分形实例的赏析

分形实例的赏析
分形实例的赏析

分形实例的赏析

分形实例的赏析

分形最主要的性质是本来看来十分复杂的事物,事实上大多数均可用仅含很少参数的简单公式来描述。其实在简单中蕴含着复杂。分形几何的迭代法为我们提供了认识简单与复杂的辩证关系的生动例子。世界是非线性的,分形无处不在,分形具有局部与整体的自相似性。复杂的分形图不能用传统的数学方法描述,但却能用简单的迭代法生成。可以应用迭代函数生成诸如植物、丛林、山川、云烟等复杂的自然景物。“分形艺术”是纯数学的产物,创作者不仅要有很深的数学功底,还要有熟练的编程技能。电子计算机图形推开了分形几何学的大门,当我们踏入这个新的几何世界时,扑面而来的分形图像琳琅满目、美不胜收,令人流连忘返。美,是分形给每一个观赏者带来的第一印象。(1)分形的标志——芒德勃罗集

芒德勃罗集(简称M集)是号称“分形几何之父”的芒德勃罗于1980年发现的。它被公认为迄今为止发现的最复杂的形状,是人类有史以来最奇异最瑰丽的几何图形。它是由一个主要的心形图与一系列大小不一的圆盘“芽苞”突起连在一起构成的。由其局部放大图可看出,有的地方像日冕,

有的地方像燃烧的火焰,那心形圆盘上饰以多姿多彩的荆棘,上面挂着鳞茎状下垂的微小颗粒,仿佛是葡萄藤上熟透的累累硕果,它的每一个局部都可以演绎出美丽的梦幻般仙境的图案(图7—1—3、图7—1—4)。它们像漩涡、海马、发芽的仙人掌、繁星、斑点乃至宇宙的闪电……因为不管你把它的局部放大多少倍,都能显示出更加复杂更令人赏心悦目的新的局部,这些局部既与整体不同,又有某种相似的地方,好像梦幻般的图案具有无穷无尽的细节和自相似性。而这种放大可以无限地进行下去,使你感到这座具有无穷层次结构的雄伟建筑的每一个角落都存在着无限嵌套的迷宫和回廊,催生起你无穷探究的欲望。难怪芒德勃罗自己称M集为“魔鬼的聚合物”。

图7—1—3 M集的局部放大

图7—1—4 M集的多局部放大

(2)走进朱利亚集

朱利亚(Julia)集(简称J集)形成的思想其实很简单:在复二多项式。中固定C值进行迭代,便可形成一个朱利亚集。取不同的参数值C,便形成了不同的朱利亚集。它们的形状简直是复杂得难以置信:兔子、海马、宇宙尘、玩具风车……花样繁多,层出不穷(图7—1—5,)甚至使画家“掷笔兴叹,顶礼膜拜”。

图7—1—5 J集的多局部放大

(3)分形图欣赏

下面收集了一些分形图(图7—1—6、图7—1—7),并冠以“想像的名称”供读者欣赏,真是让人进入一个美的梦幻般的世界,并生出无穷的遐想,也许读者的想像能起出更加美而合适的名字。

春夏秋

冬图7—1—6美丽的四季

水母双鱼葱绿芬香图7—1—7 自然

基于分形几何的分形图绘制与分析

基于分形几何的分形图绘制与分析 摘要:基于分形几何的分形图绘制方法源于l系统、迭代函数系统ifs、复动力系统等。在运用分形原理及算法编程绘制多种分形图的基础上,重点对ifs参数进行实验分析,ifs吸引集实现了对原图形的几何变换。分形图的演变具有渐变性。 关键词:分形几何迭代函数系统分形图绘制渐变 1 分形几何学 现代数学的一个新的分支——,它是由美籍法国数学家曼德勃罗(b.b.mandelbrot)1973年在法兰西学院讲课时,首次提出了分形几何的设想。分形(fractal)一词,是曼德勃罗创造出来的,其原意具有不规则、支离破碎等意义,分形几何学是一门以非规则几何形态为研究对象的几何学。由于不规则现象在自然界是普遍存在的,因此分形几何又称为描述大自然的几何学。分形几何的诞生无论是在理论上还是在实践上都具有重要价值。 2 分形的定义 目前分形还没有最终的科学定义,曼德勃罗曾经为分形下过两个定义: (1)分形是hausdorff-besicovitch维数严格大于拓扑维数的集合。因为它把许多hausdorff维数是整数的分形集合排除在外,例如,经典分形集合peano曲线分形维数 (2)局部与整体以某种方式自相似的形,称为分形。 然而,经过理论和应用的检验,人们发现这两个定义很难包括分形

如此丰富的内容。实际上,对于什么是分形,到目前为止还不能给出一个确切的定义,正如生物学中对“生命”也没有严格明确的定义一样,人们通常是列出生命体的一系列特征来加以说明。对分形的定义也可同样的处理。 (ⅰ) 分形集合在任意小尺度下,它总有复杂的细节,或者说它具有精细的结构。 (ⅱ) 分形集合是非常不规则的,用传统的几何语言无法来描述它的局部和整体,它既不是满足某些条件的点的轨迹,也不是某些简单方程的解集。 (ⅲ) 分形集具有某种自相似形式,可能是近似的自相似或者统计的自相似。 (ⅳ) 以某种方式定义的分形集合的“分形维数”,严格大于它相应的拓扑维数。 (ⅴ) 在大多数令人感兴趣的情形下,分形集合是以非常简单的递归的方法产生的。 3 分形研究的对象 几何学的研究对象是物体的形状,在自然界中,许多物体的形状是极不规则的,例如:弯弯曲曲的海岸线,起伏不平的山脉,变化无偿的浮云,以及令人眼花缭乱的满天繁星,等等。这些物体的形状有着共同的特点,就是极不规则,极不光滑。但是,所有的经典几何学都是以规则而光滑的形状为其研究对象的,例如:初等平面几何的主要研究对象是直线与圆;平面解析几何的主要研究对象是一

几个分形的matlab实现

几个分形得matlab实现 摘要:给出几个分形得实例,并用matlab编程实现方便更好得理解分形,欣赏其带来得数学美感 关键字:Koch曲线实验图像 一、问题描述: 从一条直线段开始,将线段中间得三分之一部分用一个等边三角形得两边代替,形成山丘形图形如下 ?图1 在新得图形中,又将图中每一直线段中间得三分之一部分都用一个等边三角形得两条边代替,再次形成新得图形如此迭代,形成Koch分形曲线。 二、算法分析: 考虑由直线段(2个点)产生第一个图形(5个点)得过程。图1中,设与分别为原始直线段得两个端点,现需要在直线段得中间依次插入三个点,,。显然位于线段三分之一处,位于线段三分 之二处,点得位置可瞧成就是由点以点为轴心,逆时针旋转600而得。旋转由正交矩阵 实现。 算法根据初始数据(与点得坐标),产生图1中5个结点得坐标、结点得坐标数组形成一个矩阵,矩阵得第一行为得坐标,第二行为得坐标……,第五行为得坐标。矩阵得第一列元素分别为5个结点得坐标,第二列元素分别为5个结点得坐标。 进一步考虑Koch曲线形成过程中结点数目得变化规律。设第次迭代产生得结点数为,第次迭代产生得结点数为,则与中间得递推关系为。 三、实验程序及注释: p=[0 0;10 0]; %P为初始两个点得坐标,第一列为x坐标,第二列为y坐标 n=2; %n为结点数 A=[cos(pi/3) —sin(pi/3);sin(pi/3) cos(pi/3)]; %旋转矩阵 for k=1:4 d=diff(p)/3; %diff计算相邻两个点得坐标之差,得到相邻两点确定得向量 %则d就计算出每个向量长度得三分之一,与题中将线段三等分对应 m=4*n-3; %迭代公式 q=p(1:n—1,:); %以原点为起点,前n—1个点得坐标为终点形成向量 p(5:4:m,:)=p(2:n,:); %迭代后处于4k+1位置上得点得坐标为迭代前得相应坐标 p(2:4:m,:)=q+d; %用向量方法计算迭代后处于4k+2位置上得点得坐标 p(3:4:m,:)=q+d+d*A'; %用向量方法计算迭代后处于4k+3位置上得点得坐标 p(4:4:m,:)=q+2*d; %用向量方法计算迭代后处于4k位置上得点得坐标 n=m; %迭代后新得结点数目 end plot(p(:,1),p(:,2)) %绘出每相邻两个点得连线 axis([0 10 0 10]) 四、实验数据记录: 由第三部分得程序,可得到如下得Koch分形曲线:

分形(一种别样的数学美丽)

分形(一种别样的数学美丽) 从海螺和螺旋星云到人类的肺脏结构,我们身边充满各种各样的混沌图案。分形(一种几何形状,被以越来越小的比例反复折叠而产生不能被标准几何所定义的不标准的形状和表面)是由混沌方程组成,它包含通过放大会变的越来越复杂的自相似图案。要是把一个分形图案分成几小部分,结果会得到一个尺寸缩小,但形状跟整个图案一模一样的复制品。 分形的数学之美,是利用相对简单的等式形成无限复杂的图案。它通过多次重复分形生成等式,形成美丽的图案。我们已经在我们的地球上搜集到一些这方的天然实例,下面就让我看一看。 1.罗马花椰菜:拥有黄金螺旋 罗马花椰菜 这种花椰菜的变种是最重要的分形蔬菜。它的图案是斐波纳契数列,或称黄金螺旋型(一种对数螺旋,小花以花球中心为对称轴,螺旋排列)的天然代表。 2.世界最大盐沼——天空之镜

盐沼

坚硬的盐层上呈现非常一致的不规则图案 过去一个世纪,上图里的旧金山海湾盐沼一直被用来进行工业盐生产。下图显示的是位于玻利维亚南部的世界最大盐沼——天空之镜(Salar de Uyuni)。坚硬的盐层上呈现非常一致的不规则图案,这是典型的分形。 3.菊石缝线 菊石的外壳还生长成一个对数螺旋型

大约6500万年前灭绝的菊石 在大约6500万年前灭绝的菊石,是制作分成许多间隔的螺旋形外壳的海洋头足纲动物。这些间隔之间的壳壁被称作缝线,它是分形复曲线。美国著名古生物学家史蒂芬·杰伊·古尔德依据不同时期的菊石缝线的复杂性得出结论说,进化并没驱使它们变得更加复杂,我们人类显然是“一个例外”,是宇宙里独一无二的。菊石的外壳还生长成一个对数螺旋型,很显然,自然界经常会出现这种图案,例如罗马花椰菜。 4.山脉 山脉 山脉是构造作用力和侵蚀作用的共同产物,构造作用力促使地壳隆起,侵蚀作用导致一些地壳下陷。这些因素共同作用的产物,是一个分形。上图显示的是喜马拉雅山脉,它

经典的分形算法 (1)

经典的分形算法 小宇宙2012-08-11 17:46:33 小宇宙 被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。它与动力系统的混沌理论交叉结合,相辅相成。它承认世界的局部可能在一定条件下,在某一方面(形态,结构,信息,功能,时间,能量等)表现出与整体的相似性,它承认空间维数的变化既可以是离散的也可以是连续的,因而拓展了视野。 分形几何的概念是美籍法国数学家曼德布罗(B.B.Mandelbrot)1975年首先提出的,但最早的工作可追朔到1875年,德国数学家维尔斯特拉斯(K.Weierestrass)构造了处处连续但处处不可微的函数,集合论创始人康托(G.Cantor,德国数学家)构造了有许多奇异性质的三分康托集。1890年,意大利数学家皮亚诺(G.Peano)构造了填充空间的曲线。1904年,瑞典数学家科赫(H.von Koch)设计出类似雪花和岛屿边缘的一类曲线。1915年,波兰数学家谢尔宾斯基(W.Sierpinski)设计了象地毯和海绵一样的几何图形。这些都是为解决分析与拓朴学中的问题而提出的反例,但它们正是分形几何思想的源泉。1910年,德国数学家豪斯道夫(F.Hausdorff)开始了奇异集合性质与量的研究,提出分数维概念。1928年布利干(G.Bouligand)将闵可夫斯基容度应用于非整数维,由此能将螺线作很好的分类。1932年庞特里亚金(L.S.Pontryagin)等引入盒维数。1934年,贝塞考维奇(A.S.Besicovitch)更深刻地提示了豪斯道夫测度的性质和奇异集的分数维,他在豪斯道夫测度及其几何的研究领域中作出了主要贡献,从而产生了豪斯道夫-贝塞考维奇维数概念。以后,这一领域的研究工作没有引起更多人的注意,先驱们的工作只是作为分析与拓扑学教科书中的反例而流传开来。 真正令大众了解分形是从计算机的普及肇始,而一开始,分形图的计算机绘制也只是停留在二维平面,但这也足以使人们心驰神往。近来,一个分形体爱好者丹尼尔?怀特(英国一钢琴教师)提出一个大胆的方法,创造出令人称奇的3D分形影像,并将它们命名为芒德球(mandelbulb)。

数学实验报告——科赫分形雪花

实验报告:科赫分形雪花一、算法描述科赫分形雪花 clear n=1;p=[0 0;5,sqrt(75)]; A=[cos(pi/3), - sin(pi/3);sin(pi/3) ,co s(pi/3)]; for k=1:3 j=1; for i=1:n q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; r(j,:)=q1; r(j+1,:)=q1+d; r(j+2,:)=q1+d+d*A'; r(j+3,:)=q1+2*d; j=j+4; end n=4*n;p=[]; p=[r;q2]; end x=p(:,1);y=p(:,2); plot(x,y) hold on clear m=1;p=[5,sqrt(75); 10 ,0]; A=[cos(pi/3), - sin(pi/3);sin(pi/3 ) ,cos(pi/3)]; for k=1:3 e=1; for i=1:m q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; r(e,:)=q1; r(e+1,:)=q1+d; r(e+2,:)=q1+d+d*A'; r(e+3,:)=q1+2*d; e=e+4; end m=4*m;p=[]; p=[r;q2]; end x=p(:,1);y=p(:,2); plot(x,y) hold on clear n=1;p=[0,0;10, 0]; A=[cos(pi/3), - sin(pi/3);sin(pi/3) , cos(pi/3)]; for k=1:3 j=1; for i=1:n q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; r(j,:)=q1; r(j+1,:)=q1+d; r(j+2,:)=q1+d+d*A; r(j+3,:)=q1+2*d; j=j+4; end n=4*n;p=[]; p=[r;q2]; end x=p(:,1);y=p(:,2); plot(x,y)

分形树__Matlab

%这是一个生成树的主函数,它的输入分别为每叉树枝的缩短比、树枝的偏角、生长次数. %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %注意:把这些程序全部保存在名为tree的M文件中再运行!!!!!!!! %%小提示:若用做函数,请将虚线框内语句删去。 function f=tree(w,dtheata,NN) %%%--------------------虚线框--------------------%%% clear;clc;clf;w=0.8;dtheata=pi/6;NN=8;%建议生长次数NN不要超过10 %%%--------------------虚线框--------------------%%% n=2^NN;%从主枝算起,共需生成2^NN个树枝 for NNK=1:n x1=0; y1=0; r1=1; theata1=pi/2; dataway=ten2twoN(NNK,NN); %把每一个树枝的编号转化为一个NN位的二进制数 for NNL=1:NN if dataway(NNL)==0 [x2,y2,r2,theata2]=antmoveleft(x1,y1,r1,theata1,w,dtheata);%若路径数组上对应的数字为0,则向左生长 x1=x2; y1=y2; r1=r2; theata1=theata2; hold on %pause(eps) else [x2,y2,r2,theata2]=antmoveright(x1,y1,r1,theata1,w,dtheata);%否则,数字为1,向右生长 x1=x2; y1=y2; r1=r2; theata1=theata2; hold on %pause(eps) end end end hold off %--------------------------------------------------------------------------

数学实验 matlab Koch雪花

作业二 实验内容: 对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。编制程序绘制出它的图形,并计算Koch雪花的面积,以及它的分形维数。 实验过程: 1、代码如下: function xuehua(k) for j=0:2 if j==0; p=[0,0;10,0]; elseif j==1; p=[5,-5*sqrt(3);0,0]; else j==2; p=[10,0;5,-5*sqrt(3)]; end n=1; A=[cos(pi/3),-sin(pi/3);sin(pi/3),cos(pi/3)]; for s=1:k j=0; for i=1:n q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A'; j=j+1;r(j,:)=q1+2*d; end n=4*n; clear p p=[r;q2]; clear r end plot(p(:,1),p(:,2)) hold on; axis equal end 不同n对应不同的图像如下:

k=1 k=3

总结分析: Koch雪花的面积: k=0时S= 2 3 4 r k=1时S= 2 3 4 r + 2 3 12 r k=2时S= 2 3 4 r + 2 3 12 r + 2 3 27 r k=3时S= 2 3 4 r + 2 3 12 r + 2 3 27 r + 2 43 243 r k=n时S= 2 3 4 r + 2 3 12 r + …+ 2(1)12 1 33 *4*() 43 n n r r-- - + 2(1)2 33 *4*() 43 n n r r- 每一次迭加,所产生的新三角形的边长变为上一次的1 3,数量为上一次的4倍. S= 2 3 4 r + 2 3 4 r *(3* 2 1 () 3+12* 2 2 1 () 3+……+3*(1) 4n-* 2 1 () 3n) = 2 3 4 r + 2 3 4 r * (1)2 1 1 [3*4*()] 3 n i i i - = ∑ 曲线总面积无穷大。 分形维数: 根据迭代的规律得到:相似形个数:m=6 边长放大倍数:c=3,ln ln ln6ln3 d m c =÷=÷=1.631

《高频电子线路》课程设计指导书.doc

《高频电子线路》课程设计指导书 一、课程设计基本信息 核心课程名称(中文)高频电子线路核心课程名称(英文)High-frequency Electronic Circuits 课程设计名称高频电子线路课程设计 课程设计编号课程设计类型实物制作 相关辅助课程电路分析、电子线路(线性部分) 教材及实验指导书教材《电子线路(非线性部分)》,谢嘉奎,高等教育出版 课程设计时间:第五学期18 周 面向专业电子信息科学与技术 二、课程设计的目的 《高频电子线路》课程是电子信息专业继《电路理论》、《电子线路(线性部分)》之后必修的主要技术基础课,同时也是一门工程性和实践性都很强的课程。课程设计是在课程内容学习结束,学生基本掌握了该课程的基本理论和方法后,通过完成特定电子电路的设计、安装和调试,培养学生灵活运用所学理论知识分析、解决实际问题的能力,具有一定的独立进行资料查阅、电路方案设计及组织实验的能力。通过设计,加深对调幅的理解,学会电路的调整;进一步培养学生的动手能力 三、主要仪器设备 序号实验项目名称仪器设备名称仪器设备编号 1调幅收音机设计高频信号发生器、数字示波器、稳压电源 四、课程设计的内容与要求 1、内容:根据所学知识,设计一超外差调幅收音机电路,选择合适的元器件,进行安装和调试电路;应能接收正常广播,且接收的广播节目不少于3套° 序 号 名称目的方式场所要求

1调幅收音机设计加深对调幅的理解,学会 电路的调整;进一步培养 学生的动手能力 实物制作 通信学 院 2、要求 1设计电路图; 2供电电压:直流3V 3 接收频段:535kHz ~ 1605kHz; 4输出功率:P o> 1W。 5为满足偷出功率要求,采用两级放大电路; 6采用互补推挽功率放大器作为输出级。 五、考核与报告 考核内容:1实际操作:包括电路设计、安装、焊接及调试 2设计报告:包括原理、电路图、元器件的选择 成绩评定:实际操作和设计报告各占50%o 六、主要参考文献 1、《电子线路(非线性部分)》,谢嘉奎,高等教育出版社 2、《实用电子电路手册》,孙肖子,高等教育出版社 3、《电子技术技能训练》,张大彪,电子工业出版社七、课程设计报告 1、报告内容 目的、原理、电路图、安装注意事项、调试过程及结果。 2、版面格式 (1)A4纸打印,上、下、左、右边距为2. 5cm,段落间距0,行间距1. 5倍; (2)标题使用四号黑体、居中,正文使用小四号宋体; 一级标题:小四号黑体(如:1、2、3……);

分形插值算法和MATLAB实验

一,分形插值算法 ——分形图的递归算法1,分形的定义 分形(Fractal)一词,是法国人B.B.Mandelbrot 创造出来的,其原意包含了不规则、支离破碎等意思。Mandelbrot 基于对不规则的几何对象长期地、系统地研究,于1973 年提出了分维数和分形几何的设想。分形几何是一门以非规则几何形状为研究对象的几何学,用以描述自然界中普遍存在着的不规则对象。分形几何有其显明的特征,一是自相似性;分形作为一个数学集合, 其内部具有精细结构, 即在所有比例尺度上其组成部分应包含整体, 而且彼此是相似的。其定义有如下两种描述: 定义 1如果一个集合在欧式空间中的 Hausdorff 维数H D 恒大于其拓扑维数 r D ,则称该集合为分形集,简称分形。 定义 2组成部分以某种方式与整体相似的形体叫分形。 对于定义 1 的理解需要一定的数学基础,不仅要知道什么是Hausdorff 维数,而且要知道什么是拓扑维数,看起来很抽象,也不容易推广。定义 2 比较笼统的说明了自然界中的物质只要局部和局部或者局部和整体之间存在自相似性,那么这个物质就是分形。正是这一比较“模糊”的概念被人们普遍接受,同时也促进了分形的发展。 根据自相似性的程度,分形可分为有规分形和无规分形。有规分形是指具有严格的自相似的分形,比如,三分康托集,Koch 曲线。无规分形是指具有统计意义上的自相似性的分形,比如,曲折的海岸线,漂浮的云等。本文主要研究有规分形。

2. 分形图的递归算法 2.1 三分康托集 1883 年,德国数学家康托(G.Cantor)提出了如今广为人知的三分康托集。三分康托集是很容易构造的,然而,它却显示出许多最典型的分形特征。它是从单位区间出发,再由这个区间不断地去掉部分子区间的过程构造出来的(如图2.1)。 其详细构造过程是:第一步,把闭区间[0,1]平均分为三段,去掉中间的 1/3 部分段,则只剩下两个闭区间[0,1/3]和[2/3,1]。第二步,再将剩下的两个闭区间各自平均分为三段,同样去掉中间的区间段,这时剩下四段闭区间:[0,1/9],[2/9,1/3],[2/3,7/9]和[8/9,1]。第三步,重复删除每个小区间中间的 1/3 段。如此不断的分割下去,最后剩下的各个小区间段就构成了三分康托集。三分康托集的 Hausdorff 维数是0.6309。 图2.2 三分康托集的构造过程

分形之Julia集及其算法实现

成绩:课程名称:智能信息处理概论 分形之Julia集及其算法实现 摘要:本文从自然界的几何现象引出分形的概念,再从其定义、几何特征和分形维的计算这三个方面来加以介绍。以Julia集和Mandelbort集为例来具体描述分形。本文主要从Julia集的特点和算法实现来描述分形以及其实现的方法。 关键词:分形、分数维、Julia集、Mandelbort集、算法实现 引言 大自然是个很伟大的造物者,它留给我们一大笔美丽景观:蜿蜒曲折的海岸线、起伏不定的山脉,变幻无常的浮云,粗糙不堪的断面,袅袅上升的烟柱,九曲回肠的河流,纵横交错的血管,令人眼花缭乱的满天繁星……那么,我们又能从这些美妙的自然现象中得到什么有趣的结论呢? 正文 分形概述 分形的英文单词为fractal,是由美籍法国数学家曼德勃罗(Benoit Mandelbrot)创造出来的。其取自拉丁文词frangere(破碎、产生无规则碎片)之头,撷英文之尾所合成,本意是不规则的、破碎的、分数的。他曾说:分形就是通过将光滑的形状弄成多个小块,反复的碎弄。1975年,曼德勃罗出版了他的法文专著《分形对象:形、机遇与维数》,标志着分形理论正式诞生。【1】 两种定义 其一:具有自相似性结构的叫做分形; 其二:数学定义:豪斯道夫维Df>=拓扑维Dt。 若一有界集合,包含N个不相重叠的子集,当其放大或缩小r倍后,仍与原集合叠合,则称为自相似集合。自相似集合是分形集。具有相似性的系统叫做分形。 当放大或缩小的倍数r不是一个常数,而必须是r(r1,r2,….)的各种不同放大倍数去放大或缩小各子集,才能与原集合重合时,称为自仿射集合。具有自仿射性的系统叫做分形。【2】 特征 1.自相似性:局部与整体的相似,是局部到整体在各个方向上的等比例变换的结果; 2.自仿射性:是自相似性的一种拓展,是局部到整体在不同方向上的不等比例变换的结果; 3.精细结构:即使对该分形图放大无穷多倍,还是能看到与整体相似的结构,表现出无休止的重复; 4.分形集无法用传统几何语言来描述,它不是某些简单方程的解集,也不是满足某些条件的点的轨 迹; 5.分形集一般可以用简单的方法定义和产生,如递归、迭代;分形其实是由一些简单的图形,经过 递归或者迭代产生的复杂、精细的结构; 6.无确定的标度且具有分数维数。【3】

分形实例

2、对一条横向线段,先将其等分成4段,然后再将第二段向上移,将第三段向下移,再将第四段的相邻端点连接起来,迭代一次后变成图3-21.继续迭代得到的分形图,称为Minkouski (1)编辑实现上述迭代的函数 在Matlab中,编制一个函数来绘制Minkouski香肠的图形。具体代码如下:function frat1(k) p=[0,0;10,0]; A=[0,1;-1,0]; n=1; for s=1:k j=0; for i=1:n; q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/4; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A; j=j+1;r(j,:)=q1+2*d+d*A; j=j+1;r(j,:)=q1+2*d+d*A'; j=j+1;r(j,:)=q1+3*d+d*A'; j=j+1;r(j,:)=q1+3*d; end n=n*7; clear p p=[r;q2]; end

plot(p(:,1),p(:,2)) axis equal 将这个文件保存,文件名记为frat1.m. (2)绘制Minkouski香肠的图形 代码:frat(3) 运行结果: 代码:frat(5) 运行结果:

根据迭代规律得到:形似形个数m=7,边长放大倍数c=4,故维数d=1.4037.因此,Minkouski香肠的维数介于1与2之间。具体计算如下: d=ln m/ln c=ln 7/ln 4=1.4037 5、自己构造生成元(要有创意),按照图形迭代的方式产生分形图,用计算机编制程序绘出它的图形,并计算维数。 function frat2(k) p=[-5,5;5,5;5,-5;-5,-5;-5,5]; A=[1.5,-0.5;0.5,1.5]; n=4; for s=1:k j=0; for i=1:n; q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A; j=j+1;r(j,:)=q1+2*d; end n=n*4;

分形图形与分形的产生

分形图形 分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。分形的基本特征是具有标度不变性。其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。 说到分形(fractal),先来看看分形的定义。分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。而一直到八十年代,对于分形的研究才真正被大家所关注。 分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。它是数学的一个分支。我之前说过很多次,数学就是美。而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。而更由于它美的直观性,被很多艺术家索青睐。分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。而在生物界,分形的例子也比比皆是。 近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。它以其独特的手段来解决整体与部分的关系问题,利用空间结构的对称性和自相似性,采用各种模拟真实图形的模型,使整个生成的景物呈现出细节的无穷回归的性质,丰富多彩,具有奇妙的艺术魅力。分形对像没有放大极限,无论如何放大,总会看到更详细的结构。借助于分形的计算机生成,从少量的数据生成复杂的自然景物图形,使我们在仿真模拟方面前进了一大步。在分形的诸多研究课题中,分形的计算机生成问题具有明显的挑战性,它使传统数学中无法表达的形态(如山脉、花草等)得以表达,还能生成一个根本“不存在”的图形世界。分形在制造以假乱真的景物方面的进展和潜在的前途,使得无论怎样估计它的影响也不过分。可以肯定,分形图案在自然界真实物体模拟、仿真形体生成、计算机动画、艺术装饰纹理、图案设计和创意制作等具有广泛的应用价值。 分形图形简介一、关于分形与混沌 关于分形的起源,要非常准确的找出来是非常困难的。研究动态系统、非线形数学、函数分析的科学家,已数不胜数。尽管分形的早期线索已非常古老,但这一学科却还很年轻。比如关于动态系统和细胞自动机的大部分工作可以追溯到冯-诺依曼;但是,直到Mandelbrot 才如此清楚地将自然现象和人工现象中的混沌及分形同自相似性联系在一起。大家如果对此感兴趣,可进一步查阅有关资料。下面我们看一看分形的概念。 什么是分形呢?考虑到此文的意图,我们无意给出它严格的定义,就我们的目的而言,一个分形就是一个图象,但这个图象有一个特性,就是无穷自相似性。什么又是自相似呢?在自然和人工现象中,自相似性指的是整体的结构被反映在其中的每一部分中。比如海岸线,常举的例子,你看它10公里的图象(曲线),和一寸的景象(曲线)是相似的,这就是自相似性。 与分形有着千差万屡的关系的,就是混沌。混沌一词来源与希腊词汇,原意即“张开咀”,但是在社会意义上,它又老爱和无序联系在一起。解释分形和混沌的联系,要注意到分形是

分形算法与应用

《分形算法与应用》教学大纲 1 课程的基本描述 课程名称:分形算法与应用Algorithm and Application of Fractal 课程编号:5301A36 课程性质:专业课适用专业:计算机专业 教材选用:孙博文编著,《分形算法与程序设计》,科学出版社,2004.11 总学时:32学时理论学时:32学时 实验学时:0学时课程设计:无 学分:2学分开课学期:第七学期 前导课程:算法分析 后续课程:毕业设计 2 教学定位 2.1 能力培养目标 通过本课程的学习,培养学生的认知和理解能力、逻辑思维能力,以及算法设计与分析能力,程序设计和实现能力。一方面使学生掌握非规则图形的计算机绘制的基本方法,以便实现对不规则对象的算法设计。另一方面,学习本课程的过程也是进行复杂程序设计的训练过程。 2.2 课程的主要特点 本课程是一门重要的专业课,有理论性、设计性与实践性的特点。介绍分形的基本概念及算法设计的基本方法。它是介于计算机软件、程序设计和数学三门课程之间的核心课程。不仅为后续专业课提供了必要的知识基础,也为计算机、软件工程的专业人员提供了必要的技能训练。

2.3 教学定位 通过本课程的学习,使学生达到知识和技能两方面的目标: 1.知识方面:从算法设计及其实现这两个层次的相互关系的角度,系统地学习和掌握非规则图形的算法设计方法,了解并掌握分析、比较和选择不同非规则结构的设计方案,不同运算实现的原则和方法。 2.技能方面:系统地学习和掌握在不同非规则对象实现的不同算法及其设计思想,从中体会并掌握结构选择和算法设计的思维方式及技巧,使分析问题和解决问题的能力得到提高。 3 知识点与学时分配 3.1掌握分形的基本概念 分形简介 分形 分维 分形的测量 共2学时 3.2分形图生成算法之一 分形图的递归算法 Cantor三分集、Koch曲线、Sierpinski垫片、 Peano曲线、分形树等的递归算法。 共2学时 3.3分形图生成算法之二 文法构图算法 LS文法、单一规则的LS文法生成、多规则的LS文法生成、 随机LS文法生成。 共2学时 3.4分形图生成算法之三 迭代函数系统

数学实验分形实例

数学实验报告 学院: 班级: 学号: 姓名: 完成日期:

实验二分形 (一)练习题1 一.实验目的 1.了解分形几何的基本情况; 2.了解通过迭代方式,产生分形图的方法; 3.了解matlab软件中简单的程序结构。 二. 问题描述 对一个等边三角形,每条边按照Koch曲线的方式进行迭代,产生的分形图称为Koch雪花。编制程序绘制出它的图形,并计算Koch雪花的面积,以及它的分形维数。 三.实验过程 仿照Koch曲线代码对三角形的每条边进行Koch曲线化,建立函数“snow”的输入参数有三角形的边长R和迭代次数k,输出Koch雪花图形以及雪花所围面积S. 源代码如下: function snow(R,k) p=[0;R/2+1i*R*sin(pi/3);R;0]; S=0; n=3; A=exp(1i*pi/3); for s=1:k

j=0; for i=1:n q1=p(i,:); q2=p(i+1,:); d=(q2-q1)/3; j=j+1;r(j,:)=q1; j=j+1;r(j,:)=q1+d; j=j+1;r(j,:)=q1+d+d*A; j=j+1;r(j,:)=q1+2*d; end n=4*n; clear p p=[r;q2]; end figure q(:,1)=real(p(:,1)); q(:,2)=imag(p(:,1)); plot(q(:,1),q(:,2)) fill(q(:,1),q(:,2),'b') for i=0:k S=S+(3.^(0.5-i))*0.25*(R.^2); end

S axis equal 按照以上程序,输入参数,有以下结果:>> snow(1,1) S =0.5774 图形如下: >>snow(1,2) S =0.6255 图形如下: >>snow(1,3) S =0.6415 图形如下:

分形——分形树

分形(二)——分形树 上次我们画出了谢尔宾斯基三角形,这次我们所画分形图形同样也是比较简单的——分形树,记得在上次的递归里~我们传入的参数是所绘的点的坐标,但这种方法并不一定的最好的,在绘制分形图案的时候,使用递归,所传参数应根据实际情况来定:(可以是角度,变长等) 同学们可以自己也试着画一下分形:这是今天的题目: 分形树一次递归调用: 分形树两次递归调用:

分形树六次递归调用: 分形树十次递归调用: 分形树二十五次递归调用

后面的我不敢往下试了——机子会爆掉的…… 下面是绘制次分形树的方法: package Elps; import java.awt.Graphics; import javax.swing.JFrame; public class Main extends JFrame { /** * @param args */ p ublic static void main(String[] args) { // TODO Auto-generated method stub Main a = new Main(); a.draw(); } public void draw(){//绘制窗体,添画布 this.setSize(1000,700);// this.setLocationRelativeTo(null);

this.setDefaultCloseOperation(3); this.setVisible(true); Graphics g = this.getGraphics(); } public void paint(Graphics g){ super.paint(g); this.Show(500,550,100, Math.PI/2,0,Math.PI/6,25,g); //(Math.PI为180°) } public void Show(double x0,double y0,double l,double a,double b,double c,double count,Graphics g){ double x2; double y2; double x3; double y3; double x4; double y4; double x5; double y5; if(count<1) { return; }//判断是否继续进行递归调用,注意:判断一定要放在递归调用之前,否则这段代码将永远不会被执行 x2 = x0 - l*Math.cos(a); y2 = y0 - l*Math.sin(a); x3 = x2 - l*Math.cos(b); y3 = y2 - l*Math.sin(b); x4 = x0 - l*Math.cos(b); y4 = y0 - l*Math.sin(b); x5 = x2 - l*Math.cos(Math.PI/6)*Math.cos(c); y5 = y2 - l*Math.cos(Math.PI/6)*Math.sin(c); //计算五个点的位置,以右下点为(X0,Y0) g.drawLine((int)x0, (int)y0, (int)x2, (int)y2); g.drawLine((int)x2, (int)y2, (int)x3, (int)y3); g.drawLine((int)x3, (int)y3, (int)x4, (int)y4); g.drawLine((int)x4, (int)y4, (int)x0, (int)y0); g.drawLine((int)x2, (int)y2, (int)x5, (int)y5); g.drawLine((int)x5, (int)y5, (int)x3, (int)y3); //划线——注意方法所需要的数据类型 Show(x2,y2,l*Math.cos(Math.PI/6),a+Math.PI/6,b+Math.PI/6,c+Math.PI/6,count-1,g);

分形图程序

(1)Koch曲线程序koch.m function koch(a1,b1,a2,b2,n) %koch(0,0,9,0,3) %a1,b1,a2,b2为初始线段两端点坐标,n为迭代次数 a1=0;b1=0;a2=9;b2=0;n=3; %第i-1次迭代时由各条线段产生的新四条线段的五点横、纵坐标存储在数组A、B中 [A,B]=sub_koch1(a1,b1,a2,b2); for i=1:n for j=1:length(A)/5; w=sub_koch2(A(1+5*(j-1):5*j),B(1+5*(j-1):5*j)); for k=1:4 [AA(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5),BB(5*4*(j-1)+5*(k-1)+1:5*4*(j-1)+5*(k-1)+5)]=sub_koch1(w(k,1),w(k,2),w(k,3),w(k,4)); end end A=AA; B=BB; end plot(A,B) hold on axis equal %由以(ax,ay),(bx,by)为端点的线段生成新的中间三点坐标并把这五点横、纵坐标依次分别存%储在数组A,B中 function [A,B]=sub_koch1(ax,ay,bx,by) cx=ax+(bx-ax)/3; cy=ay+(by-ay)/3; ex=bx-(bx-ax)/3;

ey=by-(by-ay)/3; L=sqrt((ex-cx).^2+(ey-cy).^2); alpha=atan((ey-cy)./(ex-cx)); if (ex-cx)<0 alpha=alpha+pi; end dx=cx+cos(alpha+pi/3)*L; dy=cy+sin(alpha+pi/3)*L; A=[ax,cx,dx,ex,bx]; B=[ay,cy,dy,ey,by]; %把由函数sub_koch1生成的五点横、纵坐标A,B顺次划分为四组,分别对应四条折线段中 %每条线段两端点的坐标,并依次分别存储在4*4阶矩阵k中,k中第i(i=1,2,3,4)行数字代表第%i条线段两端点的坐标 function w=sub_koch2(A,B) a11=A(1);b11=B(1); a12=A(2);b12=B(2); a21=A(2);b21=B(2); a22=A(3);b22=B(3); a31=A(3);b31=B(3); a32=A(4);b32=B(4); a41=A(4);b41=B(4); a42=A(5);b42=B(5); w=[a11,b11,a12,b12;a21,b21,a22,b22;a31,b31,a32,b32;a41,b41,a42,b42];

Matlab实现 递归算法生成3维分形树ByLinking

Matlab实现递归算法生成3维分形树 注:此算法树根在侧面,需对坐标轴进行旋转便可得到上图效果 以下代码全部粘贴到一个M文件中命名为TreeByL即可运行 为方便网友研读代码加入了大量注释 同时愿与matlab程序爱好者进行交流:Linking508@https://www.360docs.net/doc/fb9292729.html, %%%%%%%%%%%%%%%%%%%%%%%%%%%% %Matlab实现递归算法生成3维分形树 %ByLinking %%%%%%%%%%%%%%%%%%%%%%%%%%%% function TreeByL L=15;%主干长 a=0; b=pi/3; r=0;%r=pi/5; %分支生成函数 makeBranch(0,0,0,L,a,b,r); % a在XOZ平面投影与X轴夹角b与Y轴的夹角r与主干的夹角 function makeBranch (x,y,z,L,a,b,r) B=pi/5;s1=1.5;s2=3;s3=1.2;%B枝干的倾斜度C主干的倾斜度s1细腻程度s2分支收缩速度s3主干收缩速度 % B=pi/5;s1=1.5;s2=2.4;s3=1.35; if L>s1 x1=x+L/s2*cos(a)*cos(r);

y1=y+L/s2*sin(a); z1=z+L/s2*cos(a)*sin(r); x1R=x1+L/s2*cos(a-b)*cos(r); y1R=y1+L/s2*sin(a-b); z1R=z1+L/s2*cos(a-b)*sin(r); x1L=x1+L/s2*cos(a+b)*cos(r); y1L=y1+L/s2*sin(a+b); z1L=z1+L/s2*cos(a+b)*sin(r); x1F=x1+L/s2*cos((a-b)*sin(a))*cos(r+atan(1/cos(a))); y1F=y1+L/s2*sin((a-b)*sin(a)); z1F=z1+L/s2*cos((a-b)*sin(a))*sin(r+atan(1/cos(a))); x1B=x1+L/s2*cos((a-b)*sin(a))*cos(r-atan(1/cos(a))); y1B=y1+L/s2*sin((a-b)*sin(a)); z1B=z1+L/s2*cos((a-b)*sin(a))*sin(r-atan(1/cos(a))); %------------------------------------------------------ x2=x+L/s2*cos(a)*cos(r); y2=y+L/s2*sin(a); z2=z+L/s2*cos(a)*sin(r); x2R=x2+L/s2*cos(a-b)*cos(r); y2R=y2+L/s2*sin(a-b); z2R=z2+L/s2*cos(a-b)*sin(r); x2L=x2+L/s2*cos(a+b)*cos(r); y2L=y2+L/s2*sin(a+b); z2L=z2+L/s2*cos(a+b)*sin(r); x2F=x2+L/s2*cos((a-b)*sin(a))*cos(r+atan(1/cos(a))); y2F=y2+L/s2*sin((a-b)*sin(a)); z2F=z2+L/s2*cos((a-b)*sin(a))*sin(r+atan(1/cos(a))); x2B=x2+L/s2*cos((a-b)*sin(a))*cos(r-atan(1/cos(a))); y2B=y2+L/s2*sin((a-b)*sin(a)); z2B=z2+L/s2*cos((a-b)*sin(a))*sin(r-atan(1/cos(a))); plot3([x,x2],[y,y2],[z,z2],'k');hold on;set(gcf,'color','w');grid on;view(pi/2,0);%axis off;xlabel('X Label');ylabel('Y Label');zlabel('Z Label'); set(gca,'xlim',[0,25],'ylim',[-15,15],'zlim',[-15,15]); plot3([x2,x2R],[y2,y2R],[z2,z2R],'g');hold on; plot3([x2,x2L],[y2,y2L],[z2,z2L],'g');hold on; plot3([x2,x2B],[y2,y2B],[z2,z2B],'g');hold on;

相关文档
最新文档