分散液液微萃取—高效液相色谱法测定食品中农药的含量

分散液液微萃取—高效液相色谱法测定食品中农药的含量
分散液液微萃取—高效液相色谱法测定食品中农药的含量

分散液液微萃取—高效液相色谱法测定食品中农药的

含量

张良温指导教师:翦英红

(吉林化工学院环境与生物工程学院环境科学0501班,吉林吉林132022)

摘要:本实验采一种较新的提取分析食品中农药(以阿特拉津为例)残留的方法——分散液液微萃取—高效液相色谱法。分散液液微萃取条件优化后为:水样体积:6mL;萃取剂:氯苯,30.0μL;分散剂:丙酮,1.0mL;离心时间:4min,盐度为4.5%,pH=5.5。最佳条件下,富集因子(EF)和萃取回收率(ER)分别介于105.71-129.19和45.81% - 58.28%。阿特拉津的最低检出限为1μg/L。水样中阿特拉津在加标浓度为40、60、80 μg/L的相对回收率分别为50.72% - 52.95%,45.81% - 52.16%和51.68% - 58.28%。此种方法测定食品浸出液中阿特拉津方便,快速。

关键词:分散液液微萃取;阿特拉津;高效液相色谱法;萃取回收率阿特拉津(atrazine)又名莠去津,化学名:为2-氯4-乙氨基-6一异丙氨基.1,3,5-三嗪,系均三氮苯类农药,常温下,阿特拉津的纯品是无色、无臭晶体,,分式:C18H14ClN5,熔点173~175 ℃,在25℃时,蒸汽压为38.5 μPa,水中溶解度为33 mg/L。在微酸及微碱介质中稳定,但在高温下,碱和无机盐可将其水解为无除草活性的羟基衍生物[23]。

阿特拉津是~种在世界范围内广泛使用的中等偏低毒性除草剂,曾被认为是生态安全的除草剂,但由于使用量大、残留期长,农田施用后随着地表径流、淋溶、沉降等多种途径进入地表水和地下水,阿特拉津的残留物在世界许多国家和地区的地表水和地下水中已有检出。近来不断有阿特拉津污染事件的报道,已有的研究证明阿特拉津对动物的生殖功能有极大的影响,被世界野生动物基金会列为环境荷尔蒙(内分泌干扰剂)的可疑物质,有扰乱内分泌的作用,是人类潜在的致癌物。由于阿特拉津被认为是一种最具污染力的农药,目前,包括德国、法国、瑞典在内的欧洲7个圈家禁止使用。

分散液液微萃取(DLLME)技术由于其萃取时间短、操作简便,是水样分析的前处理方法之一,它建立于三相溶剂体系。在分散剂的作用下,萃取剂以微小

液滴的形式分散在样品溶液中,形成乳浊液,从而对溶液中的分析物进行微萃取。采用离心,可将萃取剂沉积于溶液底部,与溶液分离。本文将分散液液微萃取技术应用于食品水样中痕量阿特拉津的萃取、富集,确定了水样中阿特拉津的最佳DLLME条件,并最终建立了阿特拉津的分散液液微萃取一高效液相色谱测定方法。

1 实验部分

1.1 试剂

阿特拉津,丙酮、乙腈、甲醇、氯苯、四氯乙烯、四氯化碳,均为色谱纯。氯化钠(分析纯),氢氧化钠(分析纯),盐酸(优级纯)。

1.2 仪器

LC一20AT高效液相色谱仪:手动进样器、柱加热器、Primo/PrimoR多用途台式高速离心机,10 mL戴帽锥形玻璃离心管,50 L微型注射器,2.00 mL注射器,1mL移液管,2mL试样瓶,0.22μ纤维滤膜,吸耳球,1L大烧杯,250mL 量筒便携式pH计。

1.3 水样中阿特拉津的DLLME技术

6.0 mL水样加入锥形玻璃离心管中。1.0 mL分散剂和30μL萃取剂混合均匀后,用2.00 mL注射器快速注入离心管中。轻轻摇晃后,离心管内的溶液马上乳化、混浊,并最终产生乳浊状溶液。这主要是溶液内形成了萃取剂小液滴,阿特拉津萃取到小液滴中。在4000 rpm转速下离心10min,萃取剂液滴沉积到离心管底部,形成内含阿特拉津的沉积相。移取10μL沉积相,注入HPLC系统中进行分析。

1.4 色谱条件

流动相:甲醇:水(80/20,v/v),流量1.0mL/min;色谱柱:Diamonsil C18,柱温30℃;

检测波长:225nm;进样量:10 μL。

1.5 实验水样制备

购买于早市的黄瓜,西红柿,小白菜,分别取以上三种蔬菜各250g分别放

高效液相色谱方法的验证

高效液相色谱方法的验证 ?方法验证的目的 ?方法验证的内容 ?方法验证的项目及测定方法

方法验证的目的 目的:证明采用的方法适合相应检测的要求。 方法验证是实验室针对特定方法的研究过程,通过设计方案,有步骤、系统地收集、处理实验数据,最终形成文件,以证明所用试验方法准确、灵敏、专属并重现。同一分析方法用于不同的检测项目会有不同的验证要求。

方法验证的内容 ?准确度 ?精密度 ?专属性 ?检测限 ?定量限 ?线性和范围 ?耐用性

准确度 定义:方法测定结果与真实值或参考值的接近程度。一般用回收率%表示。 1. 主成分含量测定 原料药:对照品或方法比对 2. 制剂、中药:标准加样回收 杂质定量 测定:加样回收(n 3 9) 杂质对照品 方法比对 回收率 C-A %=′ B 100% 杂质与主成分的相对含量 A:试验供试品中被测成分的量 (通常为含量测定量的50%) B: 试验供试品中加入的对照品的量 (通常为±20%) C:试验测定值

精密度 定义:在规定测试条件下,同一个均匀供试品,经多次取样测定所得结果之间的接近程度。一般用偏差,相对偏差和相对标准偏差 1. 重复性(n 9) 3 2. 中间精密度 3. 重复性 测定:HPLC方法的精密度测试,应从样品制备开始,设计3个浓度, 分别平行制备3份,以测定含量计算相对标准偏差;或同一样品平行制备6份供试品,分别进样,以峰面积计算相对标准偏差。 同一份供试品连续进样6次,计算得到的相对标准偏差只能表征进样精密度,不能作为方法精密度。

专属性 定义:在其它成分可能存在下,方法能正确测定出被测物的特性。 1. 鉴别反应 2. 含量测定 杂质测定 测定: 限量检查 空白制剂,模拟复方 加速破坏试样测试 DAD峰纯度检查

高效液相色谱(HPLC)法测定邻苯二甲酸酯

实验七高效液相色谱(HPLC)法测定邻苯二甲酸酯 一.实验目的 1、学习高效液相色谱仪的基本操作方法。 2、了解高效液相色谱仪原理和条件设定方法。 3、了解高效液相色谱法在日常分析中的应用。 二.实验原理 高效液相色谱法是以液体作为流动相,借助于高压输液泵获得相对较高流速的液流以提高分离速度、并采用颗粒极细的高效固定相制成的色谱柱进行分离和分析的一种色谱方法。 在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。反之,则称为正相色谱分离系统。反相色谱系统所使用的流动相成本较低,应用也更为广泛。 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R)的计算公式为: R= 2[t (R2)-t (R1) ] /1.7*(W 1 +W 2 ) 式中 t (R2)为相邻两峰中后一峰的保留时间; t (R1) 为相邻两峰中前一峰的保留 时间; W 1及W 2 为此相邻两峰的半峰宽。除另外有规定外,分离度应大于1.5。 本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE,常被用作塑料增塑剂。它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。待测物性质见表1。 表1色谱柱测试条件 如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC分离检测。

三.仪器与试剂 1、仪器 Agilent 1100高效液相色谱仪,50ul微量注射器。 2、试剂 甲醇(色谱专用),高纯水 四.实验步骤 1、色谱条件 色谱柱:辛烷基硅烷键合硅胶(C8) 柱温:室温 流动相:初始为高纯水:30%,甲醇:70% 检测器:DAD检测器; 检测波长:220nm; 进样体积:100μl定量环,实际注射每次可控制在200μl。 2、待测溶液的配制 首先用甲醇做溶剂配制储备液:邻苯二甲酸二甲酯(0.3880g/L),邻苯二甲酸二乙酯(0.2770g/L),邻苯二甲酸二丁酯(0.3776g/L)。然后各取1mL储备液用水和甲醇(20:80)稀释至10mL,作为待测溶液。 3、色谱测定 (1) 按操作规程开启电脑,开启脱气机、泵、检测器等的电源,启动Agilent 1100在线工作软件,设定操作条件。流量为1.000ml/min。 (2) 待仪器稳定后,开始进样。将进样阀柄置于“LOAD”位置,用微量注射器吸取混合物溶液50ul,注入仪器进样口,顺时针方向扳动进样阀至“INJECT”位置,此时显示屏显示进样标志。 (3) 记下各组分色谱峰的保留时间及峰面积及分离比。 (4) 实验完毕,清洗系统及色谱柱。依次用甲醇-水(60:40)、甲醇-水(70:30)……直到纯甲醇作流动相清洗,每次清洗至基线走稳,至少清洗15min。 五.实验结果

高效液相色谱法测定甲硝唑的含量

实验二高效液相色谱法测定甲硝唑的含 量 一、实验目的 1.熟悉高效液相色谱仪主要结构组成及功能。 2.了解反相色谱法的原理、优点和应用。 3.了解流动相的选择依据及配制方法。 4.掌握高效液相色谱法进行定性和定量分析的基本方法。 二、实验原理 高效液相色谱法是采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱进行分离测定的色谱方法。注入的供试品,由流动相带入柱内,各成分在柱内被分离,并依次进入检测器,由数据处理系统记录色谱信号。本实验以甲硝唑为测定对象,以反相HPLC来分离检测未知样中甲硝唑的含量。以甲硝唑标准系列溶液的色谱峰面积对其浓度进行线性回归,再根据样品中甲硝唑的峰面积,由线性方程计算其浓度。 三、实验内容 (一)实验仪器与材料 1.实验仪器:高效液相色谱仪、精密天平、50mL烧杯、玻璃棒、称量纸、10mL容量瓶、50mL 容量瓶、注射器、洗瓶。 2.实验材料:甲硝唑原料、蒸馏水、HCl(0.1mol/L)、乙腈、三氟乙酸、超纯水。 (二)实验内容 1、色谱操作条件的制定: 色谱柱:C18柱(250×4.6mm,5μm); 流动相:乙腈:0.02%三氟乙酸水溶液(20:80) 流速:1mL/min 检测波长:277nm 柱温:35℃ 进样量:20μL 2、标准溶液配制 精密称取在105℃条件下干燥至恒重的甲硝唑对照品10mg,置于50mL容量瓶中,用0.1mol/L的HCl溶液溶解并定容至刻度,即得浓度为0.2mg/mL的甲硝唑标准储备液,备用。 3、标准曲线的建立 (1)精密量取甲硝唑标准储备液分别为0.3mL、0.5 mL、0.7 mL、0.9 mL、1.1 mL置于10 mL的容量瓶中,然后用0.1mol/L的HCl溶液定容至刻度,得到浓度梯度为6μg/mL、10μg/mL、14μg/mL、18μg/mL和22μg/mL的标准溶液,分别过0.22μm的微孔滤膜过滤,滤

高效液相色谱法测定有机化合物的含量

实验四高效液相色谱法测定有机化合物的含量 [目的要求] 1、了解仪器各部分的构造及功能。 2、掌握样品、流动相的处理,仪器维护等基本知识。 3、学会简单样品的分析操作过程。 [基本原理] 高效液相色谱仪液体作为流动相,并采用颗粒极细的高效固定相的主色谱分离技术,在基本理论方面与气相色谱没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质差别。与气相色谱相比,高效液相色谱对样品的适用性强,不受分析对象挥发性和热稳定性的限制,可以弥补气相色谱法的不足。 液相色谱根据固定向的性质可分为吸附色谱、键合相色谱、离子交换色谱和大小排阻色谱。其中反相键合相色谱应用最广,键合相色谱法是将类似于气相色谱中固定液的液体通过化学反应键合到硅胶表面,从而形成固定相。若采用极性键合相、非极性流动相,则称为正相色谱;采用非极性键合相,极性流动相,则称为反相色谱。这种分离的保留值大小,主要决定于组分分子与键合固定液分子间作用力的大小。 反相键合相色谱采用醇-水或腈-水体系作为流动相,纯水廉价易得,紫外吸收小,在纯水中添加各种物质可改变流动相选择性。使用最广泛的反相键合相是十八烷基键合相,即让十八烷基(C18H37―)键合到硅胶表面,这也就是我们通常所说的碳十八柱。 [仪器试剂] 高效液相色谱仪(包括储液器、高压泵、自动进样器、色谱柱、柱温箱、检测器、工作站)、过滤装置 待测样品(浓度约100 ppm)、甲醇、二次水 [实验步骤] 1、仪器使用前的准备工作 (1)样品与流动相的处理 配好的溶液需要用0.45 μm的一次性过滤膜过滤。纯有机相或含一定比便例有机相的就要用有机系的滤膜,水相或缓冲盐的就要用水系滤膜。 水、甲醇等过滤后即可使用;水放置一天以上需重新过滤或换新鲜的水。含稳定剂的流动相需经过特殊处理,或使用色谱纯的流动相。 (2)更换泵头里清洗瓶中的清洗液 流动相不同,清洗液也不同,如果流动相为甲醇-水体系,可以用50%的甲醇;如果流动相含有电解质,通常用95%去离子水甚至高纯水。 如果仪器经常使用建议每周更换两次,如果仪器很少使用则每次使用前必须更换。(3)更换托盘里洗针瓶中的洗液 洗液一般为:50%的甲醇。

高效液相色谱法的标准操作规程

高效液相色谱法的标准操作规程 1 定义及概述: 1.1 高效液相色谱法是一种现代液体色谱法,其基本方法是将具不同极性的单一溶剂或不同比例的混合溶液作为流动相,用高压输液泵将流动相注入装有填充剂的色谱柱,注入的供试品被流动相带入柱内进行分离后,各成分先后进入检测器,用记录仪或数据处理装置记录色谱图或进行数据处理,得到测定结果。由于应用各种性质的微粒填料和加压的液体流动相,本法具有分离性能高、分析速度快的特点。 1.2 高效液相色谱法适用于能在特定填充剂的色谱柱上进行分离的药品的分析测定,特别是多组分药品的测定、杂质检查和大分子物质的测定。有的药品需要在色谱分离前或后经过衍生化反应,方能进行分离或检测。常用的色谱柱填充剂有:硅胶,用于正相色谱;化学键合固定相,根据键合的基团不同可用于反相或正相色谱,其中最常用的是十八烷基硅烷(又称ODS)键合硅胶,可用于反相色谱或离子交换色谱;凝胶或玻璃微球等填充剂是有一定孔径的大孔填料,用于排阻色谱。 1.3 高效液相色谱仪基本由泵、进样器、色谱柱、检测器和色谱数据处理组成。检测器最常用的为可变波长紫外检测器或紫外—可见检测器。色谱信息的收集和处理常用积分仪或数据工作站进行。梯度洗脱,可用两台泵或单台泵加比例阀进行程控实现。 2 高效液相色谱仪的使用要求: 2.1 按国家技术监督局国家计量检定规程汇编中“实验室液相色谱仪检定规程”的规定作定期检定,应符合规定。 2.2 仪器各部件应能正常工作,管路为无渗漏连结,流路中无堵塞或漏液,在设定的检测器灵敏度条件下,色谱基线噪音和漂移应能满足分析要求。 2.3 具体仪器在使用前应详细参阅各操作说明书。

高效液相色谱法测定氨基酸

脑蛋白水解物溶液氨基酸含量分析方法研究方案 1、仪器与试药 1.1 仪器 1525型高效液相色谱仪(美国Waters公司);Waters1525型泵,Waters2487型检测器,Waters5CH 型柱温箱,WatersBREEZE数据处理软件,水浴恒温器(精度±0.1℃),旋涡器,微量移液器,衍生专用管;CP225D型分析天平(德国);4umNora-Pak TM C18(3.9mm×150mm,5μm)色谱柱(美国) 1.2 药品与试剂 16种氨基酸(门冬氨酸、丝氨酸、谷氨酸、甘氨酸、组氨酸、精氨酸、苏氨酸、丙氨酸、脯氨酸、缬氨酸、甲硫氨酸、赖氨酸、异亮氨酸、亮氨酸、苯丙氨酸、色氨酸)由中国药品生物制品检定所提供。 脑蛋白水解物注射液,云南盟生药业有限公司生产,规格10ml/支。批号:2013、2013、2013. 乙腈(HPLC级);EDTA(分析纯);磷酸(分析纯);二乙胺(分析纯);三水合乙酸钠(分析纯)。2、方法与结果 2.1色谱条件流动相A为AccQTag醋酸—磷酸盐缓冲液;由AccQTagEluent A浓缩制备AccQTag洗脱液,用前稀释10倍(或按以下方法配制:称19.04g三水合乙酸钠,加1000ml纯化水,搅拌,溶解,用50%H3PO4将pH调至5.2,加入1ml 1mg/ml的EDTA溶液,加入2.37ml二乙胺,用50%H3PO4滴定至pH4.95,用水溶性过滤器过滤,超声,脱气,备用。);流动相B为60% HPLC级乙腈,按梯度表梯度洗脱;流速1.0ml/min;检测波长为254nm;进样量5μl;柱温38℃。

时间 (min) 流速 (ml/min) % A % B 曲线 起始 1.0 100 0 * 0.5 1.0 98 2 6 15.0 1.0 93 7 6 19.0 1.0 90 10 6 32.0 1.0 65 35 6 33.0 1.0 65 35 6 34.0 1.0 0 100 6 37.0 1.0 0 100 6 38.0 1.0 100 0 6 42.0 1.0 100 0 6 2.2对照品溶液、供试品溶液的制备分别精密称取16种氨基酸标准品,用纯化水配制成浓度如下表 所示的混合溶液。 名称浓度(mg/ml)名称浓度(mg/ml)名称浓度(mg/ml)门冬氨酸 4.80 苏氨酸 1.20 异亮氨酸 1.10 丝氨酸 2.60 丙氨酸 2.50 亮氨酸 2.70 谷氨酸 6.20 脯氨酸 2.00 苯丙氨酸 1.20 甘氨酸 2.40 缬氨酸 1.60 色氨酸0.40 组氨酸0.90 甲硫氨酸 1.00 精氨酸 1.20 赖氨酸 3.45 取上述溶液0.1ml,加纯化水0.9ml,旋涡器混匀,作为对照品溶液;取脑蛋白水解物注射液,加水稀释成含总氮为1mg/ml的溶液,取0.1ml,加纯化水0.9ml,旋涡器混匀,作为供试品溶液。 衍生剂配制将水浴锅设置55℃,加热,待温度稳定, 取AccQFluor衍生剂2A,轻轻弹击,确保AccQFluor 衍生剂2A粉末全落在瓶底,吸取AccQFluor衍生稀释剂2B 1ml并放掉,清洗移液器管,再吸取AccQFluor 衍生稀释剂2B 1ml,加入AccQFluor衍生剂2A的瓶中,振荡10秒钟,在恒温水浴锅中溶解,保持10分钟。于干燥器中室温保存一周,于干燥器中4℃保存二周。 2.3测定方法分别取20ul对照品溶液和供试品溶液加入衍生专用管底部,加入60uLAccQFluor硼酸

高效液相色谱分析原理及流程

高效液相色谱分析原理及流程 高效液相色谱以经典的液相色谱为基础,是以高压下的液体为流动相的色谱过程。通常所说的柱层析、薄层层析或纸层析就是经典的液相色谱。所用的固定相为大于100um的吸附剂(硅胶、氧化铝等)。这种传统的液相色谱所用的固定相粒度大,传质扩散慢,因而柱效低,分离能力差,只能进行简单混合物的分离。而高效液相所用的固定相粒度小(5um-10um)、传质快、柱效高。高效液相色谱法(HPLC)是20世纪60年代后期发展起来的一种分析方法。近年来,在保健食品功效成分、营养强化剂、维生素类、蛋白质的分离测定等应用广泛。世界上约有80%的有机化合物可以用HPLC来分析测定。 高效液相色谱分析原理 (一)高效液相色谱分析的流程 由泵将储液瓶中的溶剂吸入色谱系统,然后输出,经流量与压力测量之后,导入进样器。被测物由进样器注入,并随流动相通过色谱柱,在柱上进行分离后进入检测器,检测信号由数据处理设备采集与处理,并记录色谱图。废液流入废液瓶。遇到复杂的混合物分离(极性范围比较宽)还可用梯度控制器作梯度洗脱。这和气相色谱的程序升温类似,不同的是气相色谱改变温度,而HPLC改变的是流动相极性,使样品各组分在最佳条件下得以分离。 (二)高效液相色谱的分离过程 同其他色谱过程一样,HPLC也是溶质在固定相和流动相之间进行的一种连续多次交换过程。它借溶质在两相间分配系数、亲和力、吸附力或分子大小不同而引起的排阻作用的差别使不同溶质得以分离。开始样品加在柱头上,假设样品中含有3个组分,A、B和C,随流动相一起进入色谱柱,开始在固定相和流动相之间进行分配。分配系数小的组分A不易被固定相阻留,较早地流出色谱柱。分配系数大的组分C 在固定相上滞留时间长,较晚流出色谱柱。组分B的分配系数介于A,C之间,第二个流出色谱柱。若一个含有多个组分的混合物进入系统,则混合物中各组分按其在两相间分配系数的不同先后流出色谱柱,达到分离之目的。 不同组分在色谱过程中的分离情况,首先取决于各组分在两相间的分配系数、吸附能力、亲和力等是否有差异,这是热力学平衡问题,也是分离的首要条件。其次,当不同组分在色谱柱中运动时,谱带随柱长展宽,分离情况与两相之间的扩散系数、固定相粒度的大小、柱的填充情况以及流动相的流速等

高效液相色谱法测定饮料中的咖啡因(含问题分析)

实验二 高效液相色谱法测定饮料中的咖啡因 一、目的要求 1、学习高效液相色谱仪的操作。 2、了解高效液相色谱法测定咖啡因的基本原理。 3、掌握高效液相色谱法进行定性及定量分析的基本方法。 二、基本原理 咖啡因又称咖啡碱,是由茶叶或咖啡中提取而得的一种生物碱,它属黄嘌呤衍生物,化学名称为1,3,7-三甲基黄嘌呤。咖啡因能兴奋大脑皮层,使人精神兴奋。咖啡中含咖啡因约为1.2~1.8%,茶叶中约含2.0~4.7%。可乐饮料、APC 药片等中均含咖啡因。其分子式为C 8H 10O 2N 4,结构式为: N N CH 3 H 3C O O N N CH 3 定量测定咖啡因的传统分析方法是采用萃取分光光度法。用反相高效液相色谱法将饮料中的咖啡因与其它组分(如:单宁酸、咖啡酸、蔗糖等)分离后,将已配制的浓度不同的咖啡因标准溶液进入色谱系统。如流动相流速和泵的压力在整个实验过程中是恒定的,测定它们在色谱图上的保留时间t R 和峰面积A 后,可直接用t R 定性,用峰面积A 作为定量测定的参数,采用工作曲线法(即外标法)测定饮料中的咖啡因含量。 三、仪器和试剂 1、Agilent 1100高效液相色谱仪。 2、色谱柱:Kromasil C18,5μ 150×4.6mm 。 3、流动相:30%甲醇(色谱纯)+70%高纯水;流动相进入色谱系统前,用超声波发生器脱气10min 。 4、 咖啡因标准贮备溶液:将咖啡因在110℃下烘干1h 。准确称取0.1000g 咖啡因,用二次蒸馏水溶解,定量转移至100mL 容量瓶中,并稀释至刻度。标样浓度1000μg·mL -1。 5、测饮料试液:可乐,茶叶,速溶咖啡。

高效液相色谱(HPLC)法测定邻苯二甲酸酯

高效液相色谱(HPLC )法测定邻苯二甲酸酯 一、实验目的: 1. 了解高效液相色谱仪原理; 2. 学习高效液相色谱仪的基本操作方法; 3. 利用高效液相色谱仪测定邻苯二甲酸酯、邻苯二乙酸酯、邻苯二丁酸酯的峰图和含量。 二、实验原理: ① 高效液相色谱法(High Performance Liquid Chromatography \ HPLC )是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。高效液相色谱法有“四高一广”的特点:高压、高速、高效、高灵敏度和应用范围广。该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。 在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。反之,则称为正相色谱分离系统。反相色谱系统所使用的流动相成本较低,应用也更为广泛。 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R )的计算公式为: R = 2[t (R2)-t (R1)] /1.7*(W 1+W 2) //式中 t (R2)为相邻两峰中后一峰的保留时间;t (R1)为相邻两峰中前一峰的保留时间; W 1 及W 2为此相邻两峰的半峰宽。 除另外有规定外,分离度应大于1.5。 ② 本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE ,常被用作塑料增塑剂。它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。 但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。同时也有一定的致癌作用。 如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC 分离检测。 三.仪器与试剂 1、仪器 Agilent 1100高效液相色谱仪,50ul 微量注射器。 2、试剂 甲醇(色谱专用) ,高纯水,样品。 出峰次序 样品组成 1 邻苯二甲酸二甲酯(DMP ) 2 邻苯二甲酸二乙酯(DEP) 3 邻苯二甲酸二丁酯(DBP)

通则0512高效液相色谱法

高效液相色谱法: 系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。 注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测, 由积分仪或数据处理系统记录和处理色谱信号。 1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。 色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。 超高液相色谱仪:是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、 高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱: 以键和非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂优十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱: 用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶 和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反向色谱。

离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径和长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相的pH值一般应在2~8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。 (2)检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器, 其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器, 其响应值不仅与被测物质的量有关,还与其结构有关;

高效液相色谱法的分类及原理

高效液相色谱法的分类及其分离原理 高效液相色谱法分为:液-固色谱法、液-液色谱法、离子交换色谱法、凝胶色谱法。 1.液-固色谱法(液-固吸附色谱法) 固定相是固体吸附剂,它是根据物质在固定相上的吸附作用不同来进行分配的。 ①液-固色谱法的作用机制 吸附剂:一些多孔的固体颗粒物质,其表面常存在分散的吸附中心点。 流动相中的溶质分子X(液相)被流动相S带入色谱柱后,在随载液流动的过程中,发生如下交换反应: X(液相)+nS(吸附)<==>X(吸附)+nS(液相) 其作用机制是溶质分子X(液相)和溶剂分子S(液相)对吸附剂活性表面的竞争吸附。 吸附反应的平衡常数K为: K值较小:溶剂分子吸附力很强,被吸附的溶质分子很少,先流出色谱柱。 K值较大:表示该组分分子的吸附能力较强,后流出色谱柱。 发生在吸附剂表面上的吸附-解吸平衡,就是液-固色谱分离的基础。 ②液-固色谱法的吸附剂和流动相 常用的液-固色谱吸附剂:薄膜型硅胶、全多孔型硅胶、薄膜型氧化铝、全多孔型氧化铝、分子筛、聚酰胺等。 一般规律:对于固定相而言,非极性分子与极性吸附剂(如硅胶、氧化铜)之间的作用力很弱,分配比k较小,保留时间较短;但极性分子与极性吸附剂之间的作用力很强,分配比k大,保留时间长。 对流动相的基本要求: 试样要能够溶于流动相中 流动相粘度较小 流动相不能影响试样的检测 常用的流动相:甲醇、乙醚、苯、乙腈、乙酸乙酯、吡啶等。 ③液-固色谱法的应用 常用于分离极性不同的化合物、含有不同类型或不;数量官能团的有机化合物,以及有机化合物的不同的异构体;但液-固色谱法不宜用于分离同系物,因为液-固色谱对不同相对分子质量的同系物选择性不高。 2.液-液色谱法(液-液分配色谱法) 将液体固定液涂渍在担体上作为固定相。 ①液-液色谱法的作用机制 溶质在两相间进行分配时,在固定液中溶解度较小的组分较难进入固定液,在色谱柱中向前迁移速度较快;在固定液中溶解度较大的组分容易进入固定液,在色谱柱中向前迁移速度较慢,从而达到分离的目的。 液-液色谱法与液-液萃取法的基本原理相同,均服从分配定律:K=C固/C液 K值大的组分,保留时间长,后流出色谱柱。 ②正相色谱和反相色谱 正相分配色谱用极性物质作固定相,非极性溶剂(如苯、正己烷等)作流动相。 反相分配色谱用非极性物质作固定相,极性溶剂(如水、甲醇、己腈等)作流动相。

高效液相色谱测定法标准操作规程

标准操作规程 STANDARD OPERATION PROCEDURE 1 目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2 适用围:适用于高效液相色谱测定法检验操作全过程。 3 责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1. 对仪器的一般要求和色谱条件高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据 处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μ m。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1. 色谱柱反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合 物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分 离物质的性质来选择合适的色谱柱。温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2? 8 之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2 或大于8 的流动相。

高效液相色谱测定法标准操作规程

标准操作规程 1目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2适用围:适用于高效液相色谱测定法检验操作全过程。 3责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1.色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分

离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在 2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2或大于8 的流动相。 4.1.2.检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应。结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定围呈线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 4.1.3.流动相 反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则易导致柱效下降、色谱系统不稳定。 正相色谱系统的流动相常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。 品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适用性试验的要求。调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变围为0.7X?1.3X;当X大于33%时,允许改变围为X—10%?X+10% 。

最新高效液相色谱法测定维生素C

高效液相色谱法测定维生素C的含量 【摘要】高效液相色谱法已经成为解决生命科学、医药学发展中各种难题的重要手段,在实验室中也广泛应用于物质的定性定量分析。本实验中利用高效液相色谱法对维生素C进行定量分析,所采用的定量分析方法为外标法,通过做出标准溶液浓度与峰面积的标准曲线进而对样品中的维生素C进行定量检测。 【关键词】高效液相色谱法、维生素C、含量 1、引言 维生素 C(Vitamin C, Vc)又叫抗坏血酸,是一种水溶性维生素。Vc 在体内参与多种反应,如氧化还原过程,在生物氧化和还原作用以及细胞呼吸中起重要作用。人体内缺乏 Vc 时容易导致坏血病。同时,由于 Vc 是一种水溶性的强有力抗氧化剂并参与胶原蛋白的合成,它同时还具有防癌、预防动脉硬化、治疗贫血、抗氧化和提高人体免疫力等功效。Vc 在蔬果中普遍存在,尤其是柑桔类水果中含量较高。樱桃、番石榴、辣椒、猕猴桃等水果中 Vc 含量在 50-300 mg/100 g。 溶于流动相(mobile phase)中的各组分经过固定相时,由于与固定相(stationary phase)发生作用(吸附、分配、离子吸引、排阻、亲和)的大小、强弱不同,在固定相中滞留时间不同,从而先后从固定相中流出。高效液相色谱法(High performance Liquid Chromatography,HPLC)是在经典液相色谱法的基础上,于 60 年代后期引入了气相色谱理论而迅速发展起来的。它与经典液相色谱法的区别是填料颗粒小而均匀,小颗粒具有高柱效,但会引起高阻力,需用高压输送流动相,故又称高压液相色谱法(High Pressure Liquid Chromatography,HPLC)。HPLC 系统一般由输液泵、进样器、色谱柱、检测器、数据记录及处理装置等组成。其中输液泵、色谱柱、检测器是关键部件。有的仪器还有梯度洗脱装置、在线脱气机、自动进样器、预柱或保护柱、柱温控制器等,现代 HPLC 仪还有微机控制系统,进行自动化仪器控制和数据处理。制备型 HPLC 仪还备有自动馏分收集装置。 2、HPLC测定维生素C的含量 2.1、仪器试剂 2.1.1、仪器 高效液相色谱仪(Agilent1260),色谱柱:C18 柱 (250 mm×4.6 mm, I.D.5 μm);平头进样器。 2.1.2、试剂 乙腈(色谱纯),冰乙酸,维生素 C,磷酸二氢钾等均为分析纯,实验用水为超纯水。

高效液相色谱原理

高效液相色谱法(HPLC) 一、方法原理 1、液相色谱法概述 高效液相色谱分析法

其工作流程为:高压输液泵将贮液器中的流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导人,流动相将样品依次带入预柱、色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器,检测到的信号送至数据处理系统记录、处理和保存。

HPLC仪器的基本结构 2、高效液相色谱法的特点(HPLC) 与经典柱色谱原理相同,是由液体流动相将被分离混合物带入色谱柱中,根据各组分在固定相及流动相中吸附能力、分

配系数、离子交换作用或分子尺寸大小的差异来进行分离。 由于高压输液泵、高灵敏度检测器和高效固定相的使用,提高了柱效率,降低了检出限,缩短了分析时间。 特点是选择性高、分离效能高、分析速度快的特点。 高沸点有机物的分析、离子型化合物、高分子化合物、热稳定性差的化合物以及具有生物活性的物质,弥补了气相色谱法的不足。 高效液相色谱法与气相色谱法相比,各有所长,互相补充。 如果能用气相色谱法分析的样品,一般不用液相色谱法,因为气相色谱法分析速度更快、更方便、成本更低。 3、高效液相色谱法的固定相和流动相 (1)固定相 表面多孔型和全多孔型两大类。 (2)流动相(淋洗液) 流动相的选择对改善分离效果产生重要的辅助效应。 从实用,选用的流动相具有廉价、易购的特点外,还应满足下列要求: ①与固定相互不相溶,并能保持色谱柱的稳定性。 ②高纯度,以防所含微量杂质在柱中积累,引起柱 性能的改变。 ③与所用的检测器相匹配。 ④应对样品有足够的溶解能力,以提高测定的灵敏 度。 ⑤具有低的黏度(可减少溶质的传质阻力,提高柱 效)和适当低的沸点。

高效液相色谱(HPLC)柱效测定

实验六高效液相色谱(HPLC)柱效测定 093858 张亚辉 一. 实验目的 1、学习高效液相色谱仪的基本操作方法。 2、了解高效液相色谱仪原理和条件设定方法。 3、了解高效液相色谱法在日常分析中的应用。 二. 实验原理 高效液相色谱法是以液体作为流动相,借助于高压输液泵获得相对较高流速的液流以提高分离速度、并采用颗粒极细的高效固定相制成的色谱柱进行分离和分析的一种色谱方法。 在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。反之,则称为正相色谱分离系统。反相色谱系统所使用的流动相成本较低,应用也更为广泛。 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R)的计算公式为: R= 2[t(R2)-t(R1)] /1.7*(W1+W2) 式中 t(R2)为相邻两峰中后一峰的保留时间; t(R1)为相邻两峰中前一峰的保留时间; W1及W2为此相邻两峰的半峰宽。除另外有规定外,分离度应大于1.5。 本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE,常被用作塑料增塑剂。它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。待测物性质见表1。 表1色谱柱测试条件

如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC分离检测。 三.仪器与试剂 1、仪器 Agilent 1100高效液相色谱仪,50ul微量注射器。 2、试剂 甲醇(色谱专用),高纯水 四. 实验步骤 1、色谱条件 色谱柱:辛烷基硅烷键合硅胶(C8) 柱温:室温 流动相:初始为高纯水:20%,甲醇:80% 检测器:DAD检测器; 检测波长:220nm; 进样体积:20μl定量环,实际注射每次可控制在40μl。 2、待测溶液的配制 首先用甲醇做溶剂配制储备液:邻苯二甲酸二甲酯(0.3880g/L),邻苯二甲酸二乙酯(0.2770g/L),邻苯二甲酸二丁酯(0.3776g/L)。然后各取1mL储备液用水和甲醇(20:80)稀释至10mL,作为待测溶液。 3、色谱测定 (1) 按操作规程开启电脑,开启脱气机、泵、检测器等的电源,启动Agilent 1100在线工作软件,设定操作条件。流量为1.000ml/min。 (2) 待仪器稳定后,开始进样。将进样阀柄置于“LOAD”位置,用微量注射器吸取混合物溶液40ul,注入仪器进样口,顺时针方向扳动进样阀至“INJECT”位置,此时显示屏显示进样标志。 (3) 记下各组分色谱峰的保留时间及峰面积及分离比。 (4) 实验完毕,清洗系统及色谱柱。依次用甲醇-水(60:40)、甲醇-水(70:30)……直到纯甲醇作流动相清洗,每次清洗至基线走稳,至少清洗15min。 五.实验结果

0512高效液相色谱法

0512 高效液相色谱法 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱内,各组分在柱内被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 1. 对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱内径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 (1)色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基硅烷键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常见的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。 离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的内径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2~8之间。烷基硅烷带有立体侧链保护、或残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH值小于2或大于8的流动相。

高效液相色谱法(HPLC) 测定牛乳中β-乳球蛋白

高效液相色谱法(HPLC) 测定牛乳中α-乳白蛋白Determination of α-lactalbumin in milk products by high performance liquid chromatography ( HPLC) 关荣发1,黄光荣1,贾振宝1,戴贤君1,叶兴乾2 GUAN Rong-fa1, HUANG Guang-rongn1, JIA Zhen-bao1, DAI Xian-jun1, YE Xing-qian2(1.中国计量学院生命科学学院,杭州310018; 2.浙江大学食品科学与营养系,杭州310029) (1. College of Life Sciences, China Jiliang University,Hang Zhou 310018; 2. Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310029) 摘要: 建立了利用常规的C18色谱柱的高效液相色谱测定牛乳中主要过敏蛋白α-乳白蛋白含量的方法。色谱条件: 色谱柱Alltima-C18( 4.6 mm×200 mm, 5μm) , 柱温为45℃, UV 检测波长2l5 nm, 流动相A为含0.1%三氟乙酸的超纯水,流动相B为乙腈∶超纯水∶三氟乙酸=400∶100∶0.5,采用梯度洗脱方法,流速0.8mL/min。结果表明: α-乳白蛋白的线性范围分别为50μg/mL-1000μg/mL( r=0.9909); α-乳白蛋白平均回收率为97.27 %, RSD=0.76%(n=5);该方法简便、准确, 适合于乳制品中α-乳白蛋白含量的测定。 关键词: 高效液相色谱法; α-乳白蛋白; 乳制品; 测定 Abstract: A method for the determination ofα-lactalbumin in milk products by high performance liquid chromatography has been established. The chromatography conditions as follow: Alltima-C18 conlum (4.6 mm×200 mm, 5 μm), UV detection wavelengts 215 nm. This method consisted of a linear gradient of the two mobile phases of 0.1% trifluoroacetic acid in water and 0.5% trifluoroacetic acid and 80% acetonitrile in water at a flow rate of 0.5 mL/min, The conlum temperature was 25 ℃.The result showed that for α-lactalbumin the calibration curve was linear in the range of 50μ g/mL ~1000μg/mL( r=0.9909). The average recovery percent was 97.27, the RSD was 0.76%( n=5).The methods is suitable for contents analysis of α-lactalbumin in milk products. Key words: high performance liquid chromatography; α-lactalbumin; milk products; determination 随着人们生活水平的提高,奶制品在国内的消费量迅速增加,2005年我国城镇居民奶类人均消费量(折鲜奶)已达25公斤以上,饮用UHT奶、巴氏杀菌奶等液态奶已在我国渐成习惯,液态乳已经成为我国的主要乳制品。但牛乳过敏是儿童中一种常见的食物过敏,严重地影基金项目:浙江省分析测试科技计划项目(编号:2007F70027) 作者简介:王关荣发(1975 - )男,中国计量学院生物安全与食品科学研究所 讲师,博士研究生。E-mail:rfguan@163. com

相关文档
最新文档