PD3058 3059模拟量采集模块说明书

PD3058 3059模拟量采集模块说明书
PD3058 3059模拟量采集模块说明书

赢创 PD 系列

模拟量采集模块

产品使用手册

此说明书适用于:

PD3058系列:16位、18位单端输入

PD3059系列:16位、18位差分输入

V2.1 2013-07-06

1 概述

主要特性

1:隔离RS485 接口,Modbus 协议的电压、电流模拟量采集模块。可与PLC、组态软件、文本显示器等进行 组网,可广泛用于工业现场设备的信号控制。

2:宽工作电压:DC12V(8V-30V)。实测30V耗电9mA,24V耗电12mA,12V耗电22mA,8V耗电32mA。 3:工作温度:-35℃~+50℃。

4:片内参考电压VREF=0.256V

1)精度:0.256V± 0.05%

2)漂移:15 ppm/°C

低的参考电压意味着可以直接测量非常小的信号,比如:75mV直流分流器、电桥输出等。从而可以省去一个精密放大器。

5:多种数据格式输出:

1)32位标准的IEEE-754浮点数格式,数据无需任何转换,就是模拟量输入数值。

2)16位符号整型输出,数据单位为μA、mV。此功能可以与其它厂家的寄存器地址以及格式完全兼容。

3)32位采样器数字输出代码,用户可以通过每个LSB代表的当量计算输入。

6:采样位数为16位、18位、24位,分辨率高。

1)单端输入类型模块采用高速16位AD采样器,数值范围-32768-32767。

2)差分输入类型模块采用高速18位AD采样器,数值范围-131072 - 131071。

7:多种接入方式

1)单端输入

2)差分输入

8:电压型输入电阻100K-1M,电流型采样电阻3-12欧。

9:通道之间绝无互相干扰现象。即使输入信号超过量程很多倍,也绝无相互干扰现象。

10:在电流输入模式下,每个输入端口都有保护电路,即使输入端误接到电源甚至是负电压,都不会损坏。 12:安装方式:标准35mm导轨安装

自主版权,可定制其它规格类型。此模块可以替代以下类型产品:

0到20mA;0到5V、到10V、到30V;

-5V到5V、-10V到10V、-20mA到20mA;

以及几十mV满度的传感器输入。

型号命名规则:

PD305[8、9][位数]-[12、6、8][V、I][xxx]

[8、9]:8是指单端输入系列;9是指差分输入系列。

[位数]:是指AD采样位数。凡是此位未标注为16位、18位;标注A为24位。

[12、6、8]:通道输入个数。

[V、I]:V是指电压输入;I是指电流输入。

[xxx]:电压、电流输入规格,单位为mA、V。例如:I20表示电流量程输入20mA;V30表示电压量程输入30V;V0025表示电压量程输入0.025V。

2 常用产品型号分类及图片

常用具体型号如下:

PD3058-12I20 12路电流单端输入(20mA 16位)

PD3058-12V30 12路电压单端输入(30V 16位)

PD3058-8I20-4V30 8路电流+4路电压(IN1-IN8为电流输入20mA,IN9-IN12为电压输入30V) PD3059-6I20 6路电流差分输入(-20mA - +20mA 18位)

12路电流单端输入

6路电流差分输入

3 模块接口

接口定义见标签说明 信号文字定义如下:

(Vin):直流电源正极输入端 (GND):直流电源公共端。 (A):RS485 串行通讯 A。 (B):RS485 串行通讯 B IN:模拟量输入

IN+、IN-:差分输入正端、负端

4 内部接口结构

因为VREF=0.256V,所以输入到AD芯片的满度电压就是0.256V,适当的选择电阻网络,可以保证有足够高的分辨率。

单端输入结构

20mA单端输入 30V单端输入 60V单端输入

有保护二极管,型号M7R1=0 R2=12欧

因此实际可以测量到 0.256V/12欧=21.33mA

没有保护二极管 R2=3.24K R1=390K

因此实际可以测量到

0.256V*121.37=31V

没有保护二极管 R2=3.24K R1=787K

因此实际可以测量到 0.256V*243.9=62.4V

在此说明一点:

单端输入那种,实际上可以测量负的输入信号,20mA那种,输入-12mA - 0mA,性能与正输入一样,当然通讯得到的数值全为负数。大约超过-15mA,内部的保护电路开始起作用。 也就是说,0-20mA那种,实际测量范围:-12mA左右 – 22.33mA 同样道理,0-30V那种,实际测量范围:-20V左右 – 31V 同样道理,0-60V那种,实际测量范围:-40V左右 – 62V

差分输入结构

正负20mA输入 正负30V输入 R2=R3=0,R1=12欧 因此实际可以测量到 0.256V/12欧=21.33mA

R2=R3=390K, R1=3.24K * 2 因此实际可以测量到 0.256V*121=31V

6 寄存器信息表

6.1 功能码03H(读)、06H(写)

参数设置寄存器信息表

字地址 字节

位置

描述 参数说明 属性

低8位 通讯配置

初始值:00 BIT<7> 参数保护功能 0 = 关闭 1 = 开启 见注释①

BIT<6:5> 保留

BIT<4:3> 00=无校验 01=偶校验 10=奇校验 (11=奇校验)

BIT<2:0> 000=9600 001=1200 010=2400 011=4800 100=9600

101=14400 110=19200 其它组合没有定义,按照9600 处理

RW

10H

高8位 通讯地址

初始值:01 设定值范围=1 到 250

地址0 为广播地址(如果通讯程序设置的数值为0,等同于1)

RW

低8位 轮显对象使能

初始值:255 保留 RW

11H

高8位 轮显切换时间间隔

初始值:05 设定值范围=0 到 255(秒)

如果设置成00H,则与01H 等效。

RW

注释①:

此功能的目的是为了防止意外修改参数。如果开启参数保护功能,上电255秒内可以修改10H-11H参数寄存器,255秒之后,10H-11H将不能写入,只能读取,试图写入这些寄存器将返回错误应答。如果当前保护状态=关闭,用户操作设置保护状态=开启,设备接收到命令后,如果开机超过255秒,将立即进入保护状态;不足255秒,将延时到255秒进入保护状态。

要想关闭保护功能,设备必须重新上电,255秒内重设参数。

硬件信息寄存器信息表

字地址 字节

位置

描述 参数说明 属性

12H 16位 模拟量输入类型1 BIT15 – BIT0 对应通道16到通道1输入类型

0:电流输入 1:电压输入

R

13H 16位 模拟量输入类型2 BIT15 – BIT0 对应通道16到通道1输入类型

0:单端输入 1:差分输入

R

14H 16位 AD采样位数 16:16位,18:18位,24:24位 R

15H 16位 AD参考电压 VREF值,单位:mV。例如:256=0.256V R

16H ……… 1DH 共8个单元,16个BYTES。是型号信息,例如:“PD3058-6V20-6I30”、 “PD3058-12I20”

R

6.2 功能码03H(读)

数据寄存器信息表

字地址 描述

参数说明

属性20H 第1路模拟量输入值 R 22H 第2路模拟量输入值 R 24H 第3路模拟量输入值 R 26H 第4路模拟量输入值 R 28H 第5路模拟量输入值 R 2AH 第6路模拟量输入值 R 2CH 第7路模拟量输入值 R 2EH 第8路模拟量输入值 R 30H 第9路模拟量输入值 R 32H 第10路模拟量输入值 R 34H 第11路模拟量输入值 R 36H 第12路模拟量输入值 R 38H 第13路模拟量输入值 R 3AH 第14路模拟量输入值 R 3CH 第15路模拟量输入值 R 3EH 第16路模拟量输入值 数值为32位float 类型,标准的IEEE-754浮点数格式。

数值单位为:mA、V。数值的单位是由通道输入类型决定的,理论上每一个通道都可以被配置成电压输入或电流输入。

这个数值(IN+ - IN-)的差值经过变换之后的数值,因此有正数、负数。在单端

(IN+输入,IN-接GND)输入时,只有正数值。

例如:16.54321表示IN+输入为16.54321(mA、V)。 在差分输入时,数值会有负数,

例如:-16.54321表示-16.54321(mA 、V),意味着IN+减IN-的差值为-16.54321(mA、V)。

定义:y=模拟量输入值,x=数字输出代码,那么: y = x * k + b

k、b 数值由我们软件矫正完成,用户不能修改和读取。 理论上可以将y 与x 的线性关系任意标定。

R

40H 第1路数字输出代码 R 42H 第2路数字输出代码 R 44H 第3路数字输出代码 R 46H 第4路数字输出代码 R 48H 第5路数字输出代码 R 4AH 第6路数字输出代码 R 4CH 第7路数字输出代码 R 4EH 第8路数字输出代码 R 50H 第9路数字输出代码 R 52H 第10路数字输出代码 R 54H 第11路数字输出代码 R 56H 第12路数字输出代码 R 58H 第13路数字输出代码 R 5AH 第14路数字输出代码 R 5CH 第15路数字输出代码 R

5EH 第16路数字输出代码 数值为32位符号长整型(long signed int)。未使用的高位由数字输出代码MSB(符号位)填充。 数字输出代码示例 输入电压 [VIN+ - VIN-] 数字输出代码 MSB (符号位) >=VREF 0111111111111111110 VREF - 1 LSB 0111111111111111110 2 LSB 0000000000000000100 1 LSB 0000000000000000010 0 0000000000000000000 -1 LSB 111111111111111111 1 -2 LSB 111111111111111110 1 <=-VREF 100000000000000000 1 片内参考电压VREF=0.256V R

60H 第1路模拟量输入值 R 61H 第2路模拟量输入值 R 62H 第3路模拟量输入值 R

63H 第4路模拟量输入值 R 64H 第5路模拟量输入值 R 65H 第6路模拟量输入值 R 66H 第7路模拟量输入值 R 67H 第8路模拟量输入值 R 68H 第9路模拟量输入值 R 69H 第10路模拟量输入值 R 6AH 第11路模拟量输入值 R 6BH 第12路模拟量输入值 R 6CH 第13路模拟量输入值 R 6DH 第14路模拟量输入值 R 6EH 第15路模拟量输入值 R 6FH

第16路模拟量输入值

数值为符号整型,-32768 - 32767,单位为:uA、mV。例如:25432表示25432(uA、mV)相当于25.432(mA、V)。 数值的单位是由通道输入类型决定的。 R

器件输出代码至输入信号电压的转换片内参考电压VREF=0.256V

输入模式 输出代码 数值范围 每个LSB相当于

单端输入模式下 16位 -32768 - 32767 0.256V/32767=7.81262μV

差分输入模式下 16位 -32768 - 32767 0.256V/32767=7.81262μV

差分输入模式下 18位 -131072 - 131071 0.256V/131071= 1.95314μV

输出代码乘以LSB 得到测量的未知输入电压。

如果 MSB = 0(正输出代码):输入电压=(输出代码)*LSB*(采样电阻的分压比例)

如果 MSB = 1(负输出代码):输入电压=(输出代码的二进制补码)*LSB*(采样电阻的分压比例)

7 模块应用技术

7.1 MODBUS协议解释

请参考《V2.4单相三相LEDLCD仪表通用说明书》中关于MODBUS的介绍。

可以用我们提供的测试工具查看采集的数据。如下图。

差分型输入:

7.2 组态王应用

MODBUS数据读取以及和组态王对接应用,请参考《仪表MODBUS快速应用指南》,我们提供组态王6.53工程文件。

变量定义如下:

变量测试:

运行结果:

PL对模拟量数据的计算方法(114)

PLC对模拟量数据的计算方法 可编程控制器(简称PLC) 是专为在工业环境中应用而设计的一种工业控制用计算机, 具有抗干扰能力强、可靠性高、体积小等优点, 是实现机电一体化的理想装置, 在各种工业设备上得到了广泛的应用, 在机床的电气控制中应用也比较普遍, 这些应用中常见的是将PLC 用于开关量的输入和输出控制。 随着PLC技术的发展, 它在位置控制、过程控制、数据处理等方面的应用也越来越多。本文将谈论利用PLC处理模拟量的方法, 以对机床液压系统工作压力的检测处理为例, 详细介绍PLC处理模拟量的各重要环节, 特别是相关软件的设计。为利用PLC全面地实现对机床系统工作参数的检测打下技术基础; 为机床故障的判断、故障的预防提供重要的数据来源。 1 PLC采集、处理模拟量的一般过程 在PLC组成的自动控制系统中, 对物理量(如温度、压力、速度、振动等) 的采集是利用传感器(或变送器) 将过程控制中的物理信号转换成模拟信号后, 通过PLC提供的专用模块, 将模拟信号再转换成PLC可以接受的数字信号, 然后输入到PLC中。由于PLC保存数据时多采用BCD码的形式, 所以经过A /D专用模块的转换后, 输入到PLC的数据存储单元的数据应该是一个BCD 码。整个数据传送过程如图1所示。 图1 PLC采集数据的过程图 PLC对模拟量数据的采集, 基本上都采用专用的A /D模块和专用的功能指令相配合, 可以让设计者很方便地实现外部模拟量数据的实时采集, 并把采集的数据自动存放到指定的数据单元中。经过采集转换后存入到数据单元中的BCD码数字, 与物理量的大小之间有一定的函数关系, 但这个数字并不与物理量的大小相等, 所以, 采集到PLC中的数据首先就需 要进行整定处理, 确定二者的函数关系, 获得物理量的实际大小。通过整定后的数据, 才是实时采集的物理量的实际大小, 然后才可以进行后序的相关处理, 并可根据需要显示输出数据, 整个程序设计的流程图如图2所示。

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模块接线的阐述 关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331-7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 1.1具体问题: ①端子10(COMP )和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 2.1参考图片

图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明 2.2问题讲解 ①问题“①端子10(COMP )为什么和端子11(MANA)短接。” 端子10(COMP )是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0 使用内部补偿,所以必须将端子10(COMP )与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电

模块模块型接线方式说明SM

模块型号接线方式说明 再进行描述之前,我们首先介绍通道,一个通道即为一个点,可为AI,AO,DI,DO。 1、6ES7131-4BD01-0AA04通道数字量输入 4个通道分别为1,5,2,6。额定输入电压24VDC适用于开关以及接近开关。如图: 图上1、5、2、6,分别代表一个数字量输入点。图中的断开处可以是一个开关,一个按钮,当开关处于闭合状态时,我们将万用表的一只表笔处于1(5,2,6)端子处,另一只表笔接地或接0V 可测得24V电压。可用终端模块TM-E15S24-01 (6ES7193-4CB20-0AA0)。终端模块即我们所说的插槽,螺钉型的接线端。也可用TM-E15S26-A1(6ES7193-4CA40-0AA0),该类型的终端模块带有A7,A3,A4,A8接线端。 2、6ES7132-4BD02-0AA04通道数字量输出(24V/0.5A) 4个通道分别为(1,3)(5,7)(2,4)(6,8)。带四个输出的数字电子模块,每个输出的输出电流为0.5 A,额定负载电压24VDC,适用于电磁阀、直流接触器和指示灯。如图: 该类型模块的5(1,2,6)输出一个高电平(24V)进设备,然后回到该类型模块的低电平7(3,4,8)。当有信号输出时我们可在5(1,2,6)和7(3,4,8)处测得24V电压。 3、6ES7132-4BD32-0AA0个通道分别为(1,3)(5,7)(2,4)(6,8)。

如图: 4通道数字量输出(24V/2A)该类型模块与2相同,只是为输出 24V,2A。接线方式同2。 4、6ES7134-4GB11-0AB02通道模拟量输入(4线制) 两个通道分别为(1,2)(5,6)。如图: 4线制即设备的单独供电需要一对线信号的输入需要一对线。设备的正(4-20ma+)接模块的1(5),设备的负(4-20ma-)接模块的2(6)。当我们取下1(5)处的线时,并接到万用表的红表笔上,把表的黑表笔接到1(5)上,我们可测到正的4-20ma,如果不为正的毫安值,必须进行调换。 5、6ES7134-4GB01-0AB02通道模拟量输入(2线制) 两通道分别为(1,2)(5,6)。如图: 2线制即设备的供电与信号线用同一组线。模块的1,5给设备供电24V,电流流方向为从6进,从5出,我们把红表笔接从6处取下的线,另一端接入6,我们可在此获得4-20ma的正电流。 6、6ES7134-4NB01-0AB02通道模拟量输入,TC,温度计数器 两通道分别为(1,2)(5,6)。、可用终端模块TM-E15S24-AT (6ES7193-4CL20-0AA0)。如图:

远程数据采集模块模拟量采集

远程数据采集模块模拟量采集 远程数据采集模块模拟量采集模块,可采集电压、电流、毫伏、各种类型热电阻温度、各种类型热电偶温度,通道类型随意组合。模块采用RS485通讯接口,支持MODBUS-RTU 和自由口通讯协议,可以连接PLC、DCS以及国内外各种组态软件。 输入通道采用双端差动输入。输入、电源、网络及通道之间电气隔离,有效抑制各类共模干扰,消除通道间的相互影响。每个通道的信号类型可以任意设置。 热电阻、热电偶输入有断路检测功能,采集结果为温度值,热电偶输入自动进行冷端温度补偿。 一线通模块具有一阶数字滤波、50Hz工频抑制功能,对抑制工业现场的工频干扰十分有效,保证微弱信号的采集精度,同时,一线通模块具有自动校准、系统校准功能,随时修正由于环境温度变化引起的测量误差,保证一线通模块在整个工作温度范围内的采集精度。 另外,其还有如下主要特性: ●16路多功能模拟量输入通道。 ●14种输入信号类型。 ●通道信号类型随意组合。 ●双端差动输入。 ●自动校准功能。 ●输入电气隔离。 ●RS485通讯接口。 ●MODBUS-RTU协议;自由通讯口协议。 >远程数据采集模块参数 ●通道数量:16路。 ●精度:温度:±(0.1[%]FS+0.1)℃。 ●扫描周期:1秒。 ●分辨率:20位AD。 ●隔离电压:网络隔离1500V;通道间隔离400V。 ●通讯接口:RS485/MODBUS-RTU协议。 ●通讯参数:19200bps/无奇偶校验/1位起始位/1位停止位。 ●通信距离:1200米。 ●通讯介质:普通双绞线 ●外型尺寸:135X58X28mm ●工作电源:24VDC/1瓦。 ●工作环境:温度-20~70℃,湿度≤85[%] RH>远程数据采集模块原理 1、采集信号分析

K-AI01 8通道模拟量输入模块使用说明书

HOLLiAS MACS -K 系列模块 2014年5月B版

HOLLiAS MAC-K系列手册- K-AI01 8通道模拟量输入模块使用说明书 重要信息 危险图标:表示存在风险,可能会导致人身伤害或设备损坏件。 警告图标:表示存在风险,可能会导致安全隐患。 提示图标:表示操作建议,例如,如何设定你的工程或者如何使用特定的功能。

目录 1.概述 (1) 2.接口说明 (3) 2.1模块单元示意图 (3) 2.2IO-BUS (4) 2.3模块的防混淆设计 (6) 2.4模块地址跳线 (7) 2.5现场接口电路原理 (8) 3.状态灯说明 (11) 4.其他特殊功能说明 (13) 4.1抗220V AC功能 (13) 4.2二线制外供电保护 (14) 4.3诊断功能 (15) 4.4冗余功能 (17) 5.工程应用 (18) 5.1底座选型说明 (18) 5.2应用注意事项 (19) 6.尺寸图 (20) 7.技术指标 (20)

K-AI01 8通道模拟量输入模块 1.概述 K-AI01为K系列8通道模拟量通道隔离输入模块,测量范围0~22.7mA模拟信号(默认出厂量程4~20mA),可以按1:1冗余配置使用。无需跳线就可以设置为配电或不配电工作方式,可以接二线制仪表或四线制仪表。 K-AI01模块具备强大的过流过压保护功能,误接±30VDC和过电流都不会损坏。同时,配合增强型底座还可以做到现场误接220V AC不损坏。 K-AI01模块支持带点热插拔、支持冗余配置,具备完善断线、短路、超量程诊断功能,面板设计有丰富的LED指示灯,除指示模块电源、故障、通讯信息外,每个通道也有指示灯,可以方便指示各通道的断线、短路、超量程等信息。 K-AI01模块每个通道可设置不同的滤波参数以适应不同的干扰现场。可以根据工艺需要,配合主控制器的不同运算周期,组成可快可慢的控制回路。 K-AI01模块采用双冗余IO-BUS、双冗余供电工作方式,任意断一根IO-BUS,不会影响其正常工作。 K-AI01模块采用了现场电源和系统电源分开隔离供电。同仪表相连的电路采用现场电源供电,数字电路和通讯电路采用系统电源供电,因此现场来干扰不会影响数字电路和通讯。 K-AI01模块实施喷涂三防漆处理,按照ISA-S71.04-1985标准生产,达到G3防腐等级。 K-AI01模块配套K-A T01、K-A T02、K-A T11、K-A T21和K-DOT01底座使用,通过电缆连接构成完整的电流测量模块单元。模块插在模块底座上,模块底座的接线端子负责接入现场仪表信号,模块负责将模拟信号转换为数字信号,最后通过冗余的IO-BUS送给主控器单元,IO-BUS同时提供冗余的系统电源和现场电源。 如图1-1、图1-2所示,分别为模块非冗余配置和冗余配置的外观结构图。完整的模块单元在系统机柜中的安装位置如图1-3所示:

西门子200SMART模拟量模块怎么接线

西门子200SMART模拟量模块怎么接线 1.普通模拟量模块接线 模拟量类型的模块有三种:普通模拟量模块、RTD模块和TC模块。 普通模拟量模块可以采集标准电流和电压信号。其中,电流包括:0-20mA、4-20mA 两种信号,电压包括:+/-2.5V、+/-5V、+/-10V三种信号。 注意: S7-200 SMART CPU普通模拟量通道值范围是0~27648或-27648~27648。 普通模拟量模块接线端子分布如下图 1 模拟量模块接线所示,每个模拟量通道都有两个接线端。 图1 模拟量模块接线 模拟量电流、电压信号根据模拟量仪表或设备线缆个数分成四线制、三线制、两线制三种类型,不同类型的信号其接线方式不同。 四线制信号指的是模拟量仪表或设备上信号线和电源线加起来有4根线。仪表或设备有单独的供电电源,除了两个电源线还有两个信号线。四线制信号的接线方式如下图2模拟量电压/电流四线制接线所示。

图2 模拟量电压/电流四线制接线 三线制信号是指仪表或设备上信号线和电源线加起来有3根线,负信号线与供电电源M线为公共线。三线制信号的接线方式如下图3 模拟量电压/电流三线制接线所示。 图3 模拟量电压/电流三线制接线 两线制信号指的是仪表或设备上信号线和电源线加起来只有两个接线端子。由于S7-200 SMART CPU模拟量模块通道没有供电功能,仪表或设备需要外接24V 直流电源。两线制信号的接线方式如下图4 模拟量电压/电流两线制接线所示。

图4 模拟量电压/电流两线制接线 不使用的模拟量通道要将通道的两个信号端短接,接线方式如下图 5 不使用的通道需要短接所示。 图5 不使用的通道需要短接 2. RTD模块接线 RTD热电阻温度传感器有两线、三线和四线之分,其中四线传感器测温值是最准确的。S7-200 SMART EM RTD模块支持两线制、三线制和四线制的RTD传感器信号,可以测量PT100、PT1000、Ni100、Ni1000、Cu100等常见的RTD温度传

第六章模拟量输入输出与数据采集卡

第六章模拟量输入输出与数据采集卡 通过本章的学习,使考生掌握D/A,A/D转换的原理和典型芯片,在此基础上了解工业控制计算机常用模板的组成和应用。 要求: (1)了解D/A转换的工作原理和8位,12位D/A转换芯片;D/A转换器与总线的连接和应用方法。 (2)了解A/D转换器的工作原理和指标,熟悉A/D转换的典型芯片和多路转换器,采样保持器的工作原理。 (3)了解数据采集卡的组成和指标及其应用方法,了解工控机配套模板的概况。 一、重点提示 本章重点是D/A,A/D转换器的工作原理,与总线的连接方法。 二、难点提示 本章难点是利用这些芯片和多路开关、采样保持器组成数据采集卡的应用方法。 考核目的:考核学生对微型计算机的模拟通道的构成及工作原理的掌握。 1.数模转换器D/A (1)D/A转换的指标和工作原理 / (2)典型D/A转换器芯片 (3)D/A转换器与总线的连接 2.模数转换器A/D (1)A/D转换器的工作原理(双积分和逐次逼近型A/D转换),A/D转换器主要指标 (2)典型A/D转换器芯片(ADC0809及.12位A/D芯片)的功能和组成,与总线的连接 3.多路开关 (1)数据采集系统对多路开关的要求 (2)几种多路开关芯片 (3)几种多路开关的主要技术参数 4.采样保持器 (1)采样保持器的工作原理 (2)常用的采样保持器芯片 5.数据采集卡的组成及其应用 本章知识结构如下: (一)D/A转换接口 D/A转换器的作用是将二进制的数字量转换为相应的模拟量。D/A转换器的主要部件是电阻开关网络,其主要网络形式有权电阻网络和R-2R梯形电阻网络。 集成D/A芯片类型很多,按生产工艺分有双极型、MOS型等;按字长分有8位、10位、

S7-200模拟量接线

S7-200模拟量模块系列 模拟信号是指在一定范围内连续的信号(如电压、电流),这个“一定范围”可 以理解为模拟量的有效量程。在使用S7-200模拟量时,需要注意信号量程范围,拨码开关设置,模块规范接线,指示灯状态等信息。 本文中,我们按照S7-200模拟量模块类型进行分类介绍: ?AI 模拟量输入模块? 1. ? 2. AO模拟量输出模块 3. AI/AO模拟量输入输出模块 4. 常见问题分析 首先,请参见“S7-200模拟量全系列总览表”,初步了解S7-200模拟量系列的基本信息,具体内容请参见下文详细说明: AI 模拟量输入模块 A. 普通模拟量输入模块: 如果,传感器输出的模拟量是电压或电流信号(如±10V或0~20mA),可以选用普通的模拟量输入模块,通过拨码开关设置来选择输入信号量程。注意:按照规范接线, 尽量依据模块上的通道顺序使用(A->D),且未接信号的通道应短接。具体请参看 《S7-200可编程控制器系统手册》的附录A-模拟量模块介绍。 4AI EM231模块: 首先,模拟量输入模块可以通过设置拨码开关来选择信号量程。开关的设置应用于 整个模块,一个模块只能设置为一种测量范围,且开关设置只有在重新上电后才能 生效。也就是说,拨码设置一经确定后,这4个通道的量程也就确定了。如下表所示:

注:表中0~5V和0~20mA(4~20mA)的拨码开关设置是一样的,也就是说,当拨码 开关设置为这种时,输入通道的信号量程,可以是0~5V,也可以是0~20mA。 ? 8AI EM231模块: 8AI的EM231模块,第0->5通道只能用做电压输入,只有第6、7两通道可以用做电流输入,使用拨码开关1、2对其进行设置:当sw1=ON,通道6用做电流输入;sw2=ON 时,通道7用做电流输入。反之,若选择为OFF,对应通道则为电压输入。 注:当第6、7道选择为电流输入时,第0->5通道只能输入0-5V的电压。 B. 测温模拟量输入模块(热电偶TC;热电阻RTD): 如果,传感器是热电阻或热电偶,直接输出信号接模拟量输入,需要选择特殊的测 温模块。测温模块分为热电阻模块EM231RTD和热电偶模块EM231TC。注意:不同的信 号应该连接至相对应的模块,如:热电阻信号应该使用EM231RTD,而不能使用 EM231TC。且同一模块的输入类型应该一致,如:Pt1000和Pt100不能同时应用在一个热电阻模块上。 热电偶模块TC: EM231 TC支持J、K、E、N、S、T和R型热电偶,不支持B型热电偶。通过拨码设置,模块可以实现冷端补偿,但仍然需要补偿导线进行热电偶的自由端补偿。另外, ?该模块具有断线检测功能,未用通道应当短接,或者并联到旁边的实际接线通道上。 热电阻模块RTD: 热电阻的阻值能够随着温度的变化而变化,且阻值与温度具有一定的数学关系,这 种关系是电阻变化率α。RTD模块的拨码开关设置与α有关,如下图所示,就算同是 Pt100,α值不同时拨码开关的设置也不同。在选择热电阻时,请尽量弄清楚α参数,按 照对应的拨码去设置。具体请参看《S7-200可编程控制器系统手册》的附录A-热电偶和 热电阻扩展模块介绍。

模拟量输入模块AI561

模拟量输入模块AI561 -4个可配置的模拟量输入 -分辨率:11位加标志位或12位 图:模拟量输入模块AI561概述 目录 用途 功能 电气连接 内部数据交换 I/O配置 参数 诊断 显示

测量范围 技术数据 订货信息 用途 模拟量输入模块AI561可在以下设备中作为远程扩展模块使用:?FBP 接口模块DC505-FBP ?CS31 总线模块DC551-CS31 ?PROFINET总线模块(例如 CI501-PNIO) ?AC500 CPUs (PM5xx) 具有以下特点: ?在1个组中有4个可配置的模拟量输入(I0到I3) 输入之间电气隔离。 该模块其他的电气线路没有与输入或I/O总线电气隔离。 功能

电气连接 模拟量输入模块AI561可通过I/O总线连接到以下设备: ?FBP 接口模块DC505-FBP ?CS31 总线模块DC551-CS31 ?PROFINET总线模块(例如 CI501-PNIO) ?AC500 CPUs (PM5xx) ?其他AC500 I/O模块 使用可插拔的9针和11针端子排进行电气连接。这些端子排的连接有所不同(弹簧接线端子或螺钉接线端子,电缆为正面接线或旁侧接线)。更多相关信息,请参见S500-eCo I/O模块的端子排一章。端子排不包含在模块订货范围中,须单独订购。 端子的分配:

通过I/O 总线为模块内的电路提供内部电源(由总线模块或CPU 提供)。因此,每个AI561从CPU 或总线模块的24V DC 电源端子L+/UP 和 M/ZP 消耗10mA 的电流。 外部电源连接到端子L+ (+24 V DC) 和M (0 V DC)。M 端子与CPU 或总线模块的M/ZP 端子电气连接在一起。 该模块提供几种诊断功能 (请参见“诊断”章节)。 下图显示推荐的模拟量输入AI0的内部结构。模拟量输入 AI1 ...AI3 采用相同的设计。 下图显示推荐的连接模拟量传感器(电压)到模拟量输入模块AI561的输入I0的电气连接。I1到I3的连接方法相同。

关于西门子模拟量输入模块接线的阐述

关于西门子模拟量输入模块6ES7 331-7KF02-0AB0接线图的阐述 1.问题概述 我们公司所采用的很多模拟量输入模块的订货号是6ES7 331-7KF02-0AB0, 认真研究该模块接线图后发现很多问题,通过网络查资料,向西门子咨询和同事讨论问题基本解决,经整理后写成本文件,供同事参考,具体描述如下 具体问题: ①端子10(COMP )和端子11(MANA)为什么要短接。 ②端子11(MANA)和端子20(M)为什么要短接。 ③两线制具体怎么接,为什么要这样接。 ④四线制具体怎么接,为什么要这样接。 ⑤两线制和四线制的区别重点在什么地方。 ⑥西门子设备手册中的“使用非隔离电源的接地4线制传感器时,不需要互连MANA和M-(端子11、13、15、17、19)。”这句话怎么理解,我们该怎样处理。 ⑦功能性接地是什么作用。 参考图片 图1西门子设备手册提供的6ES7 331-7KF02-0AB0接线图 图2 6ES7 331-7KF02-0AB0接线端子说明 问题讲解 ①问题“①端子10(COMP )为什么和端子11(MANA)短接。” 端子10(COMP )是用于外部补偿,而Mana是参考电位,一般模拟量输入模块6ES7 331-7KF02-0AB0 使用内部补偿,所以必须将端子10(COMP )与参考电位Mana短接。 ②问题“②端子11(Mana)和端子20(M)为什么要短接。” 端子11(Mana)作为模拟测量电路参考电位,参考电位就是模块供电的DC24V负(-),所以端子11(Mana)和端子20(M)短接。 ③问题“⑤两线制和四线制的区别重点在什么地方。” 区别1:有无独立供电 两线制没有独立外部供电,由模块测量回路供电。 四线制有独立外部供电。 区别2:电流流向 两线制电流由模块流向仪表后流回模块。 四线制电流由仪表流向模块后流回仪表。

基于STM32的多路模拟量数据采集设计说明

毕业设计 题目:基于STM32的多路模拟量数据采集系统设计 学生: 学号: 学院:电气与信息工程学院

专业:电气工程及其自动化指导教师: 2016年6月10日

基于STM32的多路模拟量数据采集系统设计 摘要 本文介绍了基于STM32的数据采集的硬件设计和软件设计,数据采集系统是模拟域与数字域之间必不可少的纽带,它的存在具有着非常重要的作用。本文介绍的重点是数据采集系统,而该系统硬件部分的重心在于单片机芯片。数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机STM32来实现,硬件部分是以单片机为核心,还包括显示模块和串行接口部分。该系统由程序直接控制STM32芯片。3路被测电压通过DMA专用通道采集,将数据传输向STM32自带的模数转换模块进行模数转换,实现对采集到的数据进行模拟量到数字量的转换,并将转换后的数据通过STM32通过GPIO口控制液晶屏来显示所采集的结果。软件部分应用C语言编写控制软件,对数据采集系统、模数转换系统、数据显示、数据通信等程序进行了设计。 关键词:数据采集,STM32,模数转换

The Design of Multi-channel Data Acquisition System Based on STM32 ABSTRACT This paper introduces the hardware design and software design of data acquisition based on STM32. The data acquisition system is an indispensable link between analog and digital domains. It plays a very important role. The focus of this article is the data acquisition system, and the focus of the hardware part of the system is the single-chip microcomputer chip. Data collection and communication control use a modular design and use STM32 MCU to realize themsleves. The hardware part is a single-chip microcomputer as the core, and it also includes a display module and the serial interface. The system is directly controlled by the program STM32 chip. Three-measured voltage uses a dedicated DMA channel data acquisition and the data transmission to get the STM32 built-in ADC analog digital conversion module, and it realizes the data acquisition through the digital conversion, and converts the data through the STM32 , GPIO to control LCD screen and display the collected results. Software part of the application of C software use the data acquisition system, analog digital conversion system, data display, and data communications and other procedures to design. Key words:data acquisition,STM32,ADC

西门子模拟量输入模块SM331接线方法总结

P L C 接法 西门子模拟量输入模块S M 331接线方法总结 两线制电流和四线制电流都只有两根信号线,它们之间的主要区别在于:两线制电流的两根信号线既要给传感器或者变送器供电,又要提供电流信号;而四线制电流的两根信号线只提供电流信号。因此,通常提供两线制电流信号的传感器或者变送器是无源的;而提供四线制电流信号的传感器或者变送器是有源的,因此,当P L C 的模板输入通道设定为连接四线制传感器时,P L C 只从模板通道的端子上采集模拟信号,而当P L C 的模板输入通道设定为连接二线制传感器时,P L C 的模拟输入模板的通道上还要向外输出一个直流24V 的电源,以驱动两线制传感器工作。 传感器型号:1、两线制(本身需要供给24v D C 电源的,输出信号为4-20M A ,电流)即+接24v d c ,负输出4-20m A 电流。 2、四线制(有自己的供电电源,一般是220v a c ,信号线输出+为4-20m a 正,-为4-20m a 负。 P L C : (以2正、3负为例)1、两线制时正极2输出24V D C 电压,3接收电流),所以遇到两线制传感器时,一种接法是2接传感器正,3接传感器负;跳线为两线制电流信号。二种接法是2悬空,3接传感器的负,同时传感器正要接柜内24v d c ;跳线为两线制电流信号。 (以2正、3负为例)2、四线制时正极2是接收电流,3是负极。(四线制好处是传感器负极信号与柜内M 为不同电平时不会影响精度很大,因为是传感器本身电流的回路)遇到四线制传感器时,一种方法是2接传感器正,3接传感器负,p l c 跳线 为4线制电流。 (以2 正、3负为例)3、四线制传感器与p l c 两线制跳线接法:信号线负与柜内M 线相连。将传感器正与p l c 的3相连,2悬空,跳线为两线制电流。 (以2正、3负为例)4、电压信号:2接传感器正,3接传感器负,p l c 跳线为电压信号。 第 1 页4线制与2线制注意区别地是否相同? 这2个为2线制的解释。 传感器,变送器 此时plc 跳线为4线制。 跳线为2线制。

EM231 AI4X12bit模拟量输入模块

TrustPLC EM231 NTC混合模拟量输入扩展模块用户手册 1.用途 EM231 NTC混合模拟量输入扩展模块(订货号:CTS7 231-7ND32,后面简称“EM231 NTC模块”)是CTS7-200 PLC系统的模拟量扩展模块,提供4通道模拟量采集,其中两通道用于连接热敏电阻NTC 温度传感器或热电阻PT100温度传感器,另外两个通道用于采集电压/电流信号输入,所有通道的输入精度(含符号位)均为16BIT。主要用于灭菌设备或中央空调设备等既有温度测量需求又有压力信号测量需求的场合。 2.产品规格 功能规格项目CTS7 231-7ND32 电源 总线电源消耗0.12W L+ 37mA L+电压范围20.4-28.8VDC LED指示灯电源指示良好ON=24VDC供电正常,OFF=无24VDC供电SF:ON=模块故障,闪烁=输入信号错误,OFF=无错 输入信号 热电阻/热敏电阻输入范围热电阻类型(任选一种): Pt-100 (3850ppm,3920ppm,3850.55ppm,3916ppm 3902ppm) NTC(R25=10k? B=3950, R25=10k?B=3435) 电压输入-5V~5V,-10V~10V,0V~5V,0V~10V 电流输入0~20mA 输入点数4,2PT100/2NTC和2AI 隔离特性 现场至逻辑500VAC 现场至24VDC 500VAC 24V到逻辑500VAC 共模抑制>120dB@120VAC 采样性能 温度分辨率0.1℃/0.1℉ 电压分辨率15位+符号位 测量原理Sigma-Delta 模块更新时间(所有通道)425ms 到传感器的导线长度最大100米 导线回路电阻20?

4~20mA电流模拟量输入RS485数据采集模块

M-IF16C用户手册V1.1 基于Modbus的16路电流型模拟量输入模块 1 产品简介 M-IF16C(基于Modbus的16路电流型模拟量输入模块)作为通用型模拟量量采集模块广泛应用于冶金、化工、机械、消防、建筑、电力、交通等工业行业中,可接入16路温度、湿度、液位、压力、流量、PH值等传感器输出的0~20mA 或4~20mA模拟量信号。支持标准的Modbus RTU 协议,并具有通讯超时检测功能,可同其它遵循Modbus RTU 协议的设备联合使用。 1.1 系统概述 M-IF16C模块的原理框图如图1.1所示,模块主要由电源电路、模拟量输入采样电路、隔离RS485收发电路及MCU等部分组成。采用高速ARM处理器作为控制单元,拥有隔离的RS485通讯接口,具有ESD、过压、过流保护功能,避免了工业现场信号对模块通讯接口的影响,使通讯稳定可靠。 图1.1 原理框图 1.2 主要技术指标 1)系统参数 供电电压:5~40VDC,电源反接保护 功率消耗:0.5W

工作温度:-10℃~60℃ 存储温度:-40℃~85℃ 相对湿度:5%~95%不结露 2)模拟量输入参数 输入路数:16路单端输入 正常输入范围:0~20mA,4~20mA 最大输入范围:0~21mA 隔离电压:2500VDC 输入电阻:120Ω ADC分辨率:12位 采样精度:0.5% 采样速率:100次/s 3)通讯接口 通讯接口:RS485 接口,隔离1500VDC,±15kV ESD 保护、过流保护 隔离电压:1500V 通讯协议:Modbus RTU 协议 波特率:1.2k,2.4k,4.8k,9.6k,19.2k,38.4k,57.6k,115.2k 通讯数据格式:1个起始位,8个数据位,无、奇或偶校验,1个或2个停止位 1.3 外形及尺寸 外壳材料:ABS工程塑料 尺寸大小:145mm(长) * 90mm(宽) * 40mm(高) 安装方式:标准DIN35导轨安装和螺钉安装 模块外形如图1.2所示,安装尺寸如图1.3所示。

所有模拟量模块接线问题

抓住一点,模拟量接线问题迎刃而解(一)——确定基准电位点很重 要 2013-03-04 今天,一个新来的热线同事找我讨论模拟量模块的问题,他在热线上遇到了一些麻烦,用户打电话反映在现场的S7 300模拟量模块读数不变化,怎么折腾都读数是32767。尽管模拟量模块大家都很熟悉,但是类似的问题还经常有用户反应。翻了翻手边的资料,似乎没有系统讲解这个问题的,于是把自己的经验归纳总结一下。既然是经验,放在下载中心似乎不太合适,就放在自己的故事里吧。故事写完,想必也会有个比较正式的版本放在下载中心。 在我看来,想解决这样的问题,最根本的是要抓住一点。有的用户可能迫不及待地想知道哪一点了,但是这一点涉及的知识面还是有些宽。平时也忙,我会断断续续的写,大家耐心看完这个系列,就可以抓住这一点了。 关于读不出值的问题,如果总是32767没有变化,其实值已经有了,只不过是超量程了。如果值为0,那就要注意模拟量是否有问题了,使用万用表测量现场信号并没有超限。为什么会出现这两种现象呢?这是因为选择的参考电位不同,例如,现场过来的信号为5V,那首先要问一下,基准点是几伏?10~15 是5V,-10~ -5同样也是5V,如果测量端基准点是0V,那么测量就会有问题,所以一定要保证两端等电位。模拟量模块的基准电位点就是M ANA ,所有的接线都与之有关。在接下来的故事中,咱们就仔细讲讲接线的问题。 抓住一点,模拟量接线问题迎刃而解(二):隔离与非隔离问题系列 2013-03-11 这里的隔离是指模拟量模块的基准电位点M ANA 与地(也是PLC的数据地)隔离。 隔离模块M ANA 与地M可以不连接,以M ANA 作为测量端的参考电位;非隔离模块 M ANA 与地M必须连接,这样地M 变为M ANA 作为测量端的参考电位。隔离模块的 好处就是可以避免共模干扰。如何知道模块是否是隔离模块,例如SM331模块,可以从模板规范中查到。S7-300中只有一款SM334(SM355除外)模块是非隔离的,此外CPU31XC集成的模拟量也是非隔离的,共同特点就是模块的输出和输入公用M端。 同样传感器也有隔离与非隔离的问题。通常非隔离的传感器电源的负端与信号的负端公用一个端子,例如传感器有三个端子 L, M 和S+,通过L, M端子向传感器供电,S+,M为信号的输出,公用M端。判断传感器是否隔离最好还是参考手册。隔离传感器信号负端与地M可以不连接,以信号负端作为信号源端的参考电位。非隔离传感器信号负端必须在源端(设备端)接地,以源端的地作为信号的参考电位。 下面就是如何保证测量端与信号源端等电位接线的问题。在下面建议的连接图中所用的缩写词和助记符含义如下: M +:测量导线(正) M -:测量导线(负) M ANA :模拟量模块基准电位点 这里需要注意M ANA ,不同的接线方式都是以M ANA 为参考基准电位。

组态王与多个模拟量采集模块进行通讯

使用组态王与多个模拟量采集模块通讯如何使用组态王软件与多个模拟量采集模块通讯,构成一个采集系统呢?其实做起来很简单,采集模块一般都支持485通讯,只需要将几个采集模块用485数据线并联起来,再用232转485模块与电脑相连,就可以用组态王进行数据通讯了。连接示意图如下: 以下示例中就展示如何通过组态王进行简单配置与四个模拟量采集模块组成一个简单采集系统的过程。 首先根据需要采集的数据的信号类型及量程选择采集模块,本示例中选用DAQM-4202,它具有8个模拟量采集通道,并且每个通道都能按照需要设置量程。 打开产品自带光盘,使用上位机软件设置采集模块的通讯参数、设备地址以及每个通道的采集量程。本示例中分别设置四个采集模块地址为1、2、3、4,波特率9600、无校验。分别按照需要设置个模块量程,有-10 ~ 10V, 0 ~ 20mA等多个量程可选。

接下来要在组态王中配置相应设备。打开组态王软件,新建一个项目,在左侧设备选项中,选择COM1,双击新建,在弹出窗口中选 择设备驱动PLC 莫迪康ModbusRTU 。

接下来点下一步,按照提示分别设置设备名称、设备地址、通讯方式

等内容。分别将四个模块添加到设备组态中。 接下来在数据库选项中选择数据词典,添加每个采集通道对应的变量。点击新建,在弹出窗口中设置变量的名称、选择变量类型为I/O 实数,最小原始值0、最大原始值65535,此处的最大值最小值为选择量程的上下限,按需要填写。下方设备连接选择刚添加的采集模块,每个通道寄存器地址可以从说明书中查到,数据类型选择USHORT。

以此类推,分别添加每个通道的采集值变量。 在画面选项中新建一个窗口,添加文本显示控件,连接到建立好的数据变量上之后,简单的采集系统就搭建完成。 保存工程,用串口通过232转485模块将采集模块连接到电脑上,运行新建的工程,在采集模块采集通道上加上相应的信号,就能在电脑

(完整版)基于单片机的模拟量数据采集系统设计本科毕业设计

基于单片机的模拟量数据采集系统设计

摘要 随着计算机技术的飞速发展和普及,数据采集系统也得到了广泛的应用。微机在通用自动化、信息处理、信息系统等方面得到广泛的应用。在冶金、化工、医疗等应用场合,需要对很多信号进行采集,预处理,暂存和对上位机的传输。再由上位机对数据进行分析处理。 本文设计的模拟量采集系统采用上位机、下位机通信方式运行。由上位机实现对下位机的控制和数据采集的显示,下位机实现模拟量的采集过程。下位机硬件设计采用AT89C52单片机为控制核心,采用ADC0808将模拟量进行转化为数字量进行采集,完成了模拟量采集系统的硬件设计。采用RS-232进行串口通信。结果证明,该设计方法可行,实现了离散量采集系统的自动化,克服了传统数据采集的弊端,应用具有良好的前景和使用价值。 关键词:模拟量采集系统;单片机;通信

Abstract Along with the rapid development of computer technology and popularization, data acquisition system is also widely application. Microcomputer is widely applied in general automation, information processing and information system etc . Signal acquisition, pretreatment, temporary and PC transmission is needed by metallurgy, chemical, medical care and other applications。The design is a discrete variables acquisition system with upper and lower operating mode. The PC machine controls the lower machine and display the date, and the lower machine realizes data collection. Hardware design of digital machines AT89C52 single-chip design Used for RS-232 serial communication, you can relay through the computer to control the realization of the bright lights out billiards control and manual control switch can monitor. The results proved that the design method is feasible to achieve a billiards automated agency management system to overcome the drawbacks of traditional management methods, the application system; communication

模块模块型号接线方式说明SM

模块模块型号接线方式说明(SM)

————————————————————————————————作者:————————————————————————————————日期: ?

模块型号接线方式说明 再进行描述之前,我们首先介绍通道,一个通道即为一个点,可为AI,AO,DI,DO。 1、6ES7 131-4BD01-0AA0 4通道数字量输入 4个通道分别为1,5,2,6。额定输入电压24 VDC 适用于开关以及接近开关。如图: 图上1、5、2、6,分别代表一个数字量输入点。图中的断开处可以是一个开关,一个按钮,当开关处于闭合状态时,我们将万用表的一只表笔处于1(5,2,6)端子处,另一只表笔接地或接0V可测得24V电压。可用终端模块TM-E15S24-01(6ES7193-4CB20-0AA0)。终端模块即我们所说的插槽,螺钉型的接线端。也可用TM-E15S26-A1(6ES7193-4CA40-0AA0),该类型的终端模块带有A7,A3,A4,A8接线端。 2、6ES7132-4BD02-0AA04通道数字量输出(24V/0.5A) 4个通道分别为(1,3)(5,7)(2,4)(6,8)。带四个输出的数字电子模块,每个输出的输出电流为0.5A,额定负载电压24 VDC,适用于电磁阀、直流接触器和指示灯。如图: 该类型模块的5(1,2,6)输出一个高电平(24V)进设备,然后回到该类型模块的低电平7(3,4,8)。当有信号输出时我们可在5(1,2,6)和7(3,4,8)处测得24V电压。 3、6ES7132-4BD32-0AA0个通道分别为(1,3)(5,7)(2,4)(6,8)。如图: 4通道数字量输出(24V/2A)该类型模块与2相同,只是为输出24V,2A。接线方式同2。 4、6ES7 134-4GB11-0AB0 2通道模拟量输入(4线制) 两个通道分别为(1,2)(5,6)。如 图:

PLC模拟量输入输出模块

PLC模拟量输入、输出模块低成本扩展的一种方法 1 引言 可编程控制器(以下简称PLC)由于其高可靠性、编程简单、通用性强、体积小、结构紧凑、安装维护方便等特点,而在工业控制中得到了广泛应用。PLC的模块一般分为以下几大类:开关量输入模块、开关量输出模块、模拟量输入模块、模拟量输出模块。在工业控制中特别是过程控制领域中需要采集和控制的模拟量比较多,因而对PLC的模拟量输入、输出模块需要的较多,而模拟量输入、输出模块比较贵,增加模拟量输入、输出模块就增加了成本,降低了整个系统的性价比,限制了PLC的应用。本文提出了一种基于通讯的模拟量输入、输出模块的扩展方法力图解决这一问题。 2 基于通讯的模拟量输入、输出模块的扩展方法 (1) 模拟量输入模块扩展 这里以一路12位模拟量输入为例,模拟信号以0~5V标准电压的形式送入信号输入端,应用12位A/D转换芯片MAX187实现模数转换。MAX187是12位串行A/D,具有较高的转换速度,采样频率是75kHz,适用于较高精度的过程控制。考虑到实际工业现场中的高频干扰,在采样信号送MAX187之前还使用了低通滤波器滤波,如图1所示。

图1 低通滤波、放大器及A/D转换 MAX187具有内部参考电压,既4#管脚(REF)为4.096V,因此,A/D 转换的全量程为4.096V。而输入信号是0~5V,因此,要加一级运放把0~5V转换成0~4.096V后送入MAX187。AT89C52的P1.3和MAX187的片选端(CS)相连、AT89C52的P1.4和MAX187的串行时钟信号端(SCLK)相连、AT89C52的P1.5和MAX187的串行数据输出端(DOUT)相连。模拟量采样的值存入单片机的内存中,再由单片机的串行口传送给PLC。A/D转换的C51程序如下: #include #include sbit IC4_S = P1^4; /* AD输入端口设置*/ sbit IC4_D = P1^5; sbit IC4_C = P1^3;

相关文档
最新文档