流固耦合FSI分析

流固耦合FSI分析
流固耦合FSI分析

流固耦合FSI分析

分析原理:流场采用CFX12,固体采用ANSYS12分别计算,通过界面耦合。

流体网格:流体部分采用HyperMesh9.0分网,按照流体分网步骤即可,没有特殊要求。网格导出:CFX可以很好的支持Fluent的.cas格式。直接导出这个格式即可。

流体的其余设置都在CFX-PRE中设置。

固体网格即设置:HyperMesh9.0划分固体网格。设置边界条件,载荷选项,求解控制,导出.cdb文件。

实例练习:

以CFX12实例CFX tutorial 23作为练习。

为节省时间,将计算时间缩短为2s。

网格划分:提取CFX tutorial 23中的实体模型到hm中,分别划分流体,固体网格。分别导出为fluent的.cas格式和ansys的cdb格式。

流体网格如下:

网格文件见:fluid.cas

固体网格为:

特别注意:

做FSI分析时,ANSYS固体部分必须在BA TCH下运行(即将.cdb文件导入ansys不需要任何操作就能直接计算出结果),所以导出的.CDB文件需要添加一个命令,在hm建立FSIN_1

的set,以方便在.cdb中手动添加命令SF,FSIN_1,FSIN,1,具体位置在定义了节点集合FSIN_1之后。

另一个set:pressure用于施加压强。

这里还设置了一些控制卡片用于分析,当然也可以直接修改.cdb文件

详细.cdb文件请参看plate.cdb

将固体部分在ansys中计算一下,以确定没有问题。

通过ansys计算检查最大位移:最上面的点x向变形曲线

至此,固体部分的计算文件已经准备好,流体网格需要导入CFX以进一步设置求解选项和耦合选项。

以下在CFX-PRE中进行设置

由于固体模型已经生成,故不需要利用workbench,所以不必按照指南的做法。

启动workbench,拖动fluid flow(CFX)到工作区

直接双击setup进入CFX-PRE 导入流体网格

然后设置分析选项:

注意:mechanical input file即是固体部分网格。再新建一个流体,取名fluid。

设置domain

添加边界条件

取名为interface设置流固耦合界面,对应为abc。

这就是流固耦合界面的设置过程。同理,建立sym1

Sym2

这个选项默认为no slip 的wall,最普通的那种,不必特殊设置初始化:

求解控制

输出控制:

Output variables list

看清楚字母,别搞错了!

Monitor板最上面的一个角点,也是ansys中计算关心的点

如这个十字号

保存以上设置即可。

返回到workbench,双击solution启动计算器。

不用更改设置,直接计算即可。

以上过程小心仔细,一般不会出现错误的。至此,几分钟后即可计算完成。

先看收敛曲线

再看monitor点

曲线跟单独的板的振动十分相似,说明计算是正确的。

后处理:

再次返回workbench,双击results,启动后处理。

先查看板的应力

是对的

以前我用CFX11做过同样的例子,所以以下提供CFX11中的结果,与cfx12类似。

可用查看速度矢量。

ansys流固耦合模态分析

有问题可以发邮件给我一起讨论xw4996@https://www.360docs.net/doc/fb9859334.html, FSI流固耦合命令求解流固耦合问题 使用ANSYS计算结构在水中的模态时, FLUID29,FLUID30单元分别用来模拟二维和三维流体部分,相应的结构模型则利用PLANE42单元和SOL ID45等单元来构造,其中,PLANE42和SOL ID45分别是用来构造二维和三维结构模型的单元。FLUID30是流体声单元,主要用于模拟流体介质及流固耦合问题。该单元有8 个节点,每个节点上有4 个自由度,分别是XYZ上3个方向位移自由度和1个压力自由度,为各向同性材料。输入材料属性时,需要输入流体的材料密度(作为DENS 输入)及流体声速(作为SONC输入),流体粘性产生的损耗效应忽略不计。FLUID29是FLUID30单元在二维上的简化,少了一个Z向的位移。SOLID45单元用于构造三维实体结构。单元通过8 个节点来定义,每个节点有 3 个沿着XYZ方向平移的自由度。PLANE42是SOLID45单元在二维上的简化。 在利用ANSYS建模分析时,流场域单元属性分为2种,由KEYOPT(2)(指定流体和结构分界面处结构是否存在) 控制,在流固耦合交界面上的单元KEYOPT(2) = 0 ,表示分界面处有结构,其他流体单元KEYOPT(2)=1,表示分界面处无结构。流体-结构分界面通过面载荷标志出来,指定FSI label可以把分界面处的结构运动和流体压力耦合起来,分界面标志在分界面处的流体单元标出。 数值分析的步骤 1) 建立流体单元的实体模型。建立流体模型,需要确定流体域的范围,可以把无限边界流体简化成流体区域的半径为固体结构半径的10倍。 2) 标记流固耦合界面。选取流体单元中流固交界面上的节点,执行FSI 命令,流固耦合交界面的处理:流体与固体是两个独立的实体,在划分单元时在两者交界面上的单元网格要划分一致,这样在交界面上的同一位置一般就有两个重合的节点,一个节点属于流体单元,一个节点属于固体单元,这两个重合节点在交界面的位移强制保持一致。 3) 建立固体结构实体模型。建立固体结构模型,定义单元属性,采用映射方式进行网格的划分。 4) 施加约束条件。由于流体区域的尺寸远大于固体结构尺寸,故可以不考虑流体液面的重力的影响,将流体边界处的单元节点上施加压力(PRES) 为零的约束。因为选择的算例为悬臂结构,在固体结构底部加全约束。 5) 选择求解算法,进行求解。定义分析类型为模态分析,设定提取频率阶数和提取模态的方法。因为耦合问题的刚度矩阵,质量矩阵都不对称,需要采用非对称矩阵法(UNSYMMETRIC)求解。 6) 查看结果。进入后处理模块,查看结构模型的频率及振型。 以半浸没与水中的桥墩模态问题为背景,并假设: 1. 桥墩为实心等截面的实体,实际桥墩模型应该是空心壳体,截面尺寸也 非常复杂,因而需要分块划分单元。

ANSYS流固耦合计算实例

ANSYS流固耦合计算实例 Oscillating Plate with Two-Way Fluid-Structure Interaction Introduction This tutorial includes: , Features , Overview of the Problem to Solve , Setting up the Solid Physics in Simulation (ANSYS Workbench) , Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre , Obtaining a Solution using ANSYS CFX-Solver Manager , Viewing Results in ANSYS CFX-Post If this is the first tutorial you are working with, it is important to review the following topics before beginning: , Setting the Working Directory , Changing the Display Colors Unless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File. Sample files referenced by this tutorial include:

基于MpCCI的Abaqus和Fluent流固耦合案例1

CAE联盟论坛精品讲座系列 基于MpCCI的Abaqus和Fluent流固耦合案例 主讲人:mafuyin CAE联盟论坛总监 摘要:通过MpCCI流固耦合接口程序,对某薄壁管道流动中的传热过程进行了Abaqus和Fluent相结合的流固耦合仿真分析。信息介绍了从建模、设置到求解计算和后处理的全过程,对相关研究人员具有参考意义。 1 分析模型 用三维建模软件solidworks建立了一个管径为1m的弯管,结构尺寸如图1a所示,管的结构如图1b所示,流体的模型如图1c所示。值得注意的是,由于拓扑特征的原因,这样的管壁模型无法通过对圆环扫略直接生成,而需先通过对大圆的扫略生成实心的模型(类似于流体模型),然后进行抽壳得到管壁的模型。用同样的方法对大圆半径减去管壁厚度的圆进行扫略得到流体模型。 a. 尺寸关系 b. 管壁结构 c. 流体模型 图1. 几何模型示意图 图2. 流固耦合传热分析模型示意图 内壁面(耦合面) 速度入口 v=6m/s; T in=600K 外壁面 压力出口 P=0Pa;T out=300K

由于管壁结构和流体的热学行为不同,传热系数等都不一样,所以属于典型的流固耦合传热问题,热学模型如图2所示。即管的一端为流体速度入口,一端为压力出口,给定流体外壁面一个初始温度600K,流体入口速度为6m/s,温度为600K,出口相对大气压力为0Pa,出口温度为300K。需要求解流体和管壁的温度场分布情况。 2 流体模型 将图1c的流体模型以Step格式导入Fluent软件通常使用的前处理器Gambit中,如图3a所示。设置求解器为,然后划分体网格,网格尺寸为100mm,类型为六面体单元,一共生成4895个体单元,网格如图3b所示。 a. 导入Gambit软件中的流体模型 b. 流场的网格模型 图3. 流体模型及网格示意图 进行网格划分后,需定义边界条件,在Gambit软件中先分别定义速度入口(VELOCITY_INLET)、压力出口(PRESSURE_OUTLET)和壁面(Wall)三组边界条件,具体参数设置在Fluent软件中进行。然后定义流体属性,名称定义为air,类型为Fluid。这些定义的目的是能够在Fluent软件中识别出这些特征,具体类型和参数都可以在Fluent软件中进行设置和修改。定义完后点击【Export】,选择【Mesh】,选择路径和文件名称并进行输出。 打开Fluent6.3.26或以上的版本,选择3D求解器,点击【File】→【Read】→【Case】,然后选择Gambit中输出的msh文件,即可将网格文件读入Fluent 软件中。读入模型后,进行求解参数和条件的设置。

流固耦合

流固耦合定义:它是研究变形固体在流场作用下的各种行为以及固体位形对流场影响这二者相互作用的一门科学。流固耦合力学的重要特征是两相介质之间的相互作用,变形固体在流体载荷作用下会产生变形或运动。变形或运动又反过来影响流,从而改变流体载荷的分布和大小,正是这种相互作用将在不同条件下产生形形色色的流固耦合现象。 (一)流固耦合动力学:求解方法与基本理论---张阿漫,戴绍仕 ●有限元法 ●边界元法 ●SPH法与谱单元法 ●瞬态载荷作用下流固耦合分析方法 ●小尺度物体的流固耦合振动 ●水下气泡与边界的耦合效应 按耦合机理分两大类: 1 耦合作用只发生在两相交界面---界面耦合(场间不相互重叠与渗透),耦合作用通过界面力(包括多相流的相间作用力等)起作用。它的计算只要满足耦合界面力平衡,界面相容就可以了(其耦合效应是通过在方程中引入两相耦合面边界条件的平衡及协调关系来实现的)。如气动弹性,水动弹性等。 按照两相间相对运动的大小及相互作用分为三类: (1)流体和固体结构之间有大的相对运动问题"最典型的例子是飞机机翼颤振和 悬索桥振荡中存在的气固相互作用问题,一般习惯称为气动弹性力学问题" (2)具有流体有限位移的短期问题"这类问题由引起位形变化的流体中的爆炸或 冲击引起"其特点是:我们极其关心的相互作用是在瞬间完成的,总位移是有限的,但 流体的压缩性是十分重要的" (3)具有流体有限位移的长期问题"如近海结构对波或地震的响应!噪声振动的 响应!充液容器的液固耦合振动!船水响应等都是这类问题的典型例子"对这类问题, 主要关心的是耦合系统对外加动力荷载的动态响应" 2 两域部分或全部重叠在一起,难以明显的分开,使描述物理现象的方程,特别是本构方程需要针对具体的物理现象来建立,其耦合效应应通过建立与不同单相介质的本构方程等微分方程来体现。 按耦合求解方法分两大类: 1 直接耦合求解:直接耦合是在一个求解器中同时求解不同物理场的所有变量,需要针对具体的物理现象来建立本构方程,其耦合效应通过描述问题的微分方程来体现。 2 间接耦合求解:而间接耦合不需要重写本构方程,仅只利用当前比较成熟的单物理场求解器求解各自相域,并实现不同的物理场之间的信息交换。 范例(一个经典的间接耦合求解范例步骤):利用CFX 进行全三维非定常粘性数值模拟,利用ANSYS 进行结构瞬态动力分析,其耦合面数据交换以MFX-ANSYS/CFX为平台,在每个物理时间步上进行耦合迭代,各自收敛后再瞬态向前推进,结构变形引起的流场网格位移由CFX内部的动网格技术来处理,整个耦合过程充分考虑了流场的三维非定常性和结构响应的瞬态变化。https://www.360docs.net/doc/fb9859334.html,/s/blog_6817db3a0100ju4s.html) 迭代求解,也就是在流场,结构上分别求解,在各个时间步之间耦合迭代,收敛后再向前推进.好

ansys workbench 流固耦合计算实例

Oscillating Plate with Two-Way Fluid-Structure Interaction Introduction This tutorial includes: ?Features ?Overview of the Problem to Solve ?Setting up the Solid Physics in Simulation (ANSYS Workbench) ?Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre ?Obtaining a Solution using ANSYS CFX-Solver Manager ?Viewing Results in ANSYS CFX-Post If this is the first tutorial you are working with, it is important to review the following topics before beginning: ?Setting the Working Directory ?Changing the Display Colors Unless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File. Sample files referenced by this tutorial include: ?OscillatingPlate.pre ?OscillatingPlate.agdb ?OscillatingPlate.gtm ?OscillatingPlate.inp 1.Features This tutorial addresses the following features of ANSYS CFX.

双向流固耦合实例

双向流固耦合实例(Fluent与structure) 说明:本例只应用于FLUENT14.0以上版本。 ANSYS 14.0是2011年底新推出的版本,在该版本中,加入了一个新的模块System Coupling,目前只能用于fluent与ansys mechanical的双向流固耦合计算。官方文档中有介绍说以后会逐渐添加对其它求解器的支持,不过这不重要,重要的是现在FLUENT终于可以不用借助第三方软件进行双向流固耦合计算了,个人认为这是新版本一个不小的改进。 模块及数据传递方式如下图所示。 一、几何准备 流固耦合计算的模型准备与单独的流体计算不同,它需要同时创建流体模型与固体模型。在geometry模块中同时创建流体模型与固体模型。到后面流体模型或固体模块中再进行模型禁用处理。 模型中的尺寸:v1:32mm,h2:120mm,h5:60mm,h3:3mm,v4:15mm。 由于流体计算中需要进行动网格设置,因此推荐使用四面体网格。当然如果挡板刚度很大网格变形很小时,可以使用六面体网格,划分六面体网格可以先将几何进行slice切割。这里对流体区域网格划分六面体网格,固体域同样划分六面体网格。 二、流体部分设置 1、网格划分 双击B3单元格,进入meshing模块进行网格划分。禁用固体部分几何。设定各相关部分的尺寸,由于固体区域几何较为整齐,因此在切割后只需设定一个全局尺寸即可划分全六面体网格。这里设定全局尺寸为1mm。划分网格后如下图所示。

2、进行边界命名,以方便在fluent中进行边界条件设置 设置左侧面为速度进口velocity inlet,右侧面为自由出流outflow,上侧面为壁面边界wall_top,正对的两侧面为壁面边界wall_side1与wall_side2(这两个边界在动网格设定中为变形域),设定与固体交界面为壁面边界(该边界在动网格中设定为system coupling类型)。 操作方式:选择对应的表面,点击右键,选择菜单create named selection,然后输入相应的边界名称。注意:FLUENT会自动检测输入的名称以使用对应的边界类型,当然用户也可以在fluent进行类型更改。完成后的树形菜单如下图所示。 本部分操作完毕后,关闭meshing模块。返回工程面板。 3、进入fluent设置 FLUENT主要进行动网格设置。其它设置与单独进行FLUENT仿真完全一致。 设置使用瞬态计算,使用K-Epsilon湍流模型。 这里的动网格主要使用弹簧光顺处理(由于使用的是六面体网格且运动不规律),需要使用TUI命令打开光顺对六面体网格的支持。使用命令 /define/dynamic-mesh/controls/smoothing-parameters。 动态层技术与网格重构方法在六面体网格中失效。因此,建议使用四面体网格。我们这里由于变形小,所以只使用光顺方法即可满足要求。 点击Dynamic mesh进入动网格设置面板。如下图所示,激活动网格模型。

血管流固耦合分析实例

Ansys14 workbench血管流固耦合实例 根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。谢谢! 1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。 图1 模型图 2、新建工程。在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure. 图2 计算工程 3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.

图3 修改工程材料 4、模型导入,进入gemetry模块,import外部模型文件。 图4 模型导入图 5、进入FLUENT网格划分。 在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。我们这里需要去掉血管部分,只保留血液几何。

图5 进入网格划分

图6 禁用血管模型 6、设置网格方法。 默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry 图7 设置网格划分方式 图8 最终出网格

几个耦合的例子

一般说来,ANSYS的流固耦合主要有4种方式: 1,sequential 这需要用户进行APDL编程进行流固耦合 sequentia指的是顺序耦合 以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。ANSYS CD中包含有MpCCI库和一个相关实例。关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin 2,FSI solver 流固耦合的设置过程非常简单,推荐你使用这种方式 3,multi-field solver 这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合 4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵 一个流固耦合的例子 length=2 width=3 height=2 /prep7 et,1,63 et,2,30 !选用FLUID30单元,用于流固耦合问题 r,1,0.01 mp,ex,1,2e11 mp,nuxy,1,0.3 mp,dens,1,7800 mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水 mp,sonc,2,1400 mp,mu,0, ! block,,length,,width,,height esize,0.5 mshkey,1 ! type,1 mat,1 real,1 asel,u,loc,y,width amesh,all alls ! type,2 mat,2 vmesh,all

基于LSDYNA及FLUENT的板壳结构流固耦合分析

基于 LS-DYNA 及 FLUENT 的板壳结构流-固耦合分析
汪丽军 北京航空航天大学,交通科学与工程学院 100191
[摘 要]: 本文采用 ANSYS 显示动力分析模块 LS-DYNA 及流场分析模块 FLUENT,对水下的板壳 结构运动及其界面的流-固耦合现象进行了仿真分析。流场计算得到的界面压强数据以外载荷 的形式施加于结构表面,使其产生位移及变形;同时,结构的变化又进一步影响了流场的分 布。通过往复的双向耦合迭代,得到了板壳结构的动力学响应以及流场的分布情况。仿真结 果与试验结果的对比表明,此方法适用于解决兼有大位移及较大变形特征的流-固耦合问题。 [关键词]: 板壳结构 流-固耦合 有限元方法 ANSYS
Analysis of Fluid-Structure Interaction for Plate/Shell Structure Based on LS-DYNA and FLUENT
Wang Lijun School of Transportation Science & Engineering, Beihang University 100191
Abstract: In this paper,the movement of plate under water and the fluid-structure interaction(FSI) is simulated numerically by combining explicit dynamic solver LS-DYNA and computational fluid dynamics solver FLUENT in ANSYS. The pressure obtained from the calculation of flow field are applied as external loads on the surface of the plate, then the structural deformation and displacement can be calculated as well, which will affect the shape and pressure distribution of the flow field reversely. After sequential coupling iterations the dynamic response of the structure and flow field distribution are obtained consequently. By comparing numerical and experimental results it is proved that this proposed coupling method is suitable for solving such a kind of FSI problems considering both large displacement and comparatively large deformation. Keyword: Plate/shell structure, Fluid-Structure Interaction, Finite element method,ANSYS
1
前言
在自然界中,流-固耦合现象广泛存在于航空、航天、汽车、水利、石油、化工、海洋 以及生物等领域。很多实际问题中流体载荷对于结构的影响不可忽略;同时,结构的位移 和变形也会对流场的分布产生重要影响。例如各种水下运动机构都需要考虑这种现象。

流固耦合文献总结

小论文拟采用DP模型,在应力较高的土体中,比Mohr-coulomb理想弹塑性模型的数值计算结果更精确。设定DP模型需要输入3个特殊参数,粘聚力,内摩擦角,膨胀角,其中的膨胀角是用来控制体积膨胀的大小的。在岩土工程中,一般密实的砂土和超强固结土在发生剪切的时候会出现体积膨胀,因为颗粒重新排列了;而一般的砂土或者正常固结的土体,只会发生剪缩。在使用DP模型的时候,对于一般的土,膨胀角设置为0度比较符合实际。渗流耦合分析拟采用的边界条件是全地基边界,即把要分析的模型所有的区域看成是一个封闭的整体。在计算渗流应力耦合分析时,考虑基坑空间效应,建立三维实体模型,不仅考虑施工降水耦合,也考虑施工间歇变形耦合。最终通过支护结构桩和锚杆的变形以及基坑的变形,得出以下两条结论:(1)采用渗流应力耦合理论计算的基坑工程变形形态符合实际情况,随着基坑开挖深度增加,基坑变形规律也符合实际情况。(2)渗流应力耦合情况下基坑变形与不考虑渗流耦合影响下基坑变形曲线相比,数值较大,可见,分析基坑变形时不考虑渗流耦合影响是偏不安全的,耦合分析对基坑变形的影响不能忽视。 1、基于渗流场-应力场耦合作用下的深基坑降水支护结构的位移研究工程勘察2012 本文采用大型通用岩土工程有限元软件PLAXIS对复合土钉支护进行分析,模型采用平面应变模型,土体采用Mohr-coulomb理想弹塑性模型且具有对称性,故取一半对其分析,模型底部为固定约束,侧面只限制水平位移,上表面为自由边界。 本工程的数值模拟主要为比较在有降水作用下和未考虑地下水两种情况下的支护结构体系的位移,为此,首先进行了在未考虑地下水条件下的模拟,即不考虑孔隙水压,地下水位线默认为基坑底部。其次依据实际工程的地下水位线-7.24m,进行了数值模拟,以便找到降水作用对支护结构体系位移的影响。 2、考虑流-固耦合效应的基坑水土压力计算工程勘察2011 针对地下水绕过围护墙渗流情况,分析了传统的水土压力分算、合算及考虑土体渗流-固结变形方法计算土压力的区别,并利用实测数据进行对比。 流过耦合分析,PLAXIS程序采用水土分算的方法,通过输入地下水水头执行地下水渗流程序进行计算,利用单元应力点上的压力水头求得孔隙水压力,将围护墙与土体接触界面上的有效压力与孔隙水压力值相加,得到基坑围护墙上总的水土压力分布。 3、考虑流固耦合作用的深基坑有限元分析地下空间与工程学报2012 利用FLAC流固耦合模型对复杂地质条件下深基坑降水开挖过程中深基坑的时间效应进行研究。建立考虑参数变化的弹塑性流固耦合数值模型,分析基坑开挖及降水作用下地表沉降、水压力、基底隆起随时间变化的规律。平面应变模型,土体采用修正的剑桥模型模拟,只是在理论上提出考虑基坑开挖过程中渗透系数随孔隙比变化的现象,未应用在模型模拟中。 4、考虑渗流-应力耦合基坑开挖降水数值分析广东工业大学学报2013 本文运用通用软件MIDAS/GTS考虑渗流应力耦合作用下模拟基坑开挖降水的详细过程,分析了不同阶段渗流情况,同时探讨了止水帷幕、渗透系数与不同降水深度对基坑支护特性的影响,以期为基坑降水和支护结构优化提供理论参考。采用的摩尔库伦土体模型,基坑较小,应力水平较低,平面应变模型,未考虑基坑的空间效应。 5、深基坑工程降水与地面沉降耦合数值模拟研究中国市政工程2012 采用基坑降水与地面沉降耦合模型分析,四周边界取为定水头边界,其中,求解地下水问题简化为求解地下水在多孔介质中流动的问题,建立相适应的地下水三维非稳定渗流数学模型为 地面沉降模型为 方程的求解条件为: 利用建立的三维渗流沉降模型预测抽水减压期间对水位降深和区域沉降影响。计算结果

abaqus与fluent流固耦合

基于MPCCI的流固耦合成功案例 基于MPCCI的流固耦合成功案例 (一)机翼气动弹性分析 1 问题陈述 机翼绕流问题是流固耦合中的经典问题。以前由于缺乏考虑流固耦合的软件,传统的分析方法是将机翼视为刚体,不考虑其弹性变形,通过CFD软件来计算机翼附近的流场。这个强硬的假设很难准确的描述流场的实际情况。更无法预测机翼的振动。MPCCI是基于代码耦合的并行计算接口,它可以同时调用结构和流体的软件来实现流固耦合。我们通过MPCCI,能很好的预测真实情况下的机翼绕流问题。采用ABAQUS结构分析软件来求解结构在流畅作用下的变形和应力分布,通过Fluent软件来计算由于固体运动和变形对整个流场的影响。 2 模拟过程分析顺序 MpCCI的图形用户界面可以方便的读入结构和流体的输入文件。后台调用ABAQUS和FLUENT。在MPCCI耦合面板中选择耦合面,然后选择在相应耦合面上流体和固体需要交换的量。启动MpCCI进行耦合。 3 边界条件设置

图1 无人机模型和流体计算模型 结构部分单个机翼跨度在1.5m左右,厚度为0.1m左右。边界条件为机翼端部的固定,三个方向的位移完全固定,另一端完全自由。在固体中除了固定端的面外,其他三个面为耦合面。流体部分采用四面体网格,采用理想气体作为密度模型。流体的入口和出口以及对称性边界条件如下图所示。 图2 固体有限元模型 4 计算方法的选择 通过结合ABAQUS和FLUENT,使用MPCCI计算流固耦合。在本例中,固体在流场作用下产生很大的变形和运动。在耦合区域,固体结构部分计算耦合面上的节点位移,通过MPCCI传输给FLUENT的耦合界面,FLUENT 计算出耦合区域上的节点力载荷,然后通过MPCCI传给结构软件ABAQUS。在MPCCI的耦合面板中选择的耦合面如图所示,交换量为:节点位移、相对受力。采用ABAQUS中的STANDARD算法,时间增量步长为0.1毫秒。 5 计算结论 通过MPCCI结合ABAQUS和FLUENT,成功地计算在几何非线性条件下的气动弹性问题,得到了整个流体区域的流场分布以及结构的动态响应历程。

流固耦合问题研究进展及展望

流固耦合问题研究进展及展望 摘要:天然岩体大多数为多相不连续介质,岩体内充满着诸如节理、裂隙、断层、接触带、剪切带等各种各样的不连续面,为地下水提供了储存和运动的场所。地下水的渗流以渗透应力作用于岩体,影响岩体中应力场的分布;同时岩体应力场的改变使裂隙产生变形,从而影响了裂隙的渗透性能,因此,流固耦合问题研究主要考虑流体在固体中的变化规律,尤其是流体渗流与和岩体应力之间的耦合作用,通过对国内外相关文献的分析与整理,从流固耦合的研究现状、特点、研究方法及展望这四个方面进行了论述。 关键词:流固耦合;岩体;地下水;研究方法;渗流 中图分类号:X523文献标识码:A 文章编号: 天然岩石不只是单一固相介质,尚有固相、液相和气相并存的多孔介质组合,岩石经历了漫长的成岩和改造历史,其内部富含各种缺陷,包括微裂纹、孔隙以及节理裂隙等宏观非连续面,它们的存在为地下水提供了储存和运动的场所。地下水的渗流还以渗透应力作用于岩体,影响岩体中应力场的分布,同时岩体应力场的改变往往使裂隙产生变形,影响裂隙的渗透性能,所以渗流场随着裂隙渗透性的变化重新分布,因此,在许多情况下必须考虑流体,包括液体(油或水)、气体(天然气、煤矿瓦斯等)在多孔介质中的流动规律及其对岩体本身的变形或强度造成的影响,即应考虑岩体内应力场与渗流场之间的相互耦合作用。 近年来,流固耦合问题越来越受到人们的重视,这方面的研究涉及许多领域,在采矿领域,涉及地热开发,石油开采中的流固耦合渗流,采矿围岩突水问题等。在建筑工程领域,包括地下水抽取引起的地面沉降问题,基坑渗流引起变形问题,坝基渗流及稳定性问题,隧道建设等。在环境工程领域涉及地下核废料存储,城市垃圾废弃物处理等以及生物医学工程等领域,这一问题的研究对促进科技进步和解决实际工程技术问题有着重要意义。 1 国内外研究现状 关于岩体和流体相互作用研究最早见诸K.Terzaghi对有关地面沉降研究,其内容主要限于考虑一维弹性孔隙介质中饱和流体流动时的固结,提出了著名的有效应力公式,迄今该公式仍是研究岩体和流体相互作用的基础公式之一。二十世纪中期Biot(1941,1956)进一步研究了三向变形材料与孔隙压力的相互作用,并在一些假设,如材料为各向同性、线弹性小变形,孔隙流体是不可压缩的且充满固体骨架的孔隙空间,而流体通过孔隙骨架的流动满足达西定律的基础上,建立了比较完善的三维固结理论。在此基础上,进一步发展了多相饱和渗流与孔隙介质耦合作用的理论模型,并在连续介质力学的系统框架内建立了多相流体运移和变形空隙介质耦合问题的理论模型。 Lous等(1974)运用单裂隙试件进行单向水流的室内模型,综合研究了天

流固耦合分析相关关键字

流固耦合分析相关关键字单元算法定义 *SECTION_SOLID *SECTION_SOLID_ALE *INITIAL_VOID_OPTIONS 多物质单元定义 *ALE_MUL TI_MA TERIAL_GROUP 多物质材料ALE网格控制 *ALE_REFERENCE_SYSTEM_CURVE *ALE_REFERENCE_SYSTEM_GROUP *ALE_REFERENCE_SYSTEM_NODE *ALE_REFERENCE_SYSTEM_SWITCH 流固耦合定义 *CONSTRAINED_LAGRANGE_IN_SOLID ALE算法控制 *CONTROL_ALE *ALE_SMOOTHING 材料本构及状态方程定义 *MA T_NULL(空气、水等材料) *MA T_V ACUUM *MA T_OPTION(结构材料) *EOS_OPTION(流体、结构材料的状态方程)

爆炸分析相关关键字 材料模型 *MA T_HIGH_EXPLOSIVE_BURN(炸药材料) *MA T_ELASTIC_PLASTIC_HYDRO(推进剂) *MA T_NULL(空气、水等材料) *MA T_OPTION(结构材料) 状态方程 *EOS_JWL(各种炸药) *EOS_IGNITION_AND_GROWTH_OF_REACTION_IN_HE(推进剂燃烧) *EOS_JWLB(各种炸药) *EOS_SACK_TUESDA Y(炸药材料) *EOS_OPTION(结构材料的状态方程) *EOS_LINEAR_POL YNOMIAL(空气) *EOS_GRUNEISEN(水、油等) 接触类型(Lagrange方法) *CONTACT_2D_AUTOMA TIC_SURFACE_TO_SURFACE *CONTACT_2D_SLIDING_ONL Y *CONTACT_SLIDING_ONL Y_OPTIONS *CONTACT_SURFACE_TO_SURFACE *CONTACT_ERODING_SURFACE_TO_SURFACE 起爆方式(单点、多点、线起爆)

基于ANSYS的流固耦合动力分析方法

第37卷 第6期2008年12月 船海工程SH IP &OCEA N ENG IN EERI NG V ol.37 N o.6 Dec.2008 交贯线附近区域首先开始达到极限载荷,从而引起支撑大面积失效。 2)支、主管直径比B 和主管径厚比C 是影响节点受力性能的主要因素。节点的强度和刚度随着支主管直径比B 的增大而增加,随着主管径厚比C 的增大而降低。当B >0.7,10

AnsysCF流固耦合分析

A n s y s C F流固耦合分析 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

流固耦合FSI分析 分析原理:流场采用CFX12,固体采用ANSYS12分别计算,通过界面耦合。流体网格:流体部分采用分网,按照流体分网步骤即可,没有特殊要求。 网格导出:CFX可以很好的支持Fluent的.cas格式。直接导出这个格式即可。流体的其余设置都在CFX-PRE中设置。 固体网格即设置:划分固体网格。设置边界条件,载荷选项,求解控制,导出.cdb文件。 实例练习: 以CFX12实例CFX tutorial 23作为练习。 为节省时间,将计算时间缩短为2s。 网格划分:提取CFX tutorial 23中的实体模型到hm中,分别划分流体,固体网格。分别导出为fluent的.cas格式和ansys的cdb格式。 流体网格如下: 网格文件见: 固体网格为: 特别注意: 做FSI分析时,ANSYS固体部分必须在BATCH下运行(即将.cdb文件导入ansys不需要任何操作就能直接计算出结果),所以导出的.CDB文件需要添加一个命令,在hm建立FSIN_1的set,以方便在.cdb中手动添加命令 SF,FSIN_1,FSIN,1,具体位置在定义了节点集合FSIN_1之后。 另一个set:pressure用于施加压强。 这里还设置了一些控制卡片用于分析,当然也可以直接修改.cdb文件

详细.cdb文件请参看 将固体部分在ansys中计算一下,以确定没有问题。 通过ansys计算检查最大位移:最上面的点x向变形曲线 至此,固体部分的计算文件已经准备好,流体网格需要导入CFX以进一步设置求解选项和耦合选项。 以下在CFX-PRE中进行设置 由于固体模型已经生成,故不需要利用workbench,所以不必按照指南的做法。 启动workbench,拖动fluid flow(CFX)到工作区 直接双击setup进入CFX-PRE 导入流体网格 然后设置分析选项: 注意:mechanical input file即是固体部分网格。 再新建一个流体,取名fluid。 设置domain 添加边界条件 取名为interface设置流固耦合界面,对应为abc。 这就是流固耦合界面的设置过程。 同理,建立sym1 Sym2 这个选项默认为no slip 的 wall,最普通的那种,不必特殊设置 初始化: 求解控制

【达尔整理】ANSYS流固耦合分析实例命令流

达尔文档DareDoc 分享知识传播快乐 ANSYS流固耦合分析实例命令流 本资料来源于网络,仅供学习交流 2015年10月达尔文档|DareDoc整理

目录 ANSYS流固耦合例子命令流.......................................................................... 错误!未定义书签。ANSYS流固耦合的方式 (3) 一个流固耦合模态分析的例子1 (3) 一个流固耦合模态分析的例子2 (4) 一个流固耦合建模的例子 (7) 一加筋板在水中的模态分析 (8) 一圆环在水中的模态分析 (10) 接触分析实例---包含初始间隙 (14) 耦合小程序 (19) 流固耦合练习 (21) 一个流固耦合的例子 (22) 使用物理环境法进行流固耦合的实例及讲解 (23) 针对液面晃动问题,ANSYS/LS-DYNA提供三种方法 (30) 1、流固耦合 (30) 2、SPH算法 (34) 3、ALE(接触算法) (38) 脱硫塔于浆液耦合的分析 (42) ANSYS坝-库水流固耦合自振特性的例子 (47) 空库时的INP文件 (47) 满库时的INP文件 (49) 计算结果 (52)

ANSYS流固耦合的方式 一般说来,ANSYS的流固耦合主要有4种方式: 1,sequential 这需要用户进行APDL编程进行流固耦合 sequentia指的是顺序耦合 以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。ANSYS CD中包含有MpCCI库和一个相关实例。关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin 2,FSI solver 流固耦合的设置过程非常简单,推荐你使用这种方式 3,multi-field solver 这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合 4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵 一个流固耦合模态分析的例子1 这是一个流固耦合模态分析的典型事例,采用ANSYS/MECHANICAL可以完成。处理过程中需要注意以下几个方面的问题: 1、单元的选择; 2、流体材料模式; 3、流固耦合关系的定义; 4、模态提取方法。 length=2 width=3 height=2 /prep7 et,1,63 et,2,30 !选用FLUID30单元,用于流固耦合问题 r,1,0.01 mp,ex,1,2e11 mp,nuxy,1,0.3 mp,dens,1,7800 mp,dens,2,1000 !定义Acoustics材料来描述流体材料-水 mp,sonc,2,1400 mp,mu,0, ! block,,length,,width,,height esize,0.5 mshkey,1

相关文档
最新文档