大小 【 】6.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r ,则0=Ax 有非零解 的充分必要条件是 (A) n r = (B) n r ≥ (C) n r < (D) n r > 【 】7. 向量组)2(,,,21≥m a a a m 线性相关的充分必要条件是 (A) m a a a ,,,21 中至少有一个零向量 (B) m a a a ,,,21 中至少有两个向量成比例 (C) m a a a ,,,21 中每个向量都能由其余1-m 个向量线性表示 (D) m a a a ,,,21 中至少有一个向量可由其余1-m 个向量线性表示 【 】8. n 阶方阵A 与对角阵相似的充分必要条件是 (A)n A R =)( (B)A 有n 个互不相同的特征值 (C)A 有n 个线性无关的特征向量 (D)A 一定是对称阵 二、填空题。(每小题3分,共15分) 1.已知3阶行列式D 的第2行元素分别为1,2,1-,它们的余子式分别为2,1,1-,则=D 。 2.设矩阵方程??????-=???? ??12640110X ,则=X 。 3.设*=ηx 是非齐次线性方程组b Ax =的一个特解,21,ξξ为对应齐次线性方程组 0=Ax 的基础解系, 则非齐次线性方程组b Ax =的通解为 . 4.设n m ?矩阵A 的秩r A R =)(,则n 元齐次线性方程组0=Ax 的解集S 的最大无关组S 的秩=R 。

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

线性代数测试试卷及答案

线性代数(A 卷) 一﹑选择题(每小题3分,共15分) 1. 设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A)AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D)A B B A +=+ 2. 如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( ) (A) n (B) s (C) n s - (D) 以上答案都不正确 3.如果三阶方阵33()ij A a ?=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8-- 4. 设实二次型11212222(,)(,)41x f x x x x x ?? ??= ? ?-???? 的矩阵为A ,那么( ) (A) 2331A ??= ?-?? (B) 2241A ??= ?-?? (C) 2121A ??= ? -?? (D) 1001A ?? = ??? 5. 若方阵A 的行列式0A =,则( ) (A) A 的行向量组和列向量组均线性相关 (B)A 的行向量组线性相关,列向量组线性无关 (C) A 的行向量组和列向量组均线性无关 (D)A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分) 1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ; 2. 设100210341A -?? ? =- ? ?-?? ,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5. 设A 为正交矩阵,则A = ;

线性代数期末考试试卷+答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示

线性代数真题987-203选择题

二、选择题 1.(1987—Ⅰ,Ⅱ)设 A 为n 阶方阵,且A 的行列式0A a =≠,而*A 是A 的伴随矩阵,则* A 等于 ( C ) (A)a . (B) 1a . (C)1n a -. (D)n a . 【考点】伴随矩阵的性质. 解 1 *n A A -=. 2.(1987—Ⅳ,Ⅴ)假设 A 是n 阶方阵,其秩r n <,那么在A 的n 个行向量中( ) (A) 必有r 个行向量线性无关. (B) 任意r 个行向量线性无关. (C) 任意r 个行向量都构成最大线性无关向量组. (D) 任何一个行向量都可以由其他r 个行向量线性表出. 【考点】矩阵的秩,向量组的线性相关性及向量组的最大无关组. 解 ()R A r n A =

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

历年自考04184线性代数试题真题及答案分析解答

全国2010年度4月高等教育自学考试线性代数(经管类)试题答案 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++2 21 12 1 c a c a b b ( B ) A .n m - B .m n - C .n m + D .)(n m +- m n n m c c b b a a b b c a c a b b -=+-=+=++2 12 12121 221121. 2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACB B .CAB C .CBA D .BCA BCA CA B AC B C BA C AB ABC =====)()()()(. 3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8- B .2- C .2 D .8 8||)2(|2|||||3-=-=-=A A A B . 4.????? ??=3332 312322 211312 11a a a a a a a a a A ,????? ??=3332 312322 211312 11333a a a a a a a a a B ,????? ??=100030001P ,??? ? ? ??=100013001Q ,则=B ( B ) A .PA B .AP C .QA D .AQ ????? ??=3332 31 232221 131211 a a a a a a a a a AP ????? ??100030001B a a a a a a a a a =??? ? ? ??=3332312322 211312 11333. 5.已知A 是一个43?矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C ) A .只含有1个零向量的向量组线性相关 B .由3个2维向量组成的向量组线性相关

线性代数期末考试试卷答案

线性代数期末考试题样卷 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, ,Λ21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,,Λ21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,,Λ21(3 ≤ s ≤ n )线性无关的充要条件是( )。 ① s ααα,, ,Λ21中任意两个向量都线性无关 ② s ααα,, ,Λ21中存在一个向量不能用其余向量线性表示 ③ s ααα,, ,Λ21中任一个向量都不能用其余向量线性表示

线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2 η1+ 1 2 η2是Ax=b的一个解

上海财经大学《 线性代数 》课程考试卷(B)及答案

诚实考试吾心不虚 ,公平竞争方显实力, 考试失败尚有机会 ,考试舞弊前功尽弃。 上海财经大学《 线性代数 》课程考试卷(B )闭卷 课程代码 105208 课程序号 姓名 学号 班级 一、单选题(每小题2分,共计20分) 1. 当=t 3 时,311244s t a a a a 是四阶行列式中符号为负的项。 2. 设A 为三阶方阵,3A = ,则* 2A -=__-72__。 3. 设矩阵01000 01000010 00 0A ????? ?=?????? ,4k ≥,k 是正整数,则=k P 0 。 4. 设A 是n 阶矩阵,I 是n 阶单位矩阵,若满足等式2 26A A I +=,则 () 1 4A I -+= 2 2A I - 。 5. 向量组()()()1,2,6,1,,3,1,1,4a a a +---的秩为1,则 a 的取值为__1___。 6. 方程组1243400x x x x x ++=??+=? 的一个基础解系是 ???? ? ? ? ??--??????? ??-1101,0011 。 7. 设矩阵12422421A k --?? ?=-- ? ?--??,500050004A ?? ? = ? ?-?? ,且A 与B 相似,则=k 4 。 …………………………………………………………… 装 订 线…………………………………………………

8. 123,,ααα是R 3 的一个基,则基312,,ααα到基12,αα,3α的过渡矩阵为 ???? ? ??001100010 。 9. 已知413 1 210,32111 a A B A A I -===-+-, 则B 的一个特征值是 2 。 10. 设二次型222 12312132526f x x x tx x x x =++++为正定, 则t 为 5 4||< t 。 二.选择题(每题3分,共15分) 1. 设A 为n 阶正交方阵,则下列等式中 C 成立。 (A) *A A =; (B)1*A A -= (C)()1T A A -=; (D) *T A A = 2. 矩阵 B 合同于145-?? ? - ? ??? (A) 151-?? ? ? ??? ; (B )????? ??--321;(C )???? ? ??112;(D )121-?? ? - ? ?-?? 3. 齐次线性方程组AX O =有唯一零解是线性方程组B AX =有唯一解的( C )。 (A )充分必要条件; (B )充分条件; (C )必要条件; (D )无关条件。 4.设,A B 都是n 阶非零矩阵,且AB O =,则A 和B 的秩( B )。 (A )必有一个等于零;(B )都小于n ;(C )必有一个等于n ;(D )有一个小于n 。 5.123,,ααα是齐次线性方程组AX O =的基础解系,则__B___也可作为齐次线性方程组 AX O =的基础解系。 (A) 1231231222,24,2αααααααα-+-+--+ (B )1231212322,2,263αααααααα-+-+-+

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷) 试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:

《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分) 二、填空题(每小题3分,共18分)

1、 256; 2、 132465798?? ? --- ? ???; 3、112 2 112 21122 000?? ?- ? ?-?? ; 4、 ; 5、 4; 6、 2 。 三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法: 2312112 01012 010******* 12101 141103311033102321102721 002781 002780 11410 101440 10144001103001103001103---?????? ? ? ? -??→-??→-- ? ? ? ? ? ?--? ?? ?? ?-?????? ? ? ? ??→--??→-??→-- ? ? ? ? ? ??????? ―――――(6分) 所以1 278144103X A B -?? ?==-- ? ??? .―――――(8分) 四.解:对向量组12345,,,,ααααα作如下的初等行变换可得: 12345111 4 3111431132102262(,,,,)21355011313156702262ααααα--???? ? ? ----- ? ? = → ? ? --- ? ? ? ?---???? 11 1 431 2 12011310 1131000000 0000000000 0000--???? ? ? ---- ? ? →→ ? ? ? ? ? ?? ???――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩 12345{,,,,}ααααα=2(8分)

线性代数练习题及答案精编

线性代数练习题 一 选择题 1B A ,都是n 阶矩阵,且0=AB , 则必有:( ) (A) 0A =或0=B . (B) 0A B == . (C) 0=A 或.0=B (D) 0A B == 2设1011,1101a b c d -??????= ??? ?-?????? 则a b c d ?? = ???( ) (A)01. 11?? ?-?? (B)11. 10-?? ??? (C)11. 11-?? ??? (D)11. 01?? ?-?? 3若 A 为n m ?矩阵,且n m r A R <<=)(则( )必成立. (A )A 中每一个阶数大于r 的子式全为零。 (B )A 是满秩矩阵。 (C )A 经初等变换可化为??? ? ??000r E (D )A 中r 阶子式不全为零。 4 向量组 s ααα ,,21,线性无关的充分条件是( ) (A ) s ααα ,,21均不是零向量. (B ) s ααα ,,21中任一部分组线性无关. (C ) s ααα ,,21中任意两个向量的对应分量都不成比例. (D ) s ααα ,,21中任一向量均不能由其余S-1个向量线性表示. 5 齐次线性方程组0AX =是非齐次线性方程组AX B =的导出组,则( )必定成立. (A )0AX =只有零解时, AX B =有唯一解. (B )0AX =有非零解时, AX B =有无穷多解. (C )α是θ=AX 的任意解,0γ 是AX B =的特解时,0γα+是AX B =的全部解. (D )12γγ,是AX B =的解时, 21γγ+ 是0AX =的解. 6若θ≠B ,方程组B AX =中, 方程个数少于未知量个数,则有( )

相关文档
最新文档