阻燃剂的聚氨酯

阻燃剂的聚氨酯
阻燃剂的聚氨酯

Flame retardant properties of polyurethane produced by the addition of phosphorous containing polyurethane oligomers (II)

Yeong-jin Chung b ,Younhee Kim a ,Sangbum Kim a ,*

a Department of Chemical Engineering,Kyonggi University,Suwon 442-760,Republic of Korea

b

Department of Fire &Disaster Prevention,Kangwon National University,Gangwon 245-711,Republic of Korea

1.Introduction

Polyurethane is regarded as a versatile polymeric material since it has comparatively high physical properties and quite easy to prepare.Demand for commercial use of polyurethane is drama-tically increased recently,which might give severe environmental stress due to polyurethane waste.Recycling of these polyurethane waste materials is one of the suitable ways for the conservation of green earth and saving raw materials.The chemical degradation of polyurethane involves the methods of hydrolysis,glycolysis and aminolysis [1,2].However,these chemical degradation methods accompany several critical problems of undesirable byproducts and inef?cient reaction procedures as well as deterioration of mechanical properties in recycled materials prepared by decom-posed reusable products.

In recent days,Troev et al.studied chemical degradation of polyurethane with esters of phosphoric or phosphonic acids to produce phosphorous containing oligomer [3–5].The decomposed products were characterized by NMR and viscometer.They suggested the decomposed oligomers could be reused to synthe-size polyurethane or other polymers.But the recycling process of

polyurethane wastes using alkyl phosphate has not been system-atically achieved yet.

Moreover,the researches on ?ame retardant polymeric material are expected to be activated for worldwide ?ame retardant restriction and requirement of halogen free ?ame retardant.

The ?re resistance of polymer can be improved by the incorporation of numerous ?ame retardants,such as inorganic materials [6,7],phosphorus-containing [8–14]and halogen-con-taining compounds [15].Among them,the thermal degradation or burning of ?ame retardant polymer with halogen-containing compounds releases toxic gases.Therefore,recent developments are toward a ?ame retardant polymer without halogen-containing compounds.The other appropriately ?ame retardant compounds are phosphorus-containing compounds which can avoid the release of toxic gases into the atmosphere.Many researches on the effect of phosphorous containing compounds on ?ame retardant properties have been conducted since the material can provide ?ame retardation of polymer with non-toxicity and good compatibility between polymer and ?ame retardants.

One of the main safety concerns when using ?ber polymer composites is their combustibility.Many polymer composites ignite when exposed to high heat ?ux,releasing heat that can,in some circumstances,contribute to the growth of the ?re.Signi?cant quantities of smoke and toxic fumes may also be released,respectively be limiting visibility and posing a health hazard.

Journal of Industrial and Engineering Chemistry 15(2009)888–893

A R T I C L E I N F O Article history:

Received 6March 2009Accepted 7May 2009Keywords:

Recycling of PU

Thermal degradation Flame retardant

A B S T R A C T

Chemical degradation of used PU was intentionally made by the addition of ?ame retardants such as tris(2-chloropropyl)phosphate (TCPP),triethyl phosphate (TEP)and trimethyl phosphonate (TMP).Final product obtained after the degradation reaction was named as DEP.The structure of degraded products (DEP)was analyzed by FT-IR and 31P NMR and it turned out to be phosphorous containing oligourethanes.Rigid polyurethane foam was produced using the degraded products (DEP)as ?ame retardants.The ?ammability and thermal stability of recycled rigid polyurethane was investigated.The mechanical properties such as compressive strength and tensile strength of recycled polyurethane were also studied.The recycled polyurethane shows reduced ?ammability and higher thermal stability over virgin polyurethane.Mechanical strength of recycled polyurethane also shows as high as that of virgin polyurethane.In order to evaluate ?ame retardant properties of the recycled polyurethane foams with various amounts of DEP,heat release rate (HRR)of the foam was measured by cone calorimeter.Scanning electron micrograph of recycled PU shows uniform cell morphology as virgin-PU.

?2009The Korean Society of Industrial and Engineering Chemistry.Published by Elsevier B.V.All rights

reserved.

*Corresponding author.Tel.:+82312499790;fax:+82312570161.E-mail address:ksb@kyonggi.ac.kr (S.Kim).

Contents lists available at ScienceDirect

Journal of Industrial and Engineering Chemistry

j ou r n al h o m e p a g e :w w w.e l se v i e r.co m /l oc a t e /j i e c

1226-086X/$–see front matter ?2009The Korean Society of Industrial and Engineering Chemistry.Published by Elsevier B.V.All rights reserved.doi:10.1016/j.jiec.2009.09.018

Heat release rate(HRR)has been recognized as a major?re parameter and?re size,smoke production and many others depend on it[16].How to obtain accurate and easy measurement of HRR is crucial for?re tests.The cone calorimeter was developed to measure HRR based on the principle of oxygen consumption and used in many international laboratories[17,18].The cone calorimeter can be regarded as a powerful tool for studying?re suppression of agents.

In this study,an attempt was made to develop an effective recycling technique for used polyurethane.Polyurethane was decomposed with TCPP(tri(2-chloropropyl)phosphate),TEP (triethyl phosphate),and TMP(trimethyl phosphate)to produce phosphorous containing?ame retardants.These degraded pro-ducts were characterized by NMR,FT-IR and were used as an addition agent to synthesize rigid polyurethane foam.The recycled polyurethane foams were compared with virgin polyurethane containing common?ame retardants on mechanical properties, cell morphology and thermal stability.Furthermore,heat release rate(HRR)of the foam was measured by cone calorimeter to evaluate?ame retardant properties of the recycled polyurethane foams with various amounts of DEP.

2.Experimental

2.1.Materials

Used polyurethane foams,based on pure MDI(diphenyl-methane diisocyanate),BASF,and polyester polyol prepared by adipic acid and diethylene glycol(DEG),were chosen for https://www.360docs.net/doc/fb7631882.html,mercial reagents of triethyl phosphate,trimethyl phosphonate,and tris(2-chloropropyl)phosphate were used with-out further puri?cation.

2.2.Chemical degradation of?exible polyurethane foam

The polyurethane foams were cut into small pieces and placed into a four necked?ask equipped with a mechanical stirrer, thermometer and re?ux condenser,then,triethyl phosphate was added into the glass apparatus.The weight ratio of polyurethane to triethyl phosphate was1–3.The degradation was proceeded at 1908C for6h and unreacted triethyl phosphate was removed under vacuum distillation.Additional degradation experiments were performed with trimethyl phosphonate,and tris(2-chlor-opropyl)phosphate following the procedure described above.

2.3.Preparation of recycled polyurethane foams with DEP

Rigid polyurethane foam was produced using the various amount (5,10,15and20wt%to polyol)of degraded products(DEP)as a ?ame retardant.Polyol and the additives were mixed and then stored at room temperature for24h.1.57pph(part per hundred of polyol in weight)of surfactant,0.46pph of amine catalyst,12pph of DEP and0.6pph of blowing agent such as distilled water or11.5pph of HFC-365mfc[hydro?uorocarbon(CF3CH2CH2CHF2)]were added according to100parts of polyol.After the mixed solution was added to the amounts of MDI corresponding to113of NCO index,the solution was stirred at3000rpm for30s to prepare the rigid polyurethane foam.In order to con?rm the?ame retardation of recycled polyurethane foams with DEP,pure polyurethane foam and polyurethane foam including general?ame retardant,phosphorus type?ame retardant,was prepared and analyzed in comparison with recycled polyurethane foam.

2.4.Characterization

The31P NMR spectra of the products(DEP)in CDCl3were determined using a Varian NMR-AS500spectrometer.Infrared spectra of the samples on a KBr pallets were obtained with a Jasco Fourier transform infrared spectroscopy(FT-IR)over the wave-numbers range from600to4000cmà1.The glass transition temperature of recycled polyurethane and pure polyurethane were determined by a differential scanning calorimeter(TA instrument) at a heating rate of208C/min and the nitrogen?ow rate of100ml/ min.Thermogravimetric analysis(TGA)was performed using a Perkin-Elmer instrument.The samples were heated from258C to 6008C at a heating rate of108C/min and the nitrogen?ow rate of 20ml/min.Scanning electronic micrographs of polyurethane foams were obtained on a JEOL-JSM6500F SEM after the specimens were sputter-coated with gold.Mechanical properties of recycled polyurethane and pure polyurethane were determined by uni-versal test machine.

2.5.Flame retardant property of polyurethane foams(?re resistance)

The in?ammability of prepared rigid polyurethane foams was evaluated by ASTM D1692.The polyurethane samples were cut into the dimension of150mm(L)?50mm(W)?13mm(T).The samples were on?re,then the time were counted until extinguished.The interval from ignition to extinguish of samples were measured.

2.6.Cone calorimetry

Several combustion parameters were determined using a cone calorimeter which is known to be able to provide useful information during combustion.

The parameters obtained from the cone calorimeter are listed below.

(1)Heat release rate(HRR)as function of time.

(2)Peak of heat rate release(PHRR),which is considered as a

parameter that best expresses the maximum intensity of a?re indicating the rate and extent of?re spread.

According to ISO5660-1[19],various combustion parameters were determined using a dual cone calorimeter(Fire Testing Technology).The measurement of heat released rate by the cone calorimeter does based on the oxygen consumption principles which the heat of about13.1MJ is radiated if the oxygen1kg is consumed among the combustion of organic materials[20].The oxygen consumed induced from the oxygen content in the burnt gas?ow and?ow rate was measured and it evaluated when the specimen exposed to the radiant heat in which it sets up was ignited.The heat release amount due to the combustion of a material and per square is calculated by Eqs.(1)and(2):

qetT?

Dh c

r O

e1:10TC

???????

DP

T e

s

X0O2àX O2

1:105à1:5X O2

(1) q AetT?

qetT

s

(2)

q A(t)is the heat release rate per square meter,q(t)is the heat release rate,A s is the surface area of the sample,D h c is the pure heat of combustion,r O is the stoichiometry oxygen per fuel mass ratio,C is the oxygen consumption correction constant,D P is the pressure difference of ori?ce,T e is the absolute temperature of gas at ori?ce,X O2is the oxygen branch scale toward the molar fraction of the oxygen and X0O2is the initial value of oxygen analyzer.

The cone calorimeter is the dynamic method in which it supplies the air of the predetermined amount as the testing method that it actually most well tracing the topic condition and it can accurately evaluate the combustibility of the devices.

Y.-j.Chung et al./Journal of Industrial and Engineering Chemistry15(2009)888–893889

It performed according to ISO 5660-1.After 6mm specimen (100mm ?100mm ?6mm)is cut with a square and it maintains until a constant becomes to the temperature 238C,and the relative humidity 50?5%,the non-exposure side is surrounded with the aluminum foil.

The calorie of the cone heater revised a trial that the set value ?2%within,and the oxygen content of the oxygen analyzer became 20.95?0.01%and the discharge ?ux was set to 0.24?0.002m 3/s.

The heat release rate and combustion parameter from the sample are ignited with the time exposing to 50kW/m 2radiant heat with the state where it horizontally set up in the cone calorimeter and attaches the outside ignition for the moisture and when it is ignited.

3.Results and discussion 3.1.Chemical structure of DEP

Figs.1and 2show FT-IR spectra of pure polyurethane,degraded polyurethane oligomer (DEP)by TEP (triethyl phosphate)and recycled polyurethane which was synthesized with 20pph addition of degraded polyurethane oligomer (DEP).In the FT-IR spectrum of degraded polyurethane oligomer (DEP)by phosphoric ester,P 55O stretching vibration bands appeared at 1250cm à1which was not found at pure polyurethane (Fig.1).It seems that the degraded products of polyurethane (DEP)are phosphorous containing material.The –C 55O bands consist of hydrogen-bonded

–C 55O (1700cm à1

)and free –C 55O (1725cm à1)in pure polyur-ethane compound possibly due to secondary interactions of urethane and urea functional group in polyurethane with –NH,–OH group in each chains (Fig.2).The –NH stretching vibration bands in pure polyurethane seems to be affected by hydrogen bonding with polar –C 55O functional group since there is a broad

peak at 3400cm à1

.The –NH stretching vibration bands in the degraded polyurethane oligomer by TEP (triethyl phosphate)was not as broad and strong as the –NH bands in pure polyurethane.The –C 55O stretching bands was shown in single peak after polyurethane was degraded by phosphoric ester.It means that the bonds of N–H in PU chains were broken by TEP,then,hydrogen bonding between carbonyl group and –NH in urethane is disappeared.These results are consistent with the decomposition mechanism of polyurethane proposed by Troev who suggests that structures and molecular weights of the degraded polyurethane products could be variable [3–5].

Fig.3shows 31P NMR spectra of TEP (triethyl phosphate)and the decomposed polyurethane oligomer through the exchange reaction of waste polyurethane and TEP.Since the structure of TEP is symmetric along the axis of P 55O bond,all phosphorous seem to be under the same condition which gives single peak at 0.53ppm (Fig.3).The chemically decomposed polyurethane oligomer with

phosphorus compound has many peaks around à10to 2ppm in 31

P NMR spectrum (Fig.3).According to these results,it is proved that polyurethane chains are degraded by phosphoric ester to produce the phosphorous containing urethane oligomers.

3.2.Thermal stability and mechanical properties

Thermal degradation of virgin polyurethane and the recycled polyurethane foam were investigated by TGA under a nitrogen atmosphere at a heating rate 108C/min.The recycled polyurethane foam was prepared using the 10pph (part per hundred based of polyol)of degraded products (DEP)which was polyurethane oligomer decomposed by phosphoric ester such as TMP and TCPP.As shown in Fig.4,the recycled polyurethane foam with DEP degraded at the temperature 1–58C higher than the virgin polyurethane foam.After the recycled polyurethane foam with DEP-TMP which represents the PU oligomer decomposed by TMP,was degraded at 5908C,15%residues are remained.Also the recycled polyurethane with the DEP-TCPP which represents the polyurethane oligomer decomposed by TCPP degraded to give 10%residue at 5908C.While the virgin polyurethane foam was degraded to give only 4%residue at the same temperature.This suggests that the degraded polyurethane oligomer by TMP,TCPP can be acted as the effective ?ame retardants and the recycled polyurethane with DEP is more thermally stable polymeric materials than the virgin polyurethane foam.

Table 1shows the mechanical properties of the pure polyurethane foam,the polyurethane foam with ?ame retardants such as TEP,TMP,TCPP and the recycled polyurethane with

DEP.

Fig.1.FT-IR spectra of (a)polyurethane scrap and (b)degraded PU by

TEP.

Fig.2.FT-IR spectra of (a)polyurethane scrap,(b)degraded PU by TEP and (c)recycled PU with

DEP.

Fig.3.31P NMR spectrum of TEP and degraded polyurethane foam by triethyl phosphonate (DEP-TEP).

Y.-j.Chung et al./Journal of Industrial and Engineering Chemistry 15(2009)888–893

890

The mechanical properties such as compressive strength and density of recycled polyurethane foam with DEP showed similar to those of virgin PUF and PUF with the commercial ?ame retardants.However,tensile strength is increased up to 20%in the recycled polyurethane using DEP.We suggest that the increase in physical

properties of recycled PUF may be due to the miscibility of polyurethane chains and phosphorous containing polyurethane oligomers (DEP)which are similar chemical structures and then the interfacial strength of two materials would be improved.

PUFs are easily ignited,therefore,the ?ame-retarding agents such as TCPP,TEP,TMP was usually added into the commercial polyurethane foams with the amount of 10wt%based on the polyol.The polyurethane foam with the commercial ?ame-retarding agents and DEP showed self-extinguishing property within 30s.This means that the DEP could act as ?ame retardant in preparation of polymeric materials as like TCPP,TEP,and TMP.3.3.Cell morphology

The effect of DEP as ?ame retardants on the cell morphology of the recycled polyurethane foam was studied in comparison with virgin polyurethane foam and polyurethane foam with the commercial ?ame retardant,TCPP.Fig.5shows scanning electron micrographs of the virgin PUF (a),PUF with TCPP (b)and the recycled PUF with DEP (c).The micrograph of recycled PUF shows uniform cell morphology as virgin PUF and the PUF with TCPP.This

Table 1

Mechanical properties and glass transition temperature of polyurethane foam.

Compressive strength ekg f =cm 2T=density ekg =cm 2T

Tensile strength ekg f =cm 2T=density ekg =cm 2TT g (8C)

Virgin-PU 698458158PU–TEP 668780153PU–TMP 702781148PU–TCPP

689772143Recycled PU–TEP 585819139Recycled PU–TMP 649842144Recycled PU–TCPP

658

968

159

Fig.4.TGA thermograms:(a)virgin-PU,(b)recycled PU with DEP-TCPP and (c)recycled PU with

DEP-TMP.

Fig.5.Scanning electron micrographs of (a)PU foam,(b)PU-TCPP foam,and (c)recycled PU/DEP-TCPP

foam.

Fig.6.CO of polyurethane under a heat ?ux of 50kW/m 2.

Y.-j.Chung et al./Journal of Industrial and Engineering Chemistry 15(2009)888–893891

result might be due to the miscibility of DEP with polyurethane chains in the recycled PUF (Fig.5).3.4.Cone calorimeter

The heat release rate and combustion parameter experimental results about the polyurethane foam are shown in Table 2.Since being shown in 5–6s,the ?ame retardant is combined or in case of being added,the ignition time of the remainder PU foam is determined in comparison with an ignition time (time to ignition,TTI)4s of the pure polyurethane foam that the burning restraint function is given.

Heat release rate represents a quantity of heat generated per unit area and time.HRR represents a quantity of heat generated per unit area and time.When a sample is ignited,heat is generated depending upon its ?ammability.PHRR is one of the important index which one can presume the extent of ?re.

Since being shown in 330.52kW/m 2,the peak heat release rate (PHRR)of the TCPP/PU in which the ?ame retardant is contained in comparison with the peak heat release rate (PHRR)360.70kW/m 2of the pure polyurethane foam in which the ?ame retardant does not become with addition is determined that the burning restraint effect is excellent and the peak heat release rate reduces (Table 2,Fig.8).

In the case of the TCPP/PU,rather the maximum heat release rate was higher in 362.15kW/m 2.It is determined that TCPP could not exhibit the effect that it is great about the combustibility suppress as the case of just mixing TCPP with PU.

And in case of processing with the DEP-TEP/PU and DEP-TMP/PU,for the peak heat release rate just having as 364.43kW/m 2,378.65kW/m 2and con?rming the burning restraint effect,it was insuf?cient.

That is,a peak heat release rate is determined that the quantitative evaluation has more to get accomplished in con-sideration of the total combustion time since being de?ned as the size of the instantaneously calorie in which it is generated with the surface of sample.

THR,total heat released by combustion,is a function of time per unit area and it is calculated by the integration of heat release for given time.

As shown in Table 2and Figs.6and 9,the THR value of the DEP-TEP/PU (10.0MJ/m 2)and DEP-TMP/PU (10.0MJ/m 2)is lower than the THR of the pure polyurethane foam (12.2MJ/m 2).

Particularly,in the case of the DEP-TCPP/PU (9.5MJ/m 2),we look at that THR is small and the burning restraint effect is excellent.

In the case of the TCPP/PU,it seems to do a role according to a situation even in case the THR just mixes the ?ame retardant with the polyurethanes as 9.5MJ/m 2.

In comparison with the pure polyurethane foam,the poly-urethane foam which is added ?ame retardant or DEP becomes reduced the average output of the CO 2gas except the DEP-TEP/PU.The average output of the CO gas increased with the TCPP/PU,DEP-TEP/PU,DEP-TMP/PU,and DEP-TCCP/PU (Table 2).

It shows that the incomplete combustion rate increased due to the ?ame retardant addition CO and CO 2were generated in the time slot when it is faster than an other in the case of the virgin PUF in which it does not ?ame retardant treatments after ignition of sample (Figs.6and 7).Flame retardant added test pieces lately generated CO and CO 2especially,the DEP-TCPP/PU foam most lately generated CO and CO 2(Figs.6and 7).Relatively the generation of CO of ?ame retardant added PU is faster than virgin-PU in the ?xed time slot (Fig.6).

Generation speed of CO which the ?ame retardant added PU showed the highness with the DEP-TMP/PU >TCPP/PU >DEP-TEP/PU >DEP-TCPP >PU.Increase of CO generation speed of PU

Table 2

Combustion parameters of polyurethane foams.Sample

TTI a (s)PHHR b (kW/m 2)THR c (MJ/m 2)CO mean (kg/kg)CO 2mean (kg/kg)CO/CO 2PU

4360.7012.20.0440 1.800.023TCPP/PU

6362.159.50.0854 1.760.048Recycled DEP-TEP/PU 5364.4310.00.0953 1.840.051Recycled DEP-TMP/PU 5378.6510.00.0703 1.330.052Recycled DEP-TCPP/PU

6

330.52

9.8

0.0846

1.75

0.048

a Time to ignition.

b Peak heat release rate.c

Total heat

released.

Fig.7.CO 2of polyurethane under a heat ?ux of 50kW/m 2

.

Fig.8.HRR of polyurethane under a heat ?ux of 50kW/m 2

.

Fig.9.THR of polyurethane under a heat ?ux of 50kW/m 2.

Y.-j.Chung et al./Journal of Industrial and Engineering Chemistry 15(2009)888–893

892

containing ?ame retardants is from incomplete combustion due to ?ame retardants (Fig.10).

We can know as this kind of in the generation speed of CO 2,moreover,the ?ame retardant treatments test piece relatively being small in the time slot when the generation speed is ?xed in comparison with the virgin-PU foam (Fig.11).

It is determined that if the ?ame retardant treatments are processed,the combustion control function is carrying out.4.Conclusions

Used polyurethane foam was chemically degraded by the treatment with ?ame retardants such as TCPP,TEP and TMP.The structure of degraded products (DEP)was turned out to be phosphorus-containing oligourethanes by the results from FT-IR and 31P NMR.Rigid polyurethane foam was produced using the degraded products (DEP)as ?ame retardants.The rigid Polyur-

ethane foam is called as recycled PU.Mechanical strength of recycled polyurethane shows as high as that of virgin polyur-ethane.

From the results of cone calorimeter and TGA,the recycled polyurethane shows reduced ?ammability and higher thermal stability over virgin polyurethane.In order to evaluate ?ame retardant properties of the polyurethane foams recycled by various phosphorus compounds,heat release rate (HRR)of the foam was measured by cone calorimeter.Among DEPs,DEP-TCPP which is the degraded polyurethane products by TCPP seems to be the most effective ?ame retardant in preparation of polyurethane foams.Increase of CO/CO 2ratio of PU containing ?ame retardants is from incomplete combustion due to ?ame retardants.Scanning electron micrograph of recycled PU reveals uniform cell morphology as virgin-PU.

Acknowledgements

The work was carried out with ?nancial support from the 2007Kyonggi University specialization program and by the special fund of disaster prevention’s priority of Kangwon National University in 2005.References

[1]E.Weigand,W.Rabhofer,Recycling of Polyurethanes,Technomic Publishing

Company,Inc.,USA,1995,p.3.

[2]C.R.Park,Y.C.Kim,N.K.Park,J.Korean Ind.Eng.Chem.11(1)(2000)105.[3]K.Troev,G.Grandcharov,R.Tesevi,Polym.Degrad.Stab.70(2000)43.

[4]K.Troev,G.Grandcharov,R.Tesevi,J.Appl.Polym.Sci.78(14)(2000)2565.[5]K.Troev,G.Grandcharov,R.Tesivi,A.Tsekova,Polymer 41(2000)7017.

[6](a)https://www.360docs.net/doc/fb7631882.html,achachi,M.Cochez,M.Ferriol,E.Leroy,J.M.Lopez,N.Oget,Polym.

Degrad.Stab.85(2004)641;

(b)S.I.Lee,D.B.Kim,J.H.Sin,Y.S.Lee,C.Nah,J.Ind.Eng.Chem.13(2007)786.[7]J.Zhang,X.Wang,F.Zhang,A.R.Horrocks,Polym.Test.23(2004)225.

[8]C.P.Reghunadhan Nair,G.Clouet,J.Brossas (Eds.),J.Polym.Sci.Polym.Chem.Ed.

26(1988)(1791).

[9]C.P.Reghunadhan Nair,G.Clouet,Eur.Polym.J.25(1989)251.[10]C.P.Reghunadhan Nair,G.Clouet,Polymer 29(1988)(1909).

[11]C.P.Reghunadhan Nair,G.Clouet,Y.Guilbert,Polym.Degrad.Stab.26(1989)305.[12]G.Chigwada,P.Jash,D.D.Jiang,C.A.Wilkie,Polym.Degrad.Stab.89(2005)55.[13]P.Lv,Z.Wang,K.Hu,W.Fan,Polym.Degrad.Stab.90(2005)523.[14]C.Nguyen,J.H.Kim,Polym.Degrad.Stab.93(2008)1037.

[15]C.P.Yang,S.S.Wang,J.Polym.Sci.Polym.Chem.27(1989)3551.

[16]V.Babrauskas,S.J.Grayson,Heat Release in Fires,Elsevier Applied Science,

London/New York,1992,p.31.

[17]J.P.Redfern,J.Therm.Anal.35(10)(1989)1861.[18]ASTM E1354,Philadelphia,1990.[19]ISO 5660-1,Genever,2002.

[20]R.V.Petrella,J.Fire Sci.12(1994)

14.

Fig.10.CO production rate of polyurethane under a heat ?ux of 50kW/m 2

.

Fig.11.CO 2production rate of polyurethane under a heat ?ux of 50kW/m 2

.

Y.-j.Chung et al./Journal of Industrial and Engineering Chemistry 15(2009)888–893893

聚氨酯发泡催化剂

聚氨酯发泡催化剂 DABCO 33-LV 多用途凝胶催化剂,33%Dabco固体+67%二丙二醇(DPG),聚氨酯软泡和硬泡等; DABCO BDMA 苄基二甲胺,减低于高水泡沫的脆性,调整表皮固化; DABCO BL-11 A-1,70%双(二甲胺基乙基)醚的DPG溶液,发泡型催化剂, A-1催化剂主要用于软质聚醚型聚氨酯泡沫塑料的生产,也可用于包装用硬泡; DABCO BL-22 强发泡复合胺催化剂,可取代BL-11,适用于硬泡,模塑软泡和半硬泡; DABCO CS-90 强发泡复合胺催化剂,改善泡沫密度梯度及开孔效果,可减少箱泡角落破裂,使用于软块泡; DABCO NE200 用于各种软膜塑泡沫的低雾化发泡催化剂,适用于模塑软泡; DABCO T 反应性发泡催化剂,低雾化适用于聚醚型聚氨酯软块泡,模塑泡沫,半硬泡和硬泡,特别适用于汽车泡沫; Dabco TL 是一种低气味强发泡叔胺催化剂,可平衡促进反应,适用于聚氨酯软质泡沫; Polycat 5 五甲基二乙烯三胺,强发泡催化剂,改善硬泡流动性; Polycat 8 二甲基环己胺(DMCHA),标准的硬泡催化剂; Polycat 9 三(二甲氨丙基)胺,硬泡及模塑泡沫的低气味催化剂,喷涂; Polycat 77 双(二甲氨丙基)甲胺,凝胶剂发泡平衡性催化剂,制开孔泡沫,增强模塑泡沫回弹性,用于软泡和硬泡; Jeffcat ZF-10 三甲基羟乙基双氨乙基醚,高效反应性发泡催化剂,低散发性,适用于聚醚型聚氨酯软块泡、模塑泡沫、包装用硬泡等; Jeffcat DMP 二甲基哌嗪,聚氨酯发泡/凝胶平衡性催化剂,适用于聚氨酯软泡、硬泡、涂料和胶黏剂等; 供应商 新典化学材料(上海)有限公司 本公司还供应下列聚氨酯催化剂:

聚氨酯泡沫的阻燃研究

万方数据

万方数据

万方数据

万方数据

聚氨酯泡沫的阻燃研究 作者:孙付宇, 秦泽云, 张美, Fuyu Sun, Zeyun Qin, Mei Zhang 作者单位:孙付宇,秦泽云,Fuyu Sun,Zeyun Qin(中北大学材料科学与工程学院,山西太原,030051),张美,Mei Zhang(中北大学理学院,山西,太原,030051) 刊名: 化工中间体 英文刊名:CHEMICAL INTERMEDIATE 年,卷(期):2011,08(5) 被引用次数:1次 参考文献(27条) 1.刘益军;柏松聚氨酯泡沫塑料的阻燃[期刊论文]-塑料工业 2003(10) 2.袁开军;江治;李疏芬聚氨酯的阻燃性机理研究进展[期刊论文]-高分子材料科学与工程 2006(05) 3.于永忠;吴启鸿;葛世成阻燃材料手册 1990 4.胡源;范维澄;王清安磷腈改性聚氨酯燃烧过程气相中长寿命自由基的研究[期刊论文]-自然科学进展 1999(01) 5.金军聚氨酯硬质泡沫阻燃技术研究及趋势[期刊论文]-安徽冶金科技职业学院学报 2007(04) 6.钟柳;刘治国;欧育湘-种新型含氯的磷-膦酸酯阻燃聚氨酯的阻燃性能 2007(04) 7.欧育湘;韩廷解阻燃塑料手册 2008 8.陈鹤;罗运军;柴春鹏阻燃水性聚氨酯研究进展[期刊论文]-高分子材料科学与工程 2009(06) 9.赵哲;张鹏;夏祖西阻燃聚氨酯软泡的研究进展[期刊论文]-应用化工 2008(05) 10.王升文;秋银香阻燃剂的研究现状和进展 2008(01) 11.孟现燕;唐建华;叶玲聚氨酯泡沫塑料阻燃研究现状[期刊论文]-化学工程与装备 2008(5) 12.杨伟平;戴震;许戈文聚氨酯阻燃的研究进展 2010 13.张理平;王俏不同阻燃剂对聚氨酯软泡阻燃性能影响的研究[期刊论文]-材料开发与应用 2006(03) 14.史以俊;罗振扬;何明含磷阻燃剂对聚氨酯硬泡燃烧特性影响的研究[期刊论文]-聚氨酯工业 2009(05) 15.T.C.Chang;Y.S.Chiu;H.B.Chen Degradation of phosphorus-containing polyurethanes 1995 16.张蕾;吴晓青;张文才聚氨酯树脂在环保方面的应用与研究[期刊论文]-中国胶粘剂 2008(02) 17.郝冬梅;刘彦明;林倬仕无卤膨胀性阻燃剂ANTI-2阻燃聚氨酯弹性体的研究 2008 18.W.Wei;X.Peng Preparation of aqueous polyurethane flameretardant[期刊论文]-Textile Auxiliaries 2004(05) 19.刘斌;杨小燕聚氨酯材料的阻燃与防火[期刊论文]-江苏化工 2003(06) 20.陈雷;高增明三(-缩二丙二醐亚磷酸酯阻燃剂的应用 1991(04) 21.韦玮;王建明新型阻燃聚醚多元醇的合成研究 1998(01) 22.高明;王涛;吴发超氨基树脂型膨胀阻燃剂处理软质聚氨酯泡沫塑料的阻燃性能[期刊论文]-高分子材料科学与工程 2009(01) 23.罗振扬;史以俊;何明匀泡剂对阻燃硬质聚氨酯泡沫塑料燃烧性能的影响[期刊论文]-中国塑料 2009(01) 24.付步芳;魏建国;刘洁琪硬质聚氨酯泡沫塑料的阻燃技术[期刊论文]-材料开发与应用 1998(04) 25.张骥红;陈峰聚氨酯泡沫阻燃剂浅谈[期刊论文]-聚氨酯工业 2001(4) 26.张田林;李再峰纳米氢氧化镁补强阻燃聚氨酯弹性体[期刊论文]-弹性体 2004(05) 27.K.Kuleszal;K.Pielichowski;Z.Kowalski Thermal characteristics of novel NaH2PO4/NaHSO4 flame retardant system for polyurethane foams[外文期刊] 2006(02)

聚氨酯的燃烧和阻燃

聚氨酯的燃烧和阻燃 聚氨酯材料是由碳—碳键为基本结构组成的有机高分子聚合物,属于可燃物质。用聚氨酯材料生产的各类产品与制品,在人们的社会活动中随处可见。由于它们处在各种各样的环境之中,引发火灾的几率较高。由各种引火源引发聚氨酯材料的燃烧以及伴随燃烧产生的烟雾毒性,已成为消防安全密切关注的重点之一,对有关聚氨酯产品及生产制定了日益严格的阻燃标准和法规。 同时,聚氨酯产品的生产所使用的大量原料多属于有机化合物和聚合物,也同属于可燃物之列,而在生产中使用的许多原料助剂,如有机溶剂及其配置的涂料、脱模剂等,因闪点、着火点较低,都存在不同程度的燃烧隐患;此外,在大型软质聚氨酯块泡的生产中,由于使用高水量配方生产低密度泡沫体产生的热量多而泡沫体的散热性差,因此在贮存过程中,由泡沫体产生自燃而引发的火灾也曾有发生。 由聚氨酯泡沫体等燃烧产生的火灾危害,不仅来源于燃烧本身产生的大量热辐射而引发的火焰的蔓延和扩大,同时还来源于燃烧时产生的烟雾和分解释放出来的诸多有毒气体。许多火灾报告指出:由燃烧烟雾和有毒气体造成人员伤亡的比例远远高于真正燃烧本身造成的伤亡人数。因此,为保证生产过程和使用过程中的防火安全,必须系统地研究该类产品的燃烧机理、检测方法以及阻燃办法,制定产品的生产、使用安全标准和法规。下面,洛阳天江化工新材料有限公司将就聚氨酯泡沫的燃烧机理以及阻燃方法这两方面为大家进行简单介绍。 一、燃烧机理 在聚氨酯产品中,由于聚氨酯泡沫塑料的质量轻、体积大且传热系数低、最易发生燃烧,因此将它作为燃烧行为的研究对象最具有代表性。 一般物质的燃烧行为基本可分为三个阶段:第一个阶段为物质引燃和火焰蔓延的初期阶段;第二个阶段为物质的完全燃烧的发展阶段;第三个阶段则为火焰衰减、燃烧熄灭的最终阶段。洛阳天江化工新材料有限公司在这里告诉大家,物质引燃的难易程度是物质燃烧行为的第一表征,它与物质本身的化学结构、组成、传导能力、热分解温度以及反应所产生的气体和液滴的助燃程度等因素有关。此外,还有一点需要注意的是,不同的物质有不同的闪点和着火点,闪点和着火点越低的物质越容易燃烧。

聚氨酯泡沫材料及成型方法总结

聚氨酯泡沫材料 一、概况 聚氨酯是聚氨基甲酸酯的简称。凡是在高分子主链上含有许多重复的-NHCOO-基团的高分子化合物统称为聚氨基甲酸酯。一般聚氨酯系由二元或多元有机异氰酸酯(通常为甲苯二异氰酸酯,简称TDI)与多元醇化合物(聚醚多元醇或聚酯多元醇)相互作用而得。由于聚氨酯的结构不同,性能也不一样。利用这种性质,聚氨酯类聚合物可以分别制成塑料、橡胶、纤维、涂料、胶粘剂等。近二十年来,聚氨酯在这几个方面的应用都发展很快,特别是聚氨酯泡沫塑料、聚氨酯橡胶、聚氨酯涂料发展更加迅速。 泡沫塑料是聚氨酯合成材料的主要品种之一,它的主要特征是具有多孔性,因而相对密度较小,质轻,隔热隔音,比强度高,减振等优异特性。根据所用原料不同和配方的变化,可制成软质、半硬质和硬质聚氨酯泡沫塑料几种。 图1 聚氨酯泡沫合成主要原料 聚氨酯原料 异氰酸酯 脂肪族 脂环族芳香族多元醇 聚酯多元醇 聚醚多元醇其它多元醇扩链剂 胺类扩链剂 醇类扩链剂催化剂 叔胺类催化剂 金属有机催化其它助剂 阻燃剂抗氧剂 紫外线吸收剂着色剂增塑剂

1.1聚氨酯泡沫形成的化学机理 多元醇与多异氰酸酯生成聚氨酯的反应,是所有聚氨酯泡沫塑料制备中都存在的反应。发泡过程中的“凝胶反应”一般即指氨基甲酸酯的形成反应。因为泡沫原料采用多官能度原料,得到的是交联网络,这使得发泡体系能够迅速凝胶。基团反应如下: —NCO+—OH→—NHCOO— 在有水存在的发泡体系中,例如聚氨酯软泡发泡体系、水发泡聚氨酯硬泡体系,多异氰酸酯与水的反应不仅生成脲的交联(凝胶反应),而且是重要的产气发泡反应。所谓“发泡反应”,一般是指有水参加的反应。 —NCO+H 2O+OCN—→—NHCONH—+CO 2 ↑ 上述几个反应产生大量的热,这些热量可促使反应体系温度迅速增加,是发泡反应在短时间完成。并且,反应热为物理发泡剂(辅助发泡剂)的气化发泡提供了能量 二、软质聚氨酯泡沫塑料 软质聚氨酯泡沫塑料(简称聚氨酯软泡)是指具有一定弹性的一类柔软性聚氨酯泡沫塑料,它是用量最大的一种聚氨酯产品。聚氨酯软泡的泡孔结构多为开孔的。一般具有密度低、抗氧化老化、耐油耐溶剂、弹性回复好、吸音、透气、保温性能,主要用作家具垫材、交通工具座椅垫材、各种软性衬垫层压复合材料,工业和民用上也把软泡用作过滤材料、隔音材料、防震材料、装饰材料、包装材料及隔热保温材料 2.1发泡原理及工艺 2.1.1预聚体法发泡工艺原理 预聚体法发泡工艺通常应用于聚醚型泡沫塑料。而聚酯型泡沫塑料因聚酯本身粘度较大,生成预聚体后粘度更大,在发泡时不易操作,一般都不用此法。 预聚体法发泡工艺既是将聚醚多元醇和而异氰酸酯先制成预聚体,然后在预聚体中加入水、催化剂、表面活性剂和其他添加剂,载高速搅拌下混合进行发泡。固化后在一定温度下熟化即软质泡沫塑料。其流程示意图如下

聚氨酯阻燃剂的特性和行业分类应用简介

和其他大多数高分子材料一样,聚氨酯不耐热,容易被点燃,产生毒性气体,危害人身财产安全。所以,一般通过各种方法,使聚氨酯制品具有一定的阻燃性。添加阻燃剂是最常用的方法,阻燃剂是聚氨酯材料的重要助剂。 一、卤代磷酸酯 卤代磷酸酯类化合物是聚氨酯泡沫塑料中应用广泛、效果显著的一大类添加型有机阻燃剂。多数卤代磷酸酯常温下有液态,使用方便,与多元醇有良好的相容性,且价格适中。卤代磷酸酯阻燃剂的品种非常多,我们就对常用的几种分别作一下介绍。 1、三(2-氯乙基)磷酸酯 三(2-氯乙基)磷酸酯(TCEP)是一种添加型阻燃剂,在聚氨酯软泡、硬泡生产中都能使用。但以用于硬泡效果更好,这是因为硬泡的闭孔率高,透气性小,阻燃剂挥发较困难,阻燃效果维持的比较长久。它的缺点是用量较大,如果用量超过15%时,泡沫塑料的物性则有下降现象。 TCEP广泛用于阻燃聚氨酯泡沫塑料,在聚氨酯硬泡或半硬泡中添加10%TCEP可获得显著的效果。使用TCEP降低硬泡的脆性,而不削弱泡沫的抗蚀性。当TCEP用于聚氨酯软泡,例如阻燃改性高回弹泡沫,TCEP可与三聚氰胺结合使用。TCEP可作为一个单独组分在发泡过程中直接注入混合头,也可在发泡前与聚醚多元醇混合,同时可降低多元醇组分黏度。 TCEP是应用最早、最广也是最便宜的阻燃剂,它具有较好的抗水解性和较高的阻燃效率,但容易挥发损失,阻燃持久性较差。 生产厂家:美国雅保(Antiblaze 100),德国科莱恩,美国康普顿集团公司,江都大江,江苏雅克等。 2、三(2-氯丙基)磷酸酯 三(2-氯丙基)磷酸酯(TCPP)是一种添加型阻燃剂,兼具有良好的增塑作用。由于分子内同时含有磷、氯两种元素,阻燃性能显著,同时还有增塑、防潮、抗静电等作用。因为磷氯含量比TCEP低,因此它的阻燃效果也相对减弱。 TCPP主要用于聚氨酯泡沫塑料的阻燃剂。一般较多的用于聚氨酯硬泡及PIR硬泡中,也用于聚氨酯软泡。用于聚氨酯软泡时持久性不好,但不会使泡沫发生焦烧现象。 生产厂家:美国雅保(Antiblaze TMCP及Antiblaze 80),德国科莱恩,德国拜耳(Levagard PP),江都大江,江苏雅克,张家港常余等。 二、磷酸酯类阻燃剂 磷酸酯的品种较多,许多磷酸酯可用作聚氨酯的阻燃剂。但磷酸酯同时具有增塑效应,

发泡催化剂

发泡催化剂 一、聚氨酯催化剂简介 催化剂是许多化学反应的促进剂。催化剂是合成树脂的一种重要助剂,对于聚氨酯也不例外。聚氨酯催化剂缩短反应时间,提高生产效率,选择性促进正反应、抑制副反应。在许多聚氨酯制品生产中,催化剂是一种常用的助剂,用量虽少,作用很大。 然少量无机盐化合物、有机磷氧化合物等可用作聚氨酯的催化剂,但使用方便、在聚氨酯及其原料合成中常用的催化剂主要有叔胺催化剂(包括其季铵盐类)和有机金属化合物两 大类。 叔胺类催化剂主要又可分为脂肪胺类、脂环胺类、芳香胺类和醇胺类及其铵盐类化合物。脂肪族胺类催化剂有N,N-二甲基环已胺、双(2-二甲氨基乙基)醚、三亚乙基二胺、N,N,N',N'-四甲基亚烷基二胺、N,N,N',N''-五甲基二亚乙基三胺、三乙胺、N,N-二甲基苄胺、N,N-二甲基十六胺、N,N-二甲基丁胺等。 脂环族胺类有三亚乙基二胺、N-乙基吗啉、N-甲基吗啉、N,N'-二乙基哌嗪、N,N’-二乙基-2-甲基哌嗪、N,N'-双-(α-羟丙基)-2-甲基哌嗪、N-2-羟基丙基二甲基吗啉等。 醇胺类化合物催化剂有三乙醇胺、N,N-二甲基乙醇胺等。醇按是一类反应型催化剂,可与其他高活性催化剂配合使用。三乙醇胺同时还是模塑泡沫的交联剂。 芳香族胺类有毗啶、N,N'-二甲基吡啶等。 研究数据表明,(二甲氨基乙基)醚(A-1)的催化活性很高,它的反应速率常数比三亚乙基二胺高50%。催化剂的活性比较试验中,采用丁醇-苯基异氰酸酯模型反应体系研究醇-异氰酸酯反应动力学数据,采用水与苯基异氰酸酯模型反应体系研究水-异氰酸酯反应动力学,溶剂采用25℃甲苯-二甲基甲酰胺(90/10),每种体系加相等用量的辛酸亚锡。 有机金属化合物包括羧酸盐、烷基化合物等,所含的金属元素主要有锡、钾、铅、汞、锌、钛、铋寺,最常用的足有机锡化合合物。在聚氨酯泡沫塑料中,一般使用叔胺及季铵盐作催化剂。除此以外,辛酸亚锡是连续法块状发泡聚氨酯软泡的常用催化剂,羧酸钾多用于聚异氰尿酸酯改性聚氨酯硬泡,二月桂酸二丁基锡等有机锡化合物可用于少数硬泡、半硬泡和高回弹泡沫配方。 硬质聚氨酯泡沫塑料常见的胺类三聚催化剂有2,4,6-(二适甲氨甲基)苯酚(牌号 DMP-30)、TMR系列(如三甲基-N-2-羟丙基己酸牌号DABCO TMR)、1,3,5-三(二甲氨丙基)-六氢化三嗪(牌号PC Cat NP40、polycat41)等。

聚氨酯软泡海绵的抗黄变解决办法

聚氨酯软泡海绵的抗黄变解决方案 更新时间: 5/29/2007 ??来源: ??点击数: 2445 IRGASTAB? ), IRGANOX? BHT 引起的黄变与引起的织物污染。 以下,我们将就这四类黄变,探讨抗氧剂的效能与影响: 1.?评价海绵发泡/加工过程中,不同抗氧剂体系对于高温引起的热氧老化黄变抑制的功效 汽巴选用的是动态加热法,试验条件如下: 首先,选用不同的抗氧剂,固定以下条件,进行样品海绵制备: 多元醇 100 ppt TDI 8061.1 ppt 水 5 ppt

硅 1.1 ppt 胺 0.3 ppt 辛酸锡 0.2 ppt 在20 x 20 x 20 cm的箱子中进行发泡 然后,将含不同抗氧剂海绵在一定的温度下加热30分钟,通过海绵的黄变程度,来表征抗氧剂的性能高低,以及抗烧芯能力。具体试验数据如下: 说明:图中有四组抗氧剂配方,IRGASTAB? PUR 68是一种不含BHT,不含胺类抗氧剂的复合型抗氧剂;IRGASTAB? 而PUR55 和 ,而酚噻氰接触氮氧化物后,则会变粉红。唯有IRGASTAB? PUR 68,颜色保持得最白。 3在评价抗氧剂海绵引起的织物污染方面,我们进行的试验如下: 说明:我们用白色的棉布包覆不同抗氧剂配方的海绵,经过氮氧化物气熏处理后,测量棉布本身的颜色改变,Delta E越低,则气熏变黄程度越低。从图中可以看出,BHT是沾染纺织面料的罪魁祸首!而这种类型的黄变,却是一种长期困扰胸罩,垫肩海绵发泡厂家的问题。而IRGASTAB? PUR 68由于不含BHT,在气熏变黄方面,表现非常出色。 4在评价抗氧剂海绵接触紫外线而引起的黄变方面,我们进行的试验如下:

聚氨酯泡沫阻燃

聚氨酯泡沫塑料的阻燃 阻燃原理 一般,通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄。也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。阻燃剂必须具有以下一种或数种功能:能在着火温度或接近着火温度下吸热分解成不可燃物质;能与泡沫燃烧产物反应生成不易燃物质;可分解出能终止泡沫自由基氧化反应的物质。 在聚氨酯泡沫中,含磷阻燃剂主要在凝聚相发挥作用,磷化物可以消耗泡沫塑料燃烧时分解出的可燃气体,使其转化成不易燃烧的炭化物,泡沫体中磷(P)含量达1.5%左右时即可获得较佳的阻燃效果。 含卤素阻燃剂主要在气相中发挥作用,卤素是泡沫塑料燃烧反应的链终止剂,在塑料燃烧时生成卤化氢而抑制燃烧反应。据有关资料,为使泡沫获得较满意的阻燃性能,泡沫体中溴(Br)质量分数应达12%~14%,或氯(Cl)质量分数达18%~20%。当磷-卤联用时,由于存在一定的协同效应,故0.5%P+(4%~5%)Br或1%P+(8%~12%)Cl即可使聚氨酯泡沫具有自熄性。 典型的磷-氮阻燃体系可由聚磷酸铵和三聚氰胺等组成,在泡沫受热初期,阻燃剂分解产生磷酸等,它与多羟基化合物形成具有阻燃作用的磷酸酯并释放水蒸气;在高温下泡沫中的阻燃剂气化产生不燃性气体,使熔融的泡沫炭化形成疏松的多孔性阻燃层。 氢氧化铝中含有大量的结晶水(质量分数可高达34%),结晶水在泡沫塑料生产过程中很稳定,但在泡沫塑料燃烧温度时将快速分解,吸收燃烧热,并在火源和泡沫间形成不燃性的屏障,从而起到阻燃作用。同时,它也是一种烟气抑制剂。 添加阻燃剂制备阻燃泡沫塑料 人们发现,含磷、氮、卤素、锑、铝、硼等元素的塑料制品具有较好的阻燃性能。一般可通过在制备聚氨酯泡沫塑料时在发泡配方中添加阻燃剂,使聚氨酯泡沫塑料具有一定的阻燃性能。选择阻燃剂,除了要考虑它对制品的阻燃效果(包括长期阻燃效果、遇火时的烟雾性等),还需考虑加入阻燃剂对发泡工艺的影响,以及对制品物性的影响。 一用于聚氨酯的阻燃剂有非反应性添加型阻燃剂及反应型阻燃剂两类。 A 添加非反应性阻燃剂 聚氨酯泡沫的阻燃剂以液态阻燃剂为主。液体阻燃剂主要是含磷、氯、溴元素的有机化合物,如三(2-氯丙基)磷酸酯(TCPP)、三(2-氯乙基)磷酸酯(TCEP)、三(二氯丙基)磷酸酯(TDCPP)、四(2-氯乙基)亚乙基二磷酸酯、甲基膦酸二甲酯(DMMP)、多溴二苯醚,等等。固态阻燃剂如三聚氰胺、三氧化锑、氢氧化铝、硼酸盐、聚磷酸铵、三(2,3-二溴丙基)异三聚氰胺酯等也用于聚氨酯泡沫塑料的阻燃。 B添加液态有机阻燃剂 在聚氨酯泡沫塑料中应用最早而且成本经济的品种是TCEP。它容易迁移和挥发,阻燃持久性较差。为了减少挥发损失,可选用多氯化(多)磷酸酯和高分子量的齐聚磷酸酯,如三(二氯丙基)磷酸酯和卤代双磷酸酯。在硬泡配方中加入20%以内的三(2,3-二氯丙基)磷酸酯,可使硬泡的氧指数达26;添加15%该阻燃剂可使软泡的阻燃性能达到UL94 HF-1或ASTM D1692阻燃要求。 卤代双磷酸酯是聚氨酯泡沫塑料常用的液态低挥发阻燃剂,耐水解性和热稳定性较好,尤其适用于聚氨酯软泡的阻燃。典型的产品有:四(2-氯乙基)二亚乙基醚二磷酸酯,含磷12%、氯27%,日本进口产品牌号CR505;四(2-氯乙基)亚乙基二磷酸酯,含磷13%、氯30.5%,美国进口产品牌号Thermolin101。其它产品如四(1,3-二氯-2-丙基)-2,2-二(氯甲基)-1,3-亚丙基二磷酸酯、四(1,3-二氯-2-丙基)-亚乙基二磷酸酯、四(2,3-二溴丙基)-1,2-亚乙基二磷酸

聚氨酯介绍

介绍 1、硬质聚氨酯导热系数低,热工性能好。当硬质聚氨酯密度为35~40kg/m3时,导热系数仅为0.018~0.024w/(m.k),约相当于EPS的一半,是目前所有保温材料中导热系数最低的。 2、硬质聚氨酯具有防潮、防水性能。硬质聚氨酯的闭孔率在90%以上,属于憎水性材料,不会因吸潮增大导热系数,墙面也不会渗水。 3、硬质聚氨酯防火,阻燃,耐高温。聚氨酯在添加阻燃剂后,是一种难燃的自熄性材料,它的软化点可达到250摄氏度以上,仅在较高温度时才会出现分解:另外,聚氨酯在燃烧时会在其泡沫表面形成积碳,这层积碳有助隔离下面的泡沫。能有效地防止火焰蔓延。而且,聚氨酯在高温下也不产生有害气体。 4、由于聚氨酯板材具有优良的隔热性能,在达到同样保温要求下,可使减少建筑物外围护结构厚度,从而增加室内使用面积。 5、抗变形能力强,不易开裂,饰面稳定、安全。 6、聚氨酯材料孔隙率结构稳定,基本上是闭孔结构,不仅保温性能优良,而且抗冻融、吸声性也好。硬泡聚氨酯保温构造的平均寿命,在正常使用与维修的条件下,能达到30年以上。能够做到在结构的寿命期正常使用条件下,在干燥、潮湿或电化腐蚀,以及由于昆虫、真菌或藻类生长或者由于啮齿动物的破坏等外因影响,都不会受到破坏。 7、综合性价比高。虽然硬质聚氨酯泡沫材的单价比其它传统保温材料的单价高,但增加的费用将会由供暖和制冷费用的大幅度减少而抵消。 产品用途 本公司生产的硬质聚氨酯保温大板材可广泛用于彩钢夹芯板、中央空调、建筑墙体材料、冷库、冷藏室、保温箱、化工罐体等领域。 特点 ●规格品种多,容重范围:(40—60kg/m3);长度范围:(0.5米—4米);宽度范围:(0.5米—1.2米);厚度范围:(20毫米—200毫米)。 ●切割精度高,厚度误差±0.5mm,从而保证了制成品表面的平整度。 ●泡沫细密,泡孔均匀。 ●容重轻,可以减少制成品的自重量,比传统的产品低30—60%。 ●抗压强度大,可以承受在制造成品过程中的巨大压力。 ●方便质量的检验,由于在切割过程中去掉了四周的表皮,板材的质量一目了然,保证了制成品的保温效果。厚度可按用户要求生产加工。 规格 硬质聚氨酯泡沫泡块(本公司提供不同密度的泡块,用来加工制作各种型材) 品种聚氨酯泡沫泡块(单位mm) 规格4000×1200×1000 2000×1200×1000 硬质聚氨酯泡沫大板材 品种聚氨酯大板材 密度40-60kg/m 规格长度:4000-500mm

常见阻燃剂

十溴二苯乙烷TDE 英文名称:2,2',3,3',4,4',5,5',6,6'-Decabromobibenzyl [1] 英文别名:DBDPE;1,2-Bis(2,3,4,5,6-pentabromophenyl)ethane CAS号:84852-53-9 分子式:C14H4Br10 分子量:971.22 熔点:~345℃. 沸点:~676.2℃. 新型溴系添加型阻燃剂(改性塑料行业必须用到的) 密封阴凉干燥保存 十溴二苯乙烷是一种使用范围广泛的广谱添加型阻燃剂,其溴含量高,热稳定性好,抗紫外线性能佳,较其他溴系阻燃剂的渗出性低;特别适用于生产电脑、传真机、电话机、复印机、家电等的高档材料的阻燃。 十溴二苯乙烷热裂解或燃烧时不产生有毒的多溴代二苯并二恶烷 (DBDO )及多溴代二苯并呋湳(DBDF ),用它阻燃的材料完全符合欧洲关于二恶英条例的要求,对环境不造成危害。二恶英(Dioxin),又称二氧杂芑(qǐ),是一种无色无味、毒性严重的脂溶性物质,二恶英实际上是二恶英类(Dioxins)一个简称,它指的并不是一种单一物质,而是结构和性质都很相似的包含众多同类物或异构体的两大类有机化合物。二恶英包括210种化合物,这类物质非常稳定,熔点较高,极难溶于水,可以溶于大部分有机溶剂,是无色无味的脂溶性物质,所以非常容易在生物体内积累,对人体危害严重。 十溴二苯乙烷无任何毒性,也不会对生物产生任何致畸性,对水生物如鱼等无副作用,可以说符合环保的要求。 十溴二苯乙烷在使用的体系中相当稳定,用它阻燃的热塑性塑料可以循环使用。 十溴二苯乙烷对阻燃材料性能的不利影响较传统阻燃剂十溴二苯醚小,且耐光性能好,渗出性低。 项目规格项目规格

聚氨酯产品催化剂大全

聚氨酯产品催化剂大全 (2012-07-24 10:57:28) 标签: 杂谈 一、美国气体产品编号公司产品编号产品介绍美国气体产品编号胺类催化剂 DABCO 33LVR A-33 33%三乙烯二胺的二丙二醇溶液,工业标准产品。三乙烯二胺的化学结构很独特,是一种笼状化合物,两个氮原子上连接三个亚乙基。这个双分子的结构非常密集和对称。从结构式上可以看出来,N 原子上没有位阻很大的取代基,它的一对空电子容易接近。在发泡体系中,一旦氨基甲酸酯键生成后,它就会游离出来,有利于更进一步催化。由于这个原因,虽然三乙烯二胺不是强碱,却对异氰酸酯基团和活泼氢化合物的反应表现出极高的催化活性。是一种强凝胶催化剂。其他公司相同产品牌号,美国 GE: NIAX Catalyst A-33; 日本东曹: TEDA L33; 国内厂家一般用 A-33 作产品名。 DABCOR 1027 1027 改性三乙烯二胺,用于单乙醇聚酯及聚醚鞋底原液系统,能调 DABCO 1028 1028 改性三乙烯二胺,用于 1,4 丁二醇聚整纤维及脱模时间。 酯及聚醚鞋底原液系统,能调整纤维及脱模时间。 乙DABCO 8154 8154 延迟性三乙烯二胺型催化剂,可改善泡沫流动性。延迟性三烯二胺,可改善泡沫流动性. 配方需要一段延迟的起始时间,或配方需用大量传统催化剂才能获得完全得泡沫固化。该催化剂的催化中心是由一种氨酸盐加以化学抑制,此项催化剂内含多种不同组合的氨酸盐,因而能提供规则的发泡曲线。再者,此项产品的腐蚀性远较其它延迟作用催化剂为低。用途:该产品适用于所有方便注模、合模,以及改良流程模塑泡沫用。在此配方中的唯一氨基凝胶催

泡沫稳定剂作用

在配方中,表面活性剂的主要作用:一是提高组分之间的乳化能力,使它们彼此能更加有效地混合;二是在发泡过程中,控制体系具有适当的表面张力,产生良好的气泡网络结构,因此,也可称为泡沫稳定剂。聚酯和聚醚型软泡的原料基础不同,在性质上也差异,因此,对表面活性剂的选择和用量上也不尽相同。聚酯型聚氨酯软泡常使用的表面活性剂在配方中的用量为1.0~2.5份/100份多元醇聚合物。它的掺人可以有效地提高各原料组分之间的乳化能力,促进泡沫稳定生长,阻止收缩。但各种表面活性剂的功效也不尽相同,如A-3能防止泡沫体收缩,而A-7和A-9可延缓泡沫表面凝胶时间,防止发泡泡沫体开裂。 近年,在聚氨酯制品生产中,稳定剂已被证实是泡沫生产中的关键组分之一。它们使气孔细密均匀,当体系处于低黏度阶段时,它使孔壁稳定/气孔能生长到适合于开孔的厚度,为最后开孔创造条件。泡沫体类型不同,使用的稳定剂类型也;同,它的主要作用是成核和乳化配方中的各个组分。泡沫配方中各个组分的相容性并不好,所以需要具有较强乳化能力的稳定剂将它们乳化混匀。而软泡是用水作发泡剂的,在配方中占聚醚重量的3%~5%,水和异氰酸酯反应的速率较异氰酸醋与多元醇高,所以在发泡初期有大量的固体聚脲生成,它是一种消泡剂,可以帮助开孔及爆孔。开孔及爆孔是软泡发泡必须出现的阶段,否则便会出现闭孔现象,致使泡沫性能下降。但开孔及爆孔必须在发泡反应和凝胶反应基本完成并达到平衡时出现。即在泡沫升至最高点而且泡的强度已能支撑自身重量之时,否则也会导致泡沫塌陷。所以软汽匀泡剂的另一重要作用就是在发泡初期能够溶解反应生成的聚脲在发泡后期能帮助开孔和爆孔。根据这个原则,选择软泡匀泡剂应考虑以下几个方面。 ①稳定剂的活性; ②稳定剂的操作范围与锡用量范围之间的关系 ③构成稳定剂的各种原料对操作范围的影响。 活性高的稳定剂一般在配方中用量较少,经济上是合算的。侄是高活性稳定剂操作范围较窄,易造成泡沫质量问题,在选择时要特别注意。一般来说,若聚醚活性低,或者是环氧丙烷聚醚,可以采用高活性稳定剂,延长溶解聚脲时间。如果聚醚是环氧丙烷和环氧乙烷共聚物,由于乙氧基的存在而使这种聚醚溶解聚脲的能力较强,所以适宜采用中等活性的稳定剂。而在某些特种高密度的泡沫中,如40~50kg/cm3,则需要低活性的稳定剂。 硬泡的情形和软泡不一样,它的交联度较高,气泡容易稳定。硬泡多是用于模塑制品或是在受限制的腔体内发泡,所以物料的流动性是极重要的工艺参数,流动性不好会造成空缺,影响保温性能,所以对硬泡稳定剂的要求有以下几点。 ①乳化原料组分能力强; ②具有较强的控制泡孔大小的作用; ③使物料有较好的流动性及密度分布均匀。

B1级聚氨酯保温板简介

B1级聚氨酯保温板简介 概述 聚氨酯保温板是由组合聚醚和聚合MDI(多苯基多亚甲基多异氰酸酯)进行发泡反应而制得,经GB8624-2012标准检验判定阻燃等级为B1级的硬质聚氨酯泡沫塑料有机保温材料。主要用于建筑物围护节能和大型冷库、冷链保温领域。同时,也可用于工业厂房、船舶、车辆、军工、水利建设等领域的防火保温隔热。 现行国家标准GB 8624-2012《建筑材料及制品燃烧性能分级》将建筑材料按阻燃能力高低依次划分为A级(不燃材料)、B1级(难燃材料)、B2级(可燃材料)、B3级(易燃材料)。根据不同的应用场合,建筑材料选用时应满足国家、地方法律法规要求的最低阻燃等级要求。 聚氨酯保温板由于其有机材料的特性,在现行的技术条件下,最高只能达到阻燃等级B1级的判定。且B1级聚氨酯保温板的研发和制造在技术上有瓶颈和难处,目前国内只有少数几家大的生产企业能够做到。大部分中小企业所生产的聚氨酯保温板只能达到B2级甚至是B3级。 2研发途径 提高聚氨酯材料的阻燃性能通常有以下三种方法:1、添加阻燃剂,主要有磷系、卤素系类的阻燃剂;2、提高配方中异氰酸根指数,即增加黑料(MDI)的用量;3、通过分子结构改性技术,增加材料阻燃性能。 外加阻燃剂容易造成聚氨酯泡沫塑料燃烧时产烟量和毒性增大,且随着时间的推移,阻燃剂容易迁移失效。而聚合MDI的成分单一,黏度较大,可调整的余地很小。因此聚氨酯泡沫塑料性能的改进主要是通过调节聚氨酯硬泡组合聚醚的组分来实现,聚氨酯硬泡组合聚醚性能将直接影响聚氨酯硬泡生产的工艺性能和最终产品的物理性能与使用特性,泡沫导热系数、密度、强度、硬度、阻燃性能等均可以随聚氨酯硬泡组合聚醚原料配方的不同而改变。 3技术特点

聚氨酯三聚型催化剂

聚氨酯三聚催化剂 DABCO TMR 胺系三聚催化剂,加速PIR硬泡后期固化而不影响乳白时间,适用于硬泡和半硬泡; DABCO TMR-2 胺系延迟性三聚催化剂,较温和,缩短脱模时间,适用于硬泡和半硬泡; DABCO TMR-3 酸封闭的胺系延迟三聚催化剂,反应较慢,适用于硬泡和半硬泡; DABCO TMR-4 三聚反应催化剂,提供泡沫优良的流动性,适用于硬泡和半硬泡; DABCO TMR-30 2,4,6-三(二甲氨基甲基)苯酚,基本三聚催化剂; Polycat 41 三(二甲氨丙基)六氢三嗪,具有优异发牌能力的三聚共催化剂,适用于高水量发泡硬泡、半硬泡、鞋底; Polycat 46 用于促进异氰酸酯反应(三聚反应),适用于各种硬质泡沫中。 供应商 新典化学材料(上海)有限公司 本公司还供应下列聚氨酯催化剂: 二甲基环己胺(DMCHA):聚氨酯硬泡催化剂 N,N-二甲基苄胺(BDMA):在聚氨酯行业是聚酯型聚氨酯块状软泡、聚氨酯硬泡及胶黏剂涂料的催化剂,主要用于硬泡 三乙烯二胺:聚氨酯高效催化剂,用于软泡 双(二甲氨基乙基)醚:高催化活性的聚氨酯催化剂,多用于聚氨酯软泡 N,N-二甲基乙醇胺:聚氨酯反应型催化剂 五甲基二乙烯三胺(PMDETA):聚氨酯凝胶发泡催化剂,广泛用于聚氨酯硬泡 2,4,6-三(二甲氨基甲基)苯酚(DMP-30):聚氨酯三聚催化剂,也可作环氧促进剂 双吗啉二乙基醚(DMDEE):聚氨酯强发泡催化剂 二甲氨基乙氧基乙醇(DMAEE):用于硬质包装泡沫的低气味反应性催化剂

二月桂酸二丁基锡(T-12):聚氨酯强凝胶性催化剂 三(二甲氨基丙基)六氢三嗪(PC-41):具有优异发泡能力的高活性三聚共催化剂 四甲基乙二胺(TEMED):中等活性发泡催化剂,发泡/凝胶平衡性催化剂 四甲基丙二胺(TMPDA):可用于泡沫塑料微孔弹性体的催化剂,也可作环氧促进剂 四甲基己二胺(TMHDA):特别用于聚氨酯硬泡,是发泡/凝胶平衡性催化剂 三甲基羟乙基丙二胺(Polycat 17):反应性低烟雾平衡性叔胺催化剂 三甲基羟乙基乙二胺(Dabco T):反应性发泡催化剂,具有低雾化性 新典化学

阻燃剂分类及各类典型介绍

阻燃剂分类及各类典型介绍

阻燃剂分类及各类典型介绍 阻燃剂分类及各类典型介绍 一、目前常用的阻燃剂按不同的分类方法可以分成3大类,具体分类如下:二、各类典型的阻燃剂1、氯系阻燃剂 近来,氯系阻燃剂已部分为溴系阻燃剂取代,氯系在整个阻燃剂的消耗量中有所下降。A、氯化石蜡 (C20H24CI18?C24H29CI21 ) 含氯量50%的主要用作PVC塑料的辅助增塑剂;含氯量70%的主要用作阻燃剂。 B、氯化聚乙烯 一类含氯35%-40%,另一类含氯68%,无毒。可用于聚烯烃,ABS树脂等。 它本身是聚合材料,因此作为阻燃剂使用时和树脂体系相容性好,不

影响塑料的物理机械性能,耐久性良好。 2、溴系阻燃剂 A、四溴双酚A 性质:灰白色粉末。熔点180-184C,沸点316C (分解)。用途:广泛用作反应型阻燃剂以制造含溴环氧树脂和含溴聚碳酸酯以及作为中间体合成其他复杂的阻燃剂,也作为添加 型阻燃剂用于ABS、HIPS、不饱和聚酯、硬质聚氨酯泡沫塑料、胶黏剂以及涂料等。既可作添加型阻燃剂,又可作为 反应型阻燃剂。 关注艾邦高分子,回复“阻燃”查看更多文章 B、十溴二苯醚 性质:白色微细粉末,溶点为304-309 C,溴含量大约83.3% , 几乎不溶于所有溶剂,5%热量失重时温度大于320 °C,热稳定性好。 用途:添加型阻燃剂,用途广泛;可用于PE、PP、ABS树 脂、环氧树脂、PBT树脂、硅橡胶、三元乙橡胶及PET、 PA6等材料的阻燃剂。其与Sb2O3并用阻燃效果更佳。缺点是耐侯性差,容易黄变。 3、磷系阻燃剂

磷系阻燃剂包括无机磷系阻燃剂和有机磷系阻燃剂。 A、无机磷系阻燃剂 红磷、聚磷酸铵(APP)、磷酸铵盐、磷酸盐及聚磷酸盐等。阻燃机理:燃烧时生成磷酸、偏磷酸、聚偏磷酸等,覆盖于树脂表面,可促进塑料表面炭化成炭膜;聚偏磷酸则呈黏稠状液态覆盖于塑料表面。这种固态或液态膜能阻止自由基逸出,又能隔绝氧气。 磷系与氮系及金属氢氧化物等阻燃剂都有协同作用,并用可产生协同阻燃和消烟效果。 无机磷系阻燃剂的耐水性差,与聚烯烃的相容性差,致使制 品的力学性能下降,所以在聚烯烃中用量少。①、红磷红色至紫红色粉末,因仅含有磷元素,所以比其他磷化物阻燃效率高。如7.5%红磷填充PA的氧指数可达35%,而加入15%磷酸酯阻燃剂的PA氧指数仅为28%。 红磷的缺点为与树脂的相容性差、易吸湿、颜色太深。红磷进行微囊化处理后,与树脂的相容性提高,吸湿性降低,但需防止红磷与氧及水接触而生成剧毒的磷化氢,必须加入磷 化氢捕捉剂。②、聚磷酸铵(APP) 性质:白色粉末,随聚合度增大而吸水性降低。APP在250 C 以上分解,释放出水和氨,并生成磷酸,阻燃机理为吸热降温和稀释可燃气体。APP由于分子内含有磷和氮,具有很好

汇总-聚氨酯软泡配方-重点

聚氨酯软质泡沫塑料 一、前言 聚氨酯软泡系列产品主要包括块状.连续.海绵、高回弹泡沫(HR)、自结皮泡沫、慢回弹泡沫、微孔泡沫以及半硬质吸能泡沫等。这类泡沫仍占聚氨酯产品总量的50%左右。应用面日渐扩大的一个大品种,它已涉及到国民经济的各个领域:家电、汽车、家装、家具、火车、轮船、航天等诸多领域。 PU软泡自上世纪50年代问世以来,尤其是进入21世纪之后,不论技术上还是品种与产品产量上都有一个飞跃发展。突出的是: 环保型PU软泡,即绿色聚氨酯产品; ●低VOC值PU软泡; ●低雾化PU软泡; ●全水PU软泡; ●全MDI系列软泡; ●难燃、低烟、全MDI系列泡沫; ●反应型高分子量催化剂、稳定剂、阻燃剂以及防老剂等新品种助剂; ●低不饱和度、低单醇含量的多元醇; ●超低密度的优异物性的PU软泡; ●低共振频率、低传递性PU软泡; ●聚碳酸酯二元醇、聚ε-己内酯多元醇、聚丁二烯二醇、聚四氢呋喃等特种多元醇; ●液态CO2发泡技术、负压发泡技术等。· 总之,新品种、新技术的出现,促进了PU软泡进一步发展。 二、成泡原理: 若要合成出理想的符合要求的PU软泡,必须了解泡沫体系的化学反应原理,才能选择合适的主辅原料与制造工艺。聚氨酯工业发展到今天,已不是仿制阶段,而是根据最终制品的性能要求,通过原料结构、合成技术手段,才能达到,为此,掌握好成泡原理至关重要。 聚氨酯泡沫塑料在合成过程中参与化学变化,影响泡沫结构性能的变化因素较复杂,其中不仅涉及异氰酸酯与聚醚(酯)醇、水之间的化学反应,而且也涉及到起泡的胶体化学,其化学反应有扩链、起泡与交联等过程。它又与参加反应的物质结构、官能度、分子量等均有影响。 一般聚氨酯泡沫塑料合成的总反应可用下面公式表示: 但实际情况较为复杂,现就重要反应归纳如下: 1、扩链 多官能度的异氰酸酯与聚醚(酯)醇,尤其是二官能度化合物,其扩链按下式进行:

聚氨酯泡沫塑料的阻燃技术

聚氨酯泡沫塑料的阻燃 刘益军柏松 (江苏省化工研究所南京210024) 摘要:简要介绍了对多孔性材料聚氨酯泡沫塑料进行阻燃处理的重要性,并对各类阻燃剂的阻燃机理以及聚氨酯泡沫塑料阻燃研究领域的技术进展进行了介绍。较全面地综述了改善软质和硬质聚氨酯泡沫塑料阻燃性能的方法,包括:各种添加型阻燃剂和反应型阻燃剂的特点及使用效果,不同阻燃剂的协同作用,引入异氰脲酸酯基团对硬泡阻燃性能提高,采用阻燃剂溶液浸渍开孔泡沫塑料等。 关键词:聚氨酯;泡沫塑料;阻燃剂;阻燃 聚氨酯泡沫塑料由于含可燃的碳氢链段、密度小、比表面积大,未经阻燃处理的聚氨酯是可燃物,遇火会燃烧并分解,产生大量有毒烟雾,给灭火带来困难。特别是聚氨酯软泡开孔率较高,可燃成分多,燃烧时由于较高的空气流通性而源源不断地供给氧气,易燃且不易自熄。聚氨酯泡沫塑料的许多应用领域如建筑材料、床垫、家具、保温材料、汽车座垫及内饰材料等,都有阻燃要求。国外对聚氨酯泡沫材料的阻燃相当重视,颁布了许多有关阻燃的法规和阻燃标准。在我国,对用于飞机、轮船、铁路车辆、汽车、其它重要场所及设施的聚氨酯泡沫,先后都提出了阻燃要求,且很多已采用了阻燃级聚氨酯泡沫[1]。 所谓阻燃,实际上指达到某种规范或某种试验方法的一个具体标准,塑料的“阻燃”或“难燃”一般只是对于小火而言,在大火中仍能燃烧。不过阻燃性能好的泡沫塑料遇小火年自熄,不易引起火灾;在火灾中,由于燃烧性能的降低,可降低火灾蔓延及产生刺激性有毒烟雾的危险。 已有大量的文献综述阻燃剂在聚氨酯泡沫塑料中的应用[1~3],现根据部分文献数据,对聚氨酯泡沫塑料的阻燃技术作一简单的综述。 1 阻燃原理 一般,通过添加阻燃剂提高泡沫塑料的阻燃性,以延缓燃烧、阻烟甚至使着火部位自熄。也可采用含阻燃元素的多元醇(即反应型阻燃剂)为泡沫原料。阻燃剂必须具有以下一种或数种功能:能在着火温度或接近着火温度下吸热分解成不可燃物质;能与泡沫燃烧产物反应生成不易燃物质;可分解出能终止泡沫自由基氧化反应的物质。 在聚氨酯泡沫中,含磷阻燃剂主要在凝聚相发挥作用,磷化物可以消耗泡沫塑料燃烧时分解出的可燃气体,使其转化成不易燃烧的炭化物,泡沫体中磷(P)含量达1.5%左右时即可获得较佳的阻燃效果。 含卤素阻燃剂主要在气相中发挥作用,卤素是泡沫塑料燃烧反应的链终止剂,在塑料燃烧时生成卤化氢而抑制燃烧反应。据有关资料,为使泡沫获得较满意的阻燃性能,泡沫体中溴(Br)质量分数应达12%~14%,或氯(Cl)质量分数达18%~20%。当磷-卤联用时,由于存在一定的协同效应,故0.5%P+(4%~5%)Br 或1%P+(8%~12%)Cl即可使聚氨酯泡沫具有自熄性[1]。 典型的磷-氮阻燃体系可由聚磷酸铵和三聚氰胺等组成,在泡沫受热初期,阻燃剂分解产生磷酸等,它与多羟基化合物形成具有阻燃作用的磷酸酯并释放水蒸气;在高温下泡沫中的阻燃剂气化产生不燃性气体,使熔融的泡沫炭化形成疏松的多孔性阻燃层。 氢氧化铝中含有大量的结晶水(质量分数可高达34%),结晶水在泡沫塑料生产过程中很稳定,但在泡沫塑料燃烧温度时将快速分解,吸收燃烧热,并在火源和泡沫间形成不燃性的屏障,从而起到阻燃作用。同时,它也是一种烟气抑制剂。 2 添加阻燃剂制备阻燃泡沫塑料 126

阻燃剂分类介绍

阻燃剂分类介绍 以树脂和橡胶为基体的复合材料含有大量的有机化合物,具有一定的可燃性。阻燃剂是一类能阻止聚合物材料引燃或抑制火焰传插的添加剂。最常用的和最重要的是阻燃剂是磷、溴、氯、锑和铝的化合物。阻燃剂根据使用方法可分为添加型和反应型两大类。添加型阻燃剂主要包括磷酸酯、卤代烃及氧化锑等,它们是在复合材料加工过程中掺合于复合材料里面,使用方便,适应面大但对复合材料的性能有影响。反应型阻燃剂是在聚合物制备过程中作为一种单体原料加入聚合体系,使之通过化学反应复合到聚合物分子链上,因此对复合材料的性能影响较小,且阻燃性持久。反应型阻燃剂主要包括含磷多元醇及卤代酸酐等。 用于复合材料的阻燃剂应具备以下性能:①阻燃效率高,能赋予复合材料良好的自熄性或难燃性;②具有良好的互容性,能与复合材料很好的相容且易分散;③具有适宜的分解温度,即在复合材料的加工温度下不分解,但是在复合材料受热分解时又能急速分解以发挥阻燃的效果;④无毒或低毒、无臭、不污染,在阻燃过程中不产生有毒气体;⑤与复合材料并用时,不降低复合材料的力学性能、电性能、耐候性及热变形温度等;⑥耐久性好,能长期保留在复合材料的制品中,发挥其阻燃作用;⑦来源广泛价格低廉。 (1)溴系阻燃剂含溴阻燃剂包括脂肪族、脂环族、芳香族及芳香-脂肪族的含溴化合物,这类阻燃剂阻燃效率高,其阻燃效果是氯阻燃剂的两倍,相对用量少,对复合材料的力学性能几乎没有影响,并能显著降低燃气中卤化氢的含量,而且该类阻燃剂与基体树脂互容性好,即使再苛刻的条件下也无喷出现象。 (2)氯系阻燃剂氯系阻燃剂由于其便宜,目前仍是大量使用的阻燃剂。氯含量最高的氯化石蜡是工业上重要的阻燃剂,由于热稳定性差,仅适用于加工温度低于200℃的复合材料,氯化脂环烃和四氯邻苯二甲酸酐热稳定性较高,常用作不饱和树脂的阻燃剂。 (3)磷系阻燃剂、有机磷化物是添加型阻燃剂该类阻燃剂燃烧时生成的偏磷酸可形成稳定的多聚体,覆盖于复合材料表面隔绝氧和可燃物,起到阻燃作用,其阻燃效果优于溴化物,要达到同样的阻燃效果,溴化物用量为磷化物的4~7倍。该类阻燃剂主要有磷(膦)酸酯和含卤磷酸酯及卤化磷等,广泛地用于环氧树脂、酚醛树脂、聚酯、聚碳酸酯、聚氨酯、聚氯乙烯、聚乙烯、聚丙烯、ABS等。 (4)无机阻燃剂无机阻燃剂是根据其化学结构习惯分出的一类阻燃剂,包括氧化锑、氢氧化铝、氢氧化镁及硼酸锌等。 阻燃剂分类 01)、三氧化二锑:高纯≥99.8%、超细0.4-1.1um、白度98以上(添加型阻燃协效剂)02)、三(2,3-二溴丙基)异三聚氰酸酯:TBC 、总溴量:≥64.5%、熔点范围:100~110℃(添加型无毒阻燃剂) 03)、三聚氰胺氰尿酸盐:MCA 、含量:≥99 %、分解温度:440~450℃(反应型无毒阻燃剂) 04)、三溴苯酚:TBP、含量:≥ 98.5 % 、熔点:≥ 92 ℃(反应型阻燃剂) 05)、三聚磷酸铝:A TP、APW、APZ 、用于生产膨胀型防火涂料、重防腐涂料(添加型无毒阻燃剂) 06)、四溴双酚A:TBBA 、溴含量:≥ 58.5 %、熔点:180 ℃(添加、反应型阻燃剂)07)、四溴苯酐:TBPA (添加型阻燃剂) 08)、五溴甲苯:PBT(FR-5)、总溴量:>80%、熔点:275~284℃(添加型阻燃剂)09)、五溴联苯醚:PBDPO、溴含量:62-70(添加型阻燃剂) 10)、六溴环十二烷:HBCD (CD-75P)、总溴量:>73.5%、熔点:185~195℃(添加型阻燃剂)

相关文档
最新文档