主要淀粉糖品的生产工艺流程

主要淀粉糖品的生产工艺流程
主要淀粉糖品的生产工艺流程

主要淀粉糖品的生产工艺流程

一、液体葡萄糖(工艺有酸法、酸酶法和双酶法)

1酸法工艺

酸法工艺是以酸作为水解淀粉的催化剂,淀粉是由多个葡萄糖分子缩合而成的碳水化合物,酸水解时,随着淀粉分子中糖苷键断裂,逐渐生成葡萄糖、麦芽糖和各种相对分子质量较低的葡萄糖多聚物。该工艺操作简单,糖化速度快,生产周期短,设备投资少。

1 )工艺流程.酸法工艺流程如图6—4所示:

淀粉一调浆一糖化一中和一第一次脱色过滤一离子交换一第一

次浓缩一第二次脱色

过滤一第二次浓缩一成品

图6-4 酸法工艺流程

2 )操作要点

(1)淀粉原料要求常用纯度较高的玉米淀粉,次之为马铃薯淀粉和甘薯淀粉。

(2)调浆在调浆罐中,先加部分水,在搅拌情况下,加入粉碎的干淀粉或湿淀粉,投料完毕,继续加入80℃左右的水,使淀粉乳浓度达到22~24波美度(生产葡萄糖淀粉乳浓度为12~14波美度),然后加入盐酸或硫酸调pH值为1.8。调浆需用软水,以免产生较多的磷酸盐使糖液混浊。

(3)糖化调好的淀粉乳,用耐酸泵送入耐酸加压糖化罐。边进料边开蒸汽,进料完毕后,升压至(2.7~2.8)×104pa(温度142~144℃),在升压过程中每升压0.98×104pa,开排气阀约0.5 min,排出冷空气,待排出白烟时关闭,并借此使糖化醪翻腾,受热均匀,待升压至要求压力时保持3~5 min后,及时取样测定其DE值,达38~40时,糖化终止。

(4)中和糖化结束后,打开糖化罐将糖化液引人中和桶进行中和。用盐酸水解者,用10%碳酸钠中和,用硫酸水解者用碳酸钙中和。前者

生成的氯化钙,溶存于糖液中,但数量不多,影响风味不大,后者生成的硫酸钙可于过滤时除去。

糖化液中和的目的,并非中和到真正的中和点pH值7,而是中和大部分盐酸或硫酸,调节pH值到蛋白质的凝固点,使蛋白质凝固过滤除去,保持糖液清晰。糖液中蛋白质凝固最好pH值为4.75,因此,一般中和到pH值4.6~4.8为中和终点。中和时,加入干物质量0.1%的硅藻土为澄清剂,硅藻土分散于水溶液中带负电荷,而酸性介质中的蛋白质带正电荷,因此澄清效果很好。

(5)脱色过滤中和糖液冷却到70~75℃,调pH值至4.5,加入于物质量0·25%的粉末活性炭,随加随搅拌约5 min,压人板框式压滤机或卧式密闭圆桶形叶滤机过滤出清糖滤液。

(6)离子交换将第一次脱色滤出的清糖液,通过阳一阴一阳一阴4个离子交换柱进行脱盐提纯。

(7)第一次浓缩将提纯糖液调pH值至3.8~4.2,用泵送入蒸发罐保持真空度66. 661 Pa以上,加热蒸汽压力不超过0.98×10。Pa,浓缩到28~31波美度,出料,进行第二次脱色。

(8)第二次脱色过滤第二次脱色与第一次相同。第二次脱色糖浆必须反复回流过滤至无活性炭微粒为止,再调pH值至3.8~4.2。

(9)第二次浓缩与第一次浓缩相同,只是在浓缩前加入亚硫酸氢钠,使糖液中二氧化硫含量为0.001 5 %~0.004%,以起漂白及护色作用。蒸发至36~38波美度,出料,即为成品。

3 )酸酶法工艺

由于酸法工艺在水解程度上不易控制,现许多工厂采用酸酶法,即酸法液化、酶法糖化。在酸法液化时,控制水解反应,使DE值在20%~25%时即停止水解,迅速进行中和.调节pH值4.5左右,温度为55~60℃后加葡萄糖淀粉酶进行糖化,直至所需DE值,然后升温、灭酶、脱色、离子交换、浓缩。

4 )双酶法工艺

酸酶法工艺虽能较好地控制糖化液最终DE值,但和酸法一样,仍存在一些缺点,设备腐蚀严重,使用原料只能局限在淀粉,反应中生成副产物较多,最终糖浆甜味不纯,因此淀粉糖生产厂家大多改用酶法生产工艺。其最大的优点是液化、糖化都采用酶法水解,反应条件温和,

对设备几乎无腐蚀;可直接采用原粮如大米(碎米)作为原料,有利于降低生产成本,糖液纯度高、得率也高。

(1)生产工艺双酶法工艺流程如图7—5所示:

淀粉一调浆一液化一糖化一脱色一离子交换一真空浓缩

图6-5 双酶法生产多糖工艺流程

(2)操作要点淀粉乳浓度控制在30%左右(如用米粉浆则控制在25%~30%),用Na2C03调节pH值至6.2左右,加适量的CaCl2,添加耐高温α一淀粉酶10 u/g左右(以于淀粉计,u为活力单位),调浆均匀后进行喷射液化,温度一般控制在(110±5) ℃,液化DE值控制在15%~20%,以碘色反应为红棕色、糖液中蛋白质凝聚好、分层明显、液化液过滤性能好为液化终点时的指标。糖化操作较为简单,将液化液冷却至55~60℃后,调节pH值为4.5左右,加人适量糖化酶,一般为25~100 u/g(以干淀粉计),然后进行保温糖化,到所需DE值时即可升温灭酶,进入后道净化工序。淀粉糖化液经过滤除去不溶性杂质,得澄清糖液,仍需再进行脱色和离子交换处理,以进一步除去糖液中水溶性杂质。脱色一般采用粉末活性炭,控制糖液温度80℃左右,添加相当于糖液固形物1%活性炭,搅拌0.5 h,用压滤机过滤,脱色后糖液冷却至40~50℃,进入离子交换柱,用阳、阴离子交换树脂进行精制,除去糖液中各种残留的杂质离子、蛋白质、氨基酸等,使糖液纯度进一步提高。精制的糖化液真空浓缩至固形物为73%~80%,即可作为成品。

2、性质及应用

液体葡萄糖是我国目前淀粉糖工业中最主要的产品,广泛应用于糖果、糕点、饮料、冷饮、焙烤、罐头、果酱、果冻、乳制品等各种食品中,还可作为医药、化工、发酵等行业的重要原料。

?该产品甜度低于蔗糖,黏度、吸湿性适中。用于糖果中能阻止

蔗糖结晶,防止糖果返砂,使糖果口感温和、细腻。

?葡萄糖浆杂质含量低,耐储存性和热稳定性好,适合生产高级

透明硬糖;

?该糖浆黏稠性好、渗透压高,适用于各种水果罐头及果酱、果

冻中,可延长产品的保存期。

?液体葡萄糖浆具有良好的可发酵性,适合面包、糕点生产中的

使用。

二、结晶葡萄糖、全糖

葡萄糖是淀粉完全水解的产物,由于生产工艺的不同,所得葡萄糖产品的纯度也不同,一般可分为结晶葡萄糖和全糖两类。结晶葡萄糖纯度较高,主要用于医药、试剂、食品等行业。葡萄糖结晶通常有3种形式的异构体,即含水α一葡萄糖、无水α一葡萄糖和无水β一葡萄糖,其中以含水α一葡萄糖生产最为普遍,产量也最大。工业上生产的葡萄糖产品除这3种外,还有“全糖”,为省掉结晶工序由酶法得到的糖浆直接制成的产品。酶法所得淀粉糖化液的纯度高,甜味纯正,经喷雾干燥直接制成颗粒状全糖,或浓缩后凝固成块状,再粉碎制成粉末状全糖。这种产品质量虽逊于结晶葡萄糖,但生产工艺简单,成本较低,在食品、发酵、化工、纺织等行业应用也十分广泛。

葡萄糖的生产因糖化方法不同在工艺和产品方面都存在差别。酶法糖化所得淀粉糖化液的纯度高,除适于生产含水α一葡萄糖、无水α一葡萄糖、无水β一结晶葡萄糖以外,也适于生产全糖。酸法糖化所得淀粉糖化液的纯度较低,只适于生产含水α-葡萄糖,需要重新溶解含水α一葡萄糖,用所得糖化液精制后生产无水α一葡萄糖或β一葡萄糖。用酸法糖化制得的全糖,因质量差,甜味不纯,不适于食品工业用。酸法糖化产生复合糖类多,结晶后复合糖类存在于母液中,一般是再用酸水解一次,将复合糖类转变成葡萄糖,再结晶。酶法糖化基本避免了复合反应,不需要再糖化。酶法糖化液结晶以后所剩母液的纯度仍高,甜味纯正,适于食品工业应用,但酸法母液的纯度差,甜味不正,只能当做废糖蜜处理。

1 生产工艺

1)工艺流程

●酸法生产含水a一葡萄糖的工艺流程如图6—6所示:

淀粉乳→糖化→中和→精制→蒸发→浓糖浆→冷却结晶→分

蜜→洗糖→干燥→

过筛→含水α-葡萄糖

图6—6 酸法生产含水a一葡萄糖的工艺流程

酸法葡萄糖生产工艺流程如图6-7所示:

↗蒸发结晶→分蜜→干燥→无水a一葡萄糖

液化酶糖化酶↗蒸发结晶→分蜜

→干燥→无水β一葡萄糖

↓↓↗冷却结晶→分蜜

→干燥→无水a一葡萄糖

淀粉乳→液化→糖化→精制→浓缩→浓缩浆→→→凝固→粉碎

→干燥→全糖

↘结晶→喷

雾干燥→全糖

图6-7 酸法葡萄糖生产工艺流程

2)操作要点

结晶葡萄糖主要生产工序包括糖化、精制、结晶,其中结晶工艺较为复杂,而糖化、精制工艺和全糖生产类似,本文主要介绍酶法生产全糖的工艺过程。

(1)调浆淀粉乳含量为30%~35%,调节pH值到6.2~6.5,以10 u/g添加量加入高温α一淀粉酶。

(2)液化采用喷射液化法。

一级喷射液化,105℃,进入层流罐保温30~60 min;

二级喷射液化,125~135℃,汽液分离,如碘色反应未达棕色,可补加少量中温α一淀粉酶,进行二次液化。

(3)糖化液化液冷却至60℃,调pH值4.5,按50~100 u/g加入糖化酶进行糖化,保温,定时搅拌,时间一般为24~48 h,当DE值≥97%时,即可结束糖化。如欲得到DE值更高的产品,可在糖化时加少量普鲁蓝酶。

(4)过滤升温灭酶,同时使糖化液中蛋白质凝结。过滤,最好加少量硅藻土作为助滤剂。

(5)脱色加1 %活性炭脱色,80℃搅拌保温30 min,过滤。

(6)离子交换采用阳一阴离子交换树脂对糖液进行离子交换,如最终产品要求不高,可省去此道工序。

(7)浓缩采用真空浓缩锅浓缩至固形物75%~80%(如用于喷雾干燥,浓缩至45%~65%即可)。

(8)凝固将糖液冷却到40~50~C,放人混合桶,加入相当于糖浆总量1%左右的葡萄糖粉作为结晶的晶种,搅拌冷却至30℃,放人马口铁制成的长方形浅盘中,静置结块,即得工业生产用全糖块。也可将糖块粉碎,过20~40目筛,再干燥至水分小于9%,即为粉状成品。

2 性质与应用

酶法生产的葡萄糖(全糖)纯度高、甜味纯正,在食品工业中可作为甜味剂代替蔗糖,还可作为生产食品添加剂焦糖色素、山梨醇等产品的主要原料;在发酵工业上,可作为微生物培养基的最主要原料(碳源),广泛用于酿酒、味精、氨基酸酶制剂及抗生素等行业;全糖还可作为皮革工业、化纤工业、化学工业等行业的重要原料或添加剂。

三、麦芽糖浆(饴糖、高麦芽糖浆、超高麦芽糖浆)

麦芽糖浆是以淀粉为原料,经酶法或酸酶结合的方法水解而制成的一种以麦芽糖为主(40%~50%以上)的糖浆,按制法与麦芽糖含量不同可分为饴糖、高麦芽糖浆和超高麦芽糖浆等。

饴糖是最早的淀粉糖产品,距今已有2 000余年的历史,传统生产工艺是以大米或其他粮食为原料,煮熟后加麦芽作为糖化剂,淋出糖液经煎熬浓缩即为成品。该糖浆含有40%~60%的麦芽糖,其余主要是糊精、少量麦芽三糖和葡萄糖,具有麦芽的特殊香味和风味,因此又称为麦芽饴糖。20世纪60年代起已被酶法糖化工艺所取代。所谓酶法糖化是先将淀粉质原料磨浆,加热糊化,用α一淀粉酶液化,然后用植物(麦芽、大豆、甘薯等) β一淀粉酶糖化作成糖浆,再经脱色和离子交换精

制成酶法饴糖,称为高麦芽糖浆。高麦芽糖浆制造时,若在糖化时将淀粉分子中的支链淀粉分支点的α一1,6键先用脱支酶水解,使之成为直链糊精,再经β一淀粉酶作用,可生成更多的麦芽糖,其中糊精的比例很低,麦芽糖的含量在70%以上,这种糖浆被称为超高麦芽糖浆活液体麦芽糖浆(表6~2)。

1 饴糖

饴糖为我国自古以来的一种甜食品,以淀粉质原料——大米、玉米、高梁、薯类经糖化剂作用生产的,糖分组成主要为麦芽糖、糊精及低聚糖,营养价值较高,甜味柔和、爽口,是婴幼儿的良好食品。我国特产“麻糖”、“酥糖”,麦芽糖块、花生糖等都是饴糖的再制品。

饴糖生产根据原料形态不同,有固体糖化法与液体酶法,前者用大麦芽为糖化剂,设备简单,劳动强度大,生产效率低,后者先用α一淀粉酶对淀粉浆进行液化,再用麸皮或麦芽进行糖化,用麸皮代替大麦芽,既节约粮食,又简化工序,现已普遍使用。但用麸皮作糖化剂,用前需对麸皮的酶活力进行测定,β一淀粉酶活力低于2 500u/g(麸皮)者不宜使用,否则用量过多,会增加过滤困难。

1)工艺流程饴糖液体酶法生产工艺流程如图6—8所示:、

原料(大米)一清洗一浸渍一磨浆一调浆一液化一糖化一过滤一浓缩一成品

图6-8 饴糖液体酶法生产工艺流程

2)操作要点

(1)原料以淀粉含量高,蛋白质、脂肪、单宁等含量低的原料为优。蛋白质水解生成的氨基酸与还原性糖在高温下易发生羰氨反应生成

红、黑色素;油脂过多,影响糖化作用进行;单宁氧化,使饴糖色泽加深。据此,以碎大米、去胚芽的玉米胚乳、未发芽、腐烂的薯类为原料生产的饴糖,品质为优。

(2)清洗去除灰尘、泥沙、污物。

(3)浸渍除薯类含水量高不需要浸泡外,碎大米须在常温下浸泡1~2 h,玉米浸泡12~14 h,以便湿磨浆。

(4)磨浆不同的原料选用的磨浆设备不同,但要求磨浆后物料的细度能通过60~70目筛。

(5)调浆加水调整粉浆浓度为18~22波美度,再加碳酸钠液调pH 值6.2~6.4,然后加入粉浆量0.2%氯化钙,最后加入α一淀粉酶酶制剂,用量按每克淀粉加α一淀粉酶80~100 u计(30℃测定),配料后充分搅匀。

(6)液化将调浆后的粉浆送人高位贮浆桶内,同时在液化罐中加入少量底水,以浸没直接蒸汽加热管为止,进蒸汽加热至85~90℃。再开动搅拌器,保持不停运转。然后开启贮浆桶下部的阀门,使粉浆形成很多细流均匀地分布在液化罐的热水中,并保持温度在85~90℃,使糊化和酶的液化作用顺利进行。如温度低于85℃,则黏度保持较高,应放慢进料速度,使罐内温度升至90℃后再适当加快进料速度。待进料完毕,继续保持此温度10~15 min,并以碘液检查至不呈色时,即表明液化效果良好,液化结束。最后升温至沸腾,使酶失活并杀菌。

(7)糖化液化醪迅速冷却至65℃,送入糖化罐,加人大麦芽浆或麸皮l%~2%(按液化醪量计,实际计量以大麦芽浆或麸皮中B一淀粉酶100~120 u/g淀粉为宜),搅拌均匀,在控温60~62℃温度下糖化3 h 左右,检查DE值到35~40时,糖化结束。

(8)压滤将糖化醪乘热送人高位桶,利用高位差产生压力,使糖化醪流入板框式压滤机内压滤。初滤出的滤液较混浊,由于滤层未形成,须返回糖化醪重新压滤,直至滤出清汁才开始收集。压滤操作不宜过快,压滤初期推动力宜小,待滤布上形成一薄层滤饼后,再逐步加大压力,直至滤框内由于滤饼厚度不断增加,使过滤速度降低到极缓慢时,才提高压力过滤,待加大压力过滤而过滤速度缓慢时,应停止进行压滤。

(9)浓缩分2个步骤,先开口浓缩,除去悬浮杂质,并利用高温灭菌;后真空浓缩,温度较低,糖液色泽淡,蒸发速度也快。

开口浓缩,将压滤糖汁送入敞口浓缩罐内,间接蒸汽加热至90~95℃时,糖汁中的蛋白质凝固,与杂质等悬浮于液面,先行除去,再加热至沸腾。如有泡沫溢出,及时加入硬脂酸等消泡剂,并添加O.02%亚硫酸钠脱色剂,浓缩至糖汁浓度达25波美度停止。

真空浓缩,利用真空罐真空将25波美度糖汁自吸人真空罐,维持真空度在79 993·2 Pa左右(温度为70℃左右),进行浓缩至糖汁浓度达42波美度/20℃停止,解除真空,放罐,即为成品。

2 高麦芽糖浆

高麦芽糖浆与饴糖的制法大同小异,只是前者的麦芽糖含量应高于普通饴糖,一般要求在50%以上,而且产品应是经过脱色、离子交换精制过的糖浆,其外观澄净如水,蛋白质与灰分含量极微,糖浆熬煮温度远高于饴糖,一般达到140℃以上。

1)普通高麦芽糖浆

制造高麦芽糖浆的糖化剂除麦芽外,也常用由甘薯、大麦、麸皮、大豆制取的β一淀粉酶。为了保证麦芽糖生成量不低于50%,糖化时常用脱支酶。

也可用霉菌α一淀粉酶制造高麦芽糖浆,霉菌α一淀粉酶虽然不能水解支链淀粉的α一1,6键,但它属于内切酶,能从淀粉分子内部切开α一1,4键,作用结果生成麦芽糖与带α一1,6键的α一极限糊精。后者的相对分子质量远比β一极限糊精为小,故制成的高麦芽糖浆黏度低而流动性好,产品中其他低聚糖的组成也不同于B淀粉酶制成的糖,除麦芽糖外,还含有较多的麦芽三糖及α一极限糊精。麦芽三糖可抑制肠道中产生毒素的产气荚膜梭菌的繁殖,具有一定的保健作用。

欧美各国的高麦芽糖浆大多是用真菌a一淀粉酶作糖化剂来生产的,商品真菌α一淀粉酶制剂如Mycolase(Gist Brocades公司生产)、Fungamyl 800 L(Novo公司生产)、Clarase (Miles公司生产)都是用米曲霉(A.oryzae)所生产的,其制剂有液状浓缩物,也有用酒精沉淀制成的粉状制剂。曲霉a一淀粉酶生产的高麦芽糖浆称为改良高麦芽糖浆,其组成中麦芽糖占50 ~60%,麦芽三糖约20%,葡萄糖2%~7%以及其他低聚糖与糊精等。

高麦芽糖浆制造工艺如下:干物质浓度为30%~40%的淀粉乳,在pH值6.5加细菌α一淀粉酶,85C液化1 h,使DE值达10%~20%,

将pH值调节到5.5,加真菌α一淀粉酶(Fungamyl 800 L)(0.4 kg/t),60℃糖化24 h(其时反应物中含麦芽糖55 %,麦芽三糖19%,葡萄糖3.8%,其他2.2%),过滤后经活性炭脱色,真空浓缩成制品。

2)超高麦芽糖浆

超高麦芽糖浆的麦芽糖含量超过70%,其中发酵性糖的含量达90%或以上,麦芽糖含量超过90%者也称作液体麦芽糖。超高麦芽糖浆的用途不同于一般高麦芽糖浆,主要是用于制造纯麦芽糖,干燥后制成麦芽糖粉,氢化后制造麦芽糖醇等。生产超高麦芽糖浆必须并用脱支酶,为了提高麦芽糖的含量,常使用一种以上的脱支酶和糖化用酶,并严格控制液化程度,DE值应不超过10%。由于黏度,因此底物浓度不宜太高,一般控制在30%以下,尤其是在制造麦芽糖含量90%以上的超高麦芽糖时,液化液的DE值应小于1%,底物浓度也应大大降低,这样的操作必须用喷射液化法来完成。

超高麦芽糖的制法举例如下:

(1)并用B淀粉酶和脱支酶的糖化方法以固形物含量30%,DE 值8%的淀粉液化液为底物,加入不同的β一淀粉酶、支链淀粉酶和异淀粉酶,在50℃水解不同时间,其结果如表6—3所示。

(2)并用B一淀粉酶与支链淀粉酶生产超高麦芽糖浆35%的木薯淀粉粉浆,加入70 mg/kg CaCl2,按干物质计添加O.06%耐热性α

一淀粉酶(Termamyl L一120),喷射液化后DE值8.2%,用盐酸调节pH值5.2,加B一淀粉酶和支链淀粉酶,60℃水解20~110 h,用高压液相色谱测定糖液的组成,在单独用B一淀粉酶时,不论酶的用量是0.2%或O.4%,对麦芽糖的生成量无明显影响,即使糖化时间由20 h

延长到100 h,麦芽糖的生成量也只增加5%,但若糖化时并用支链淀粉酶,则麦芽糖生成量由60%增加到80%。

(3)并用B一淀粉酶、麦芽糖生成酶和支链淀粉酶生产超高麦芽糖浆使用同上的液化淀粉为底物,同时添加β一淀粉酶和麦芽糖生成酶进行糖化,麦芽糖生成量并不比单独使用β一淀粉酶者为多,但若同时使用支链淀粉酶,则麦芽糖的产量明显增加。由于麦芽糖生成酶可水解麦芽三糖,故水解物中的麦芽三糖很少,而葡萄糖的生成量较单独使用β一淀粉酶时为高,且由于它对糊精的作用较慢,故糖化液中的麦芽三糖以上的低聚糖和糊精残留量较多。因此,如生产普通高麦芽糖浆,则不宜用麦芽糖生成酶,因为这种酶不仅价格高,而且用其生产的糖浆中因葡萄糖含量较多,会使成品熬糖温度降低。但单独使用一种β一淀粉酶或麦芽糖生成酶,或并用脱支酶时,糖化液中由于残留较多糊精而会严重干扰麦芽糖的结晶,即使β一淀粉酶与麦芽糖生成酶并用,如不用脱支酶也不能减少糊精的生成,只有同时并用脱支酶,糊精才显著降低,因而适合于超高麦芽糖的生产。

3性质与应用

麦芽糖浆因含大量的糊精,具有良好的抗结晶性,食品工业中用在果酱、果冻等制造时可防止蔗糖的结晶析出,而延长商品的保存期。麦芽糖浆具有良好的发酵性,也可大量用于面包、糕点及啤酒制造,并可延长糕点的淀粉老化。高麦芽糖浆在糖果工业中用以代替酸水解生产的淀粉糖浆,不仅制品口味柔和,甜度适中,产品不易着色,而且硬糖具有良好的透明度,有较好的抗砂、抗烊性,从而可延长保存期。高麦芽糖浆因很少含有蛋白质、氨基酸等可与糖类发生美拉德反应的物质,故热稳定性好,在制造糖果时比饴糖更适合于用真空薄膜法熬糖和浇铸法成型。

在医药上用纯麦芽糖输液滴注静脉时,血糖可不致升高,适合于作为糖尿病人补充营养之用。麦芽糖氢化后可生成麦芽糖醇,这是一种甜度与蔗糖相当而热量值低的甜味剂。麦芽糖也是制造麦芽酮糖和低聚异麦芽糖的原料,后两者对肠道中有益人体的双歧乳酸菌的繁殖有促进作用,是很好的功能性食品原料。

当前,在食品工业中高麦芽糖浆主要的用途是制造糖果及果冻、糕点、饮料等产品。有关研究表明,对高麦芽糖浆的利用正在向两个方向发展:一是制备常温条件下不发生结晶的固形物含量达80%的超高麦芽糖浆;二是制造纯麦芽糖浆。在过去,麦芽糖是以饴糖作原料,用酒精沉淀除去糊精,再结晶而生成的。自从脱支酶开发成功后,利用高温a 一淀粉酶的喷射液化、经B一淀粉酶糖化,可容易地制造麦芽糖含量高达85%的超高麦芽糖浆,从而为工业化大规模制造麦芽糖创造了条件。

四、麦芽低聚糖浆

在众多品种的淀粉糖中,麦芽低聚糖不仅具有良好的食品加工适应性,而且具有多种对人体健康有益的生理功能,正作为一种新的“功能性食品”原料,日益受到人们重视。虽然麦芽低聚糖在淀粉糖工业中问世时间较短,但“异军突起”,发展迅猛,目前已成为淀粉糖工业中重要的产品。麦芽低聚糖按其分子中糖苷键类型的不同可分为两大类,即以α一1,4键连接的直链麦芽低聚糖,如麦芽三糖、麦芽四糖……麦芽十糖;另一大类为分子中含有α一1,6键的支链麦芽低聚糖,如异麦芽糖、异麦芽三糖、潘糖等。这两类麦芽低聚糖在结构、性质上有一定差异,其主要功能也不尽相同。

1 生产工艺

麦芽低聚糖的生产无法用简单的酸法或酶法水解来得到。直链麦芽低聚糖(简称麦芽低聚糖)如麦芽四糖等,是一种具有特定聚合度的低聚糖,必须采用专一的麦芽低聚糖酶(如麦芽四糖淀粉酶)水解经过适当液化的淀粉;而支链麦芽低聚糖(简称异麦芽低聚糖)的生产必须采用特殊的a一葡萄糖苷转移酶,其原理是淀粉糖中麦芽糖浆分子受该酶作用水解为2分子的葡萄糖,同时将其中1分子的葡萄糖转移到另一麦芽糖分子上生成带α一1,6键的潘糖,或转移到另一葡萄糖分子上生成带α

一1,6键的异麦芽糖。

自20世纪70年代以来,随着多种特定聚合度的麦芽低聚糖酶的不断发现,特别是α一葡萄糖苷酶的出现,为各种麦芽低聚糖的研制、开发以及工业化生产奠定了基础。

1 )直链麦芽低聚糖的生产工艺’

(1)工艺流程直链麦芽低聚糖的生产工艺如图6—9所示:

淀粉一喷射液化一麦芽低聚糖酶和普鲁蓝酶协同糖化一脱色一离子交换一真空浓缩或喷雾干燥一成品

图6-9直链麦芽低聚糖的生产工艺

(2)操作要点生产麦芽低聚糖关键是喷射液化时要尽量控制α

一淀粉酶的添加量和液化时间,防止液化DE值过高,造成最终产物中葡萄糖等含量较高。一般DE值控制在10%~15%,既能保证终产物中低聚糖含量较高,又能防止因液化程度太低造成糖液过滤困难。麦芽低聚糖的精制和其他淀粉糖生产基本相同。

其主要参数为:淀粉乳质量分数25%,喷射液化D E值控制在10%~15%,按一定量加入麦芽低聚糖酶和普鲁蓝酶,在pH值为5.6,温度为55℃条件下协同糖化12~24 h,经精制、浓缩得到的成品中,麦芽低聚糖占总糖比率大于70%。

2 )支链麦芽低聚糖的生产工艺

(1)工艺流程支链麦芽低聚糖的生产工艺如图8—10所示:

淀粉一喷射液化一β-淀粉酶糖化一α-葡萄糖苷转移酶转化一脱色一离子交换一真空浓缩或喷雾干燥一成品

图8一lO支链麦芽低聚糖的生产工艺

(2)操作要点支链麦芽低聚糖(简称异麦芽低聚糖)生产工艺的

关键是首先用淀粉生产高麦芽糖,然后再用葡萄糖苷转移酶转化麦芽糖为异麦芽糖和潘糖,由

于β一淀粉酶和葡萄糖苷转移酶最适pH值和温度接近,该两种酶可同时用于糖化。

其主要参数为:淀粉浆质量分数30%,喷射液化至DE值为10%,按一定添加量加入β一淀粉酶和葡萄糖苷转移酶,在pH值为5.0,60℃条件下反应48~72 h。经精制浓缩得到的成品中,异麦芽低聚糖占总糖比例不低于50%。

2性质与应用

1 )麦芽低聚糖的性质与应用

●麦芽低聚糖的性质为:

①低甜度:甜度仅为蔗糖的30%,可代替蔗糖,有效地降低食品甜度,改善食品质量。

②高黏度:具有较高黏度,增稠性强,载体性好。

③抗结晶性:可有效防止糖果、巧克力制品中的返砂现象,防止果酱、果冻中蔗糖的结晶。

④冰点下降:用于冷饮制品中,可有效减少冰点下降作用,使冷饮抗融性得到改善。

●麦芽低聚糖的功能为:

①麦芽低聚糖能促进人体对钙的吸收,可有效促进婴儿骨骼的生长发育及满足中老年人补钙的需要。

②麦芽低聚糖能抑制人体肠道内有害菌的生长,促进人体有益菌的增殖,可增进老人身体健康,减少发病的可能性。

③麦芽低聚糖具有低渗透压及供能时间等葡萄糖和蔗糖不具备的优点,特别适合用于运动员专用饮料及食品中。

④麦芽低聚糖易消化吸收,不必经过唾液淀粉酶和胰淀粉酶的消化,可直接由肠上皮细胞中的麦芽糖酶水解吸收。

⑤麦芽低聚糖能抑制淀粉老化,防止蛋白质变性,保持速冻食品的新鲜度。

●麦芽低聚糖可在如下产品中应用:

①糖果糕点:软糖、饼干、糕点、西点、巧克力等;

②饮料:非酒精液体饮料、运动饮料、固体饮料等;

③乳制品:调味乳、乳酸制品、调制奶粉等;

④冷饮制品:冰激凌、雪糕、冰棒等;

⑤焙烤食品:面包、蛋糕等;

⑥果酱、蜜饯、果冻、婴幼儿食品、罐头食品、速冻食品、传统糖制品、各种营养保健液等。

2)异麦芽低聚糖的性质与应用

异麦芽低聚糖的功能:

①异麦芽低聚糖能促进人体内有益细菌双歧杆菌的增殖,被称为“双歧杆菌增殖因子”,是理想的保健食品原料。

②异麦芽低聚糖不易被人体吸收,具有类似水溶性膳食纤维的功能,可广泛应用于治疗糖尿病及肥胖病的保健食品中。

⑧异麦芽低聚糖不易被酵母菌、乳酸菌利用,特别不易被蛀牙病原菌——变异链球菌发酵,同时还能阻止蔗糖在口腔中产生不溶性高分子葡萄糖,对预防龋齿意义重大。

异麦芽低聚糖有许多优良的性质和保健功能,适合代替蔗糖添加到各种饮料、乳制品、糖果、糕点、焙烤食品、冷饮品等食品中。

五麦芽糊精

麦芽糊精是指以淀粉为原料,经酸法或酶法低程度水解,得到的DE值在20%以下的产品。其主要组成为聚合度在10以上的糊精和少量聚合度在10以下的低聚糖。麦芽糊精具有独特的理化性质、低廉的生产成本及广阔的应用前景,成为淀粉糖中生产规模发展较快的产品。

1 生产工艺

麦芽糊精的生产有酸法、酸酶法和酶法等。由于酸法生产中存在过滤困难、产品溶解度低以及易发生凝沉等缺点,且酸法生产中须以精制淀粉为原料,因此麦芽糊精生产现采用酶法工艺居多。

酶法工艺主要以α一淀粉酶水解淀粉,具有高效、温和、专一等特点,因此可用原粮进行生产。下面以大米(碎米)为原料简述酶法生产工艺。

1 )工艺流程麦芽糊精的酶法生产工艺流程如图6一11所示:

原料(碎米)一浸泡清洗一磨浆一调浆一喷射液化一过滤除渣一脱色一

真空浓缩一喷雾干燥一成品

图6-11麦芽糊精的酶法生产工艺流程

2)操作要点

①原料预处理:原料预处理包括原料筛选、计量投料、温水浸泡、淘洗去杂、粉碎磨浆等,具体操作和其他淀粉糖生产类似。

②喷射液化:采用耐高温a一淀粉酶,用量为10~20 u/g,米粉浆质量分数为30%~35%,pH值在6.2左右。一次喷射入口温度控制在105C,并于层流罐中保温30 min。而二次喷射出口温度控制在130~130lC,液化最终DE值控制在lO%~20%。

⑧喷雾干燥:由于麦芽糊精产品一般以固体粉末形式应用,因此必须具备较好的溶解性,通常采用喷雾干燥的方式进行干燥。其主要参数为:进料质量分数40%~50%;进料温度60~80℃;进风温度130~160℃;出风温度70~80℃;产品水分≤5%。

2性质与应用

麦芽糊精甜度低、黏度高、溶解性好、吸湿性小、增稠性强、成膜性能好,在糖果工业中麦芽糊精能有效降低糖果甜度、增加糖果韧性、抗“砂”、抗“烊”,提高糖果质量;在饮料、冷饮中麦芽糊精可作为重要配料,能提高产品溶解性,突出原有产品风味,增加黏稠感和赋形性;在儿童食品中,麦芽糊精因低甜度和易吸收可作为理想载体,预防或减轻儿童龋齿病和肥胖症。

低DE值麦芽糊精遇水易生成凝胶,口感和油脂类似,因此能用于油脂含量较高的食品中如冰激凌、鲜奶蛋糕等,代替部分油脂,降低食品热量,同时不影响’口感。麦芽糊精具有较好的载体性、流动性,无淀粉异味,不掩盖其他产品风味或香味,可用于各种粉末香料、化妆品中。此外,麦芽糊精还具有良好的遮盖性、吸附性和粘合性,能用于铜版纸表面施胶等,提高纸张质量。

淀粉糖的生产工艺和种类

淀粉糖的生产工艺和种类 生产工艺有酸法、酶法、酸酶法三种,不同的工艺,其甜度、胶粘性、增稠性、保潮性、吸湿性、渗透压力、颜色稳定性、焦化性、还原性、发酵性是不同的,不管哪种工艺都是一个复杂的水解过程。淀粉水解过程存在三种主要反应:一是水解为葡萄糖;二是水解成葡萄糖后重新复合成异麦芽糖等复合糖;三是葡萄糖分解生成5-烃甲基糖醛及酸丙酸色素物质。 1.酸法水解。有盐酸、草酸,其中盐酸的水解淀粉能力高,但酸法水解缺乏专一性,同时产生复合反应,温度愈高,复合反应愈多,生成的有色物质多,颜色深,用酸量多,需中和碱量大,因之产生的灰分也多。 2.酶法水解。具有高度的专一性,副产物少,纯度高,糖色浅,因之减少了净化工序和净化剂的用量,与酸法相比,可以转化较高浓度的固形物,提高效率,减少损耗,降低成本,所得母液还可以利用,而且在常温常压下进行,设备工艺都比较简单。 3.酸酶法。投料资度18~20Bx°,为酸法的两倍,节省费用,缩短时间,DE 值(糖化率)可达96%,纯度高,糖液色浅,容易结晶析出,用酸量少,仅为酸法的20%,产品质量高。 淀粉糖产品由于是淀粉水解而得,因此,淀粉水解的速度、水解的程度、液化、糖化、净化、结晶、淀粉原料、催化效率以及工艺设备性能等,均能影响淀粉糖液的质量。淀粉品种不同,化学结构不同,对液化亦有不同的影响。淀粉中的蛋白质、脂肪、灰分等杂质均能影响催化效率,降低酸的有效浓度,尤其是淀粉中的含氮物质对热稳定性有明显的影响。硫酸铵受热分解产生氮与羧甲基糠醛作用,能产生大量有色物质,迅速焦化。玉米中的植酸盐要消耗部分酸。总之不

管什么液化方法,都存在不溶性淀粉颗粒,这种淀粉颗粒能与脂肪形成络合物,呈螺旋结构,不容易水解,降低了糖化率。 淀粉糖浆种类和品种目前,工业生产上按葡萄糖转化值(DE),把淀粉糖分成若干种,见89页表。 按液体葡萄糖值,还可以分为高转化糖浆(DE60~70)、中转化糖浆(DE38~42)、低转化糖浆(DE20以下)。产品品种有: 1.麦芽糖。是由两个单分子葡萄糖构成的双糖,其甜度低,热稳定性高于葡萄糖,通过氧化反应可以得到葡萄糖和其它低聚糖,还可以转化为麦芽糖醇、葡萄糖醇等。麦芽糖熬糖温度为155℃。比普通熬糖温度高。 2.低聚糖。系指麦芽三糖、四糖,其DE值低,粘度高,吸湿性差,适用于制作硬糖果、雪糕、糕点等等。 名称 DE 甜味 粘度 结晶性 结晶抑制作用 吸湿性 溶液冰点 平均分子量 结晶葡萄糖 99.3~100

淀粉糖品生产与应用手册

淀粉糖品生产与应用手册 尤新主编 前言 随着科学技术的迅速发展,淀粉糖品的内涵赋予了全新的内容,特别是生物技术的进展,不仅使淀粉糖生产工艺有了新的突破,实现了高温喷射液化和快速糖化,使淀粉糖化的转化率大幅度提高,糖液DE值从90%-92%提高到97%-98%。既节约了粮食又提高了纯度,从而使酶法糖化也能生产针剂葡萄糖,而且生物技术也使淀粉糖衍生物的品种增加,功能增加。过去淀粉糖主要是作为食品工业的甜味料,为增加甜食品的花色品种和提高档次作出贡献。随着麦芽糖醇和山梨醇等糖醇的出现,市场上防龋齿食品和糖尿病人专用的无糖食品也迅速发展。近年来由于酶技术的进展,使淀粉糖品的大家庭中又增加了低聚糖新成员,使淀粉糖品不仅有甜味,能防龋,能作糖尿病人的食品,而且对人体肠道有益的双歧杆菌有增殖作用。从而提高了人体健康素质。最近科技界又成功地从淀粉研制成了多糖及海藻等具有特种生理的淀粉糖品,从此淀粉糖品将会对人类健康发挥更大的作用。 为了使淀粉糖行业的广大职工及使用淀粉糖品的食品加工业的职工和广大消费者了解我国淀粉糖品的发展现状,淀粉糖品的性质、生产技术和用途,中国发酵工业协会特组织了全国从事多年淀粉糖品研制开发和生产的专家,经过一年多的辛勤总结和编写,完成了这部淀粉糖品最新的实用生产技术手册。各章节由下列人员执笔。 第一章淀粉原料及生产赵继湘教授级高级工程师,陈光熹教授级高级工程师 第二章淀粉糖品生产用酶制剂王家勤高级工程师,冯德清高级工程师。 第三章双酶法液化糖化技术王兆光副教授 第四章麦芽糊精的生产及应用卢义成工程师

第五章酸法葡萄糖李含明高级工程师 第六章麦芽糖浆、高麦芽糖浆、麦芽糖胡学智教授级高级工程师 第七章果葡糖浆何开祥教授级高级工程师 第八章结晶葡萄糖佟毓芳高级工程师 第九章全糖尤新教授级高级工程师 第十章低聚糖金其荣教授 第十一章海藻糖陈瑞娟高级工程师 第十二章糖醇尤新教授级高级工程师 附录一余淑敏工程师、王家勤高级工程师 附录二赵继湘教授级高级工程师 附录三赵继湘教授级高级工程师 此外,手册还附有国内外淀粉糖品的技术经济资料和淀粉糖品的生产技术理化参数,可以说这是我国改革开放以来国内自行编写的第一部淀粉糖品技术手册。它既有我国传统的淀粉糖品,也有发展中的糖品,还有新近研究中的各种淀粉糖品。它不仅适用于科教,生产第一线的工作人员学习参考,同时也可作为各级管理部门和各地各级政府制订淀粉糖品规划的重要参考资料。 本书中凡成分、含量、浓度等以%表示的,一般均指质量分数(%)。 在淀粉糖品生产技术手册即将出版之际,谨代表中国发酵工业协会,对参与编写的各位专家和为出版手册付出辛勤劳动的所有人员,表示衷心地感谢。 由于本手册内容丰富,涉及面广,编辑时间又较紧,所以,书中的差错在所难免。敬请广大读者批评指正。

淀粉糖生产工艺及设备

淀粉糖生产工艺及设备 1、淀粉糖:凡是以淀粉为原料生产的糖统称为淀粉糖。 2、应用:淀粉糖主要应用于食品工业,医药工业和化学工业。 食品工业主要应用于面包、谷物、食品、糖品、雪糕和乳制品、饮料、罐头、果酱等。 医药工业:有食品级和医药两种。口服糖标准低于医药级,同时有的还加入维生素、钙质等以提高营养供病人、老人、儿童服用。 葡萄糖同时还是重要的化工原料,是生产山梨醇、革露醇、维生素丙、维生素C、葡萄糖酸、葡萄糖醛、味精、洒精、醋酸等各种产品的原料,广泛地应用工业。 淀粉糖生产工艺分三种:酸法、酸酶法、双酶法。酶液化和酶糖化工艺称为双酶法。其特点是:反应条件温和,复合分解反应较少,淀粉转化率高。 二、淀粉的理化性质 1、物理性质:淀粉呈白色粉末,显微镜下呈大小不一的透明小颗粒。1kg 玉米淀粉大约有17000亿个颗粒,有圆形、椭圆形和三角形。玉米淀粉的颗料多为圆形和多角形,椭圆形较少。 玉米淀粉颗粒是5~30微米,平均为15微米。 2、糊化:淀粉乳受热膨胀,晶体结构消失,体积涨大,互相接触,变成粘稠糊状液体,虽停止搅拌,淀粉也不会沉淀,此现象称为糊化。玉米的糊化温度62~72℃。 糊化作用的本质是淀粉中有序(晶体)和无序(非晶质)态的淀粉分子间的氢键断裂,分散在水中成为亲水性胶体溶液。 3、化学结构:淀粉是由葡萄糖组成的多糖,分子式(C6H12O5)n,淀粉由支链和直链淀粉组成。玉米淀粉中直链占27%。 淀粉遇碘产生蓝色反应,加热到约70℃蓝色消失,冷却后又重现蓝色,这种蓝色反应是物理反应。 聚合度是指直链淀粉分子的葡萄糖单位数目。聚合度(DP)4~6时遇碘不变色,8~12变红,大于15时变蓝。

淀粉糖品生产与应用手册

淀粉糖品生产与应用手册 令狐采学 尤新主编 前言 随着科学技术的迅速发展,淀粉糖品的内涵赋予了全新的内容,特别是生物技术的进展,不仅使淀粉糖生产工艺有了新的突破,实现了高温喷射液化和快速糖化,使淀粉糖化的转化率大幅度提高,糖液DE 值从90%92%提高到97%98%。既节约了粮食又提高了纯度,从而使酶法糖化也能生产针剂葡萄糖,而且生物技术也使淀粉糖衍生物的品种增加,功能增加。过去淀粉糖主要是作为食品工业的甜味料,为增加甜食品的花色品种和提高档次作出贡献。随着麦芽糖醇和 令狐采学创作

山梨醇等糖醇的出现,市场上防龋齿食品和糖尿病人专用的无糖食品也迅速发展。近年来由于酶技术的进展,使淀粉糖品的大家庭中又增加了低聚糖新成员,使淀粉糖品不仅有甜味,能防龋,能作糖尿病人的食品,而且对人体肠道有益的双歧杆菌有增殖作用。从而提高了人体健康素质。最近科技界又成功地从淀粉研制成了多糖及海藻等具有特种生理的淀粉糖品,从此淀粉糖品将会对人类健康发挥更大的作用。 为了使淀粉糖行业的广大职工及使用淀粉糖品的食品加工业的职工和广大消费者了解我国淀粉糖品的发展现状,淀粉糖品的性质、生产技术和用途,中国发酵工业协会特组织了全国从事多年淀粉糖品研制开发和生产的专家,经过一年多的辛勤总结和编写,完成了这部淀粉糖品最新的实用生产技术手册。各章节由下列人员执笔。 令狐采学创作

第一章淀粉原料及生产赵继湘教授级高级工程师,陈光熹教授级高级工程师 第二章淀粉糖品生产用酶制剂王家勤高级工程师,冯德清高级工程师。 第三章双酶法液化糖化技术王兆光副教授 第四章麦芽糊精的生产及应用卢义成工程师 第五章酸法葡萄糖李含明高级工程师 第六章麦芽糖浆、高麦芽糖浆、麦芽糖胡学智教授级高级工程师 第七章果葡糖浆何开祥教授级高级工程师 第八章结晶葡萄糖佟毓芳高级工程师 第九章全糖尤新教授级高级工程师 令狐采学创作

淀粉糖的生产制作工艺和种类模板

淀粉糖的生产制作工艺和种类模板

淀粉糖的生产工艺和种类 生产工艺有酸法、酶法、酸酶法三种, 不同的工艺, 其甜度、胶粘性、增稠性、保潮性、吸湿性、渗透压力、颜色稳定性、焦化性、还原性、发酵性是不同的, 不论哪种工艺都是一个复杂的水解过程。淀粉水解过程存在三种主要反应: 一是水解为葡萄糖; 二是水解成葡萄糖后重新复合成异麦芽糖等复合糖; 三是葡萄糖分解生成5-烃甲基糖醛及酸丙酸色素物质。 1.酸法水解。有盐酸、草酸, 其中盐酸的水解淀粉能力高, 但酸法水解缺乏专一性, 同时产生复合反应, 温度愈高, 复合反应愈多, 生成的有色物质多, 颜色深, 用酸量多, 需中和碱量大, 因之产生的灰分也多。 2.酶法水解。具有高度的专一性, 副产物少, 纯度高, 糖色浅, 因之减少了净化工序和净化剂的用量, 与酸法相比, 能够转化较高浓度的固形物, 提高效率, 减少损耗, 降低成本, 所得母液还能够利用, 而且在常温常压下进行, 设备工艺都比较简单。 3.酸酶法。投料资度18~20Bx°, 为酸法的两倍, 节省费用, 缩短时间, DE值( 糖化率) 可达96%, 纯度高, 糖液色浅, 容易结晶析出, 用酸量少, 仅为酸法的20%, 产品质量高。淀粉糖产品由于是淀粉水解而得, 因此, 淀粉水解的速度、水解的程度、液化、糖化、净化、结晶、淀粉原料、催化效率以及工艺设备性能等, 均能影响淀粉糖液的质量。淀粉品种不同, 化学结构不同, 对液化亦有不同的影响。淀粉中的蛋白质、脂肪、灰分

等杂质均能影响催化效率, 降低酸的有效浓度, 特别是淀粉中的含氮物质对热稳定性有明显的影响。硫酸铵受热分解产生氮与羧甲基糠醛作用, 能产生大量有色物质, 迅速焦化。玉米中的植酸盐要消耗部分酸。总之不论什么液化方法, 都存在不溶性淀粉颗粒, 这种淀粉颗粒能与脂肪形成络合物, 呈螺旋结构, 不容易水解, 降低了糖化率。淀粉糖浆种类和品种当前, 工业生产上按葡萄糖转化值( DE) , 把淀粉糖分成若干种, 见89页表。按液体葡萄糖值, 还能够分为高转化糖浆( DE60~70) 、中转化糖浆( DE38~42) 、低转化糖浆( DE20以下) 。产品品种有: 1.麦芽糖。是由两个单分子葡萄糖构成的双糖, 其甜度低, 热稳定性高于葡萄糖, 经过氧化反应能够得到葡萄糖和其它低聚糖, 还能够转化为麦芽糖醇、葡萄糖醇等。麦芽糖熬糖温度为155℃。比普通熬糖温度高。 2.低聚糖。系指麦芽三糖、四糖, 其DE值低, 粘度高, 吸湿性差, 适用于制作硬糖果、雪糕、糕点等等。名称D E 甜味粘度结晶性结晶抑制作用

淀粉糖工艺

包装材料液体食品包装用原辅材料ZBY39002 二、过程检验及控制 1、淀粉乳精制 为进一步提高淀粉乳的质量,要进一步分离去除蛋白质等杂质,提取纯淀粉乳。1)蛋白质分离:出料淀粉乳含量为22%~40%。 2)淀粉洗涤:蛋白含量0.4%~0.5%。 在这一工序中,操作人员应严格控制出料淀粉乳的蛋白含量。 蛋白质含量控制:定时检测出料淀粉乳的蛋白质含量,不达标的淀粉乳回流继续进行洗涤,直至检测达标后才能往下一工序出料。并分析蛋白含量不达标的原因,是洗涤不彻底,还是蛋白质分离效果不好,及时调整洗涤水流量,同时控制分离机蛋白分离效果。 如果淀粉乳蛋白含量过高,在后续生产中,虽然离子交换工序有去除蛋白质和氨基酸的功能,但是因其浓度高,漏过离子交换树脂的机率也增大,所以,有时虽离子交换后糖液色泽好,但一经加热后色泽就变深。这是由于糖类的还原性羰基与蛋白质分子中氨基酸的氨基在加热过程中进行美拉德反应,产生具有特殊气味的棕褐色缩合物。 检测内容:品控员每天检查旋流分离器分离记录,抽测精制淀粉乳蛋白质含量,控制在0.4%~0.5%。 2、液化 1)液化调浆 为液化做准备,在液化之前将各工艺参数调到工艺指标: ①淀粉乳浓度 一般控制淀粉乳干物质含量30%~35% (16~18°Be)。实际生产中,为了达到比较好的液化效果和好的流速,结合所使用的酶制剂,并通过生产实践,淀粉乳浓度控制在17°Be。最高可调到18.5°Be,再高就影响液化效果。在酶质量受限、蒸汽压力达不到等不利于液化的情况下,可以适当降低淀粉乳浓度。 ② pH值 所使用的液化酶来自诺维信,其使用pH值范围:5.2~5.8,最佳pH值5.5。(市场上出售的液化酶,使用pH值范围一般在6.0~6.5。)在此范围内,pH值低,液化液色泽相对比较好;液化时产生的麦芽酮糖比较少,能保证糖化时DX值≥96%。 淀粉乳pH值不稳定,液化时pH值一直在下降,喷射结束后仍处于淀粉糊状态,无法生产。 ③ Ca2+含量 耐热性α-淀粉酶只需要很少量的钙离子维持活力的稳定性,5mg/kg已足够。淀粉乳中一般含有此量的钙离子,无须另外添加。 ④加酶量:加酶量与酶活力有关,加入耐高温α-淀粉酶4L/T干基淀粉,在生产设 备及操作完备的情况下可降低加酶量,使用0.35L/T干基淀粉,在生产稳定条件下,可减少原辅料用量。 2)喷射液化

淀粉糖工艺培训教材(doc 106页)

淀粉糖工艺培训教材(doc 106页)

第一章淀粉糖概述 第一节淀粉糖发展史 淀粉糖是利用淀粉为原料生产的糖品的总称,产品种类多,生产历史悠久。1811年德国化学家柯乔夫(Kirchoff)用硫酸处理马铃薯淀粉,原意是制造可能替代阿拉伯树胶用胶粘剂,但酸的作用过度,所得产物为粘度很低的液体,澄清,具有甜味。柯乔夫经过研究将其制成一种糖浆,放置一段时间后有结晶析出,用布袋装盛,压榨,除去大部分母液,得固体产品,即较为粗糙的结晶糖产品。 由淀粉制糖的化学反应称为水解反应,完全水解的最终产品与葡萄果汁中的葡萄糖成分完全相同。这个事实被一位法国化学家沙苏里于1815年确定。在19世纪初,法国人曾研究用许多种原料制糖,1801年朴罗斯特试验成功由葡萄汁提制出葡萄糖,葡萄糖的名称便由此得来,一直沿用到现在。 19世纪曾有很多人从事制造结晶葡萄糖的研究,但成就不大,主要是对于葡萄糖的几种异构体的化学及结晶规律缺乏了解的缘故,沿用蔗糖结晶的方法,困难很多。淀粉糖的生产主要为糖浆和包含糖蜜的固体糖,少量的结晶葡萄糖产品是用有机溶剂重复结晶而得,纯度也相当高,但是成本高,不能大量生产。 大约于1920年美国人牛柯克(Newkirk)发现含水α-葡萄糖比无水α-葡萄糖容易结晶,使用25%-30%湿晶种的冷却结晶法容易控制,所得结晶产品易于用离心机分离,产品质量高,被世界各国普遍采用,现在工业基本上还应用此结晶工艺。 应用麦芽生产饴糖虽已有很悠久的酶法技术,但近年来淀粉酶制剂和技术大发展,促进了淀粉制糖工业大发展。约于1940年美国开始采用酸酶合并糖化工艺生产糖浆,能避免葡萄糖的复合和分解反应,产品甜味纯正。约于1960年日本开始用淀粉酶液化和葡萄糖酶糖化的双酶法生产结晶糖工艺,并被各国普遍采用,逐渐淘汰了酸法制糖工艺。这种双酶法所得糖化液纯度高、甜味纯正,能省去结晶工序直接制成全糖,工艺简单,生产成本低,质量虽不及结晶葡萄

淀粉糖的种类

淀粉糖的种类、特性和制造工艺 淀粉糖是以淀粉为原料,通过酸或酶的催化水解反应生产的糖品的总称,是淀粉深加工的主要产品。在美国,淀粉糖年产量已达1 000万t,占玉米深加工总量的60%,从20世纪80年代中期开始,美国国内淀粉糖消费量已超过蔗糖。我国淀粉糖工业目前仍处于发展的起步阶段,从20世纪90年代以来,由于现代生物工程技术的应用,生产淀粉糖所用酶制剂品种的增加及质量的提高,使淀粉糖行业得到快速发展,产量以年均10%的速度增长,而且品种也日益增加,形成了各种不同甜度及功能的麦芽糊精、葡萄糖、麦芽糖、功能性糖及糖醇等几大系列的淀粉糖产品。 淀粉糖的原料是淀粉,任何含淀粉的农作物,如玉米、大米、木薯等均可用来生产淀粉糖,生产不受地区和季节的限制。淀粉糖在口感、功能性上比蔗糖更能适应不同消费者的需要,并可改善食品的品质和加工性能,如低聚异麦芽糖可以增殖双歧杆菌、防龋齿;麦芽糖浆、淀粉糖浆在糖果、蜜饯制造中代替部分蔗糖可防止“返砂”、“发烊”等,这些都是蔗糖无可比拟的。因此,淀粉糖具有很好的发展前景。 第一节淀粉糖的种类及特性 一、淀粉糖的种类 淀粉糖种类按成分组成来分大致可分为液体葡萄糖、结晶葡萄糖(全糖)、麦芽糖浆(饴糖、高麦芽糖浆、麦芽糖)、麦芽糊精、麦芽低聚糖、果葡糖浆等。 1 液体葡萄糖:是控制淀粉适度水解得到的以葡萄糖、麦芽糖以及麦芽低聚糖组成的混合糖浆,葡萄糖和麦芽糖均属于还原性较强的糖,淀粉水解程度越大,葡萄糖等含量越高,还原性越强。淀粉糖工业上常用葡萄糖值(dextrose equivalent)简称DE值(糖化液中还原性糖全部当做葡萄糖计算,占干物质的百分率称葡萄糖值)来表示淀粉水解的程度。液体葡萄糖按转化程度可分为高、中、低3大类。工业上产量最大、应用最广的中等转化糖浆,其

葡萄糖淀粉酶生产工艺图

葡萄糖淀粉酶生产工艺图 淀粉糖是指以淀粉为原料经水解、精制或再经深加工而获得的糖制品。淀粉分子是由成千上万个葡萄糖分子(C6H12O6)连接而成,一个葡萄糖分子有6个碳原子,与下一个葡萄糖分子相连时有三种连法:一是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连;二是第6个碳原子与下一个葡萄糖分子的第1个碳原子相连;三是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连,同时第6个碳原子与另一个葡萄糖分子的第1个碳原子相连。全部葡萄糖分子都以第一种连法连接的是直链淀粉,自然界很少存在;全部葡萄糖分子都以第二种连法连接无法形成长链,形不成淀粉;葡萄糖分子以三种连法混合连成的淀粉分子是自然界存在的淀粉的主流,其中以第三种连法连接的部位形成支叉,所以叫支链淀粉。 果糖与葡萄糖一样都是单糖,果糖的分子式也是C6H12O6,属于葡萄糖的同分异构体,通过异构酶的作用,葡萄糖的醛基变成酮基即得到果糖。蔗糖、麦芽糖及异麦芽糖都属于双糖,一个葡萄糖的第4个碳原子另一个葡萄糖分子的第1个碳原子相连即为麦芽糖,一个葡萄糖的第6个碳原子另一个葡萄糖分子的第1个碳原子相连即为异麦芽糖,而蔗糖则由一个葡萄糖分子与一个果糖分子连接而成。三个葡萄糖分子相连而成的三糖有麦芽三糖和潘糖。4~8个葡萄糖连成的短链糖品叫低聚糖,9个以上葡萄糖连成的中分子物质叫做糊精,其甜味已经不明显,大量的葡萄糖连在一起就形成了淀粉或者形成更大分子量的纤维素。 以淀粉为原料选用不同的酶来水解或控制不同的水解程度可以得到不同的淀粉糖品。以诺维信酶制剂为例: 1、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE6~10,经精制和喷雾干燥后可以制得糊精制品; 2、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX糖化到DE40~50,可以获得食品行业常用的葡萄糖浆; 3、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX糖化到DE99.5~101,可以得到葡萄糖含量97%以上的糖液。经过精制后在50℃以下结晶可以制取一水结晶葡萄糖,在50℃以上结晶可以制取无水结晶葡萄糖; 4、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用真菌淀粉酶FUNGAMYL 800L糖化到DE45~48,可以获得麦芽糖含量50~55%的普通麦芽糖浆; 5、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用β-淀粉酶Novozym WBA和普鲁兰酶Promozyme(适于水解糖链的支叉部位)糖化到DE43~46,可以获得麦芽糖含量60%以上的高麦芽糖浆或芽糖含量70%以上的超高麦芽糖浆。 以葡萄糖为原料,经固定化异构酶Sweetzyme IT异构化可以获得糖分组成中果糖约占42%的F42果葡糖浆,F42果葡糖浆经色谱分离可以获得糖分组成中果糖最多约占90%的F90超高果糖浆,F90超高果糖浆还可以通过结晶制得结晶果糖。 以葡萄糖为原料,经高压加氢可以制得山梨醇,通过结晶可以制得结晶山梨醇。

液体葡萄糖的生产工艺流程

液体葡萄糖的生产工艺流程 ! j i I ! i i 主要淀粉糖品的生产工艺流程:液体葡萄糖 一、性质及应用 液体葡萄糖是我国目前淀粉糖工业中最主要的产品,广泛应 用于糖果、糕点、饮料、冷饮、焙烤、罐头、果酱、果冻、乳制品等各种食品中,还可作为医药、化工、发酵等行业的重要原料。 该产品甜度低于蔗糖,黏度、吸湿性适中。用于糖果中能阻 止蔗糖结晶,防止糖果返砂,使糖果口感温和、细腻。 葡萄糖浆杂质含量低,耐储存性和热稳定性好,适合生产高级透明硬糖; 该糖浆黏稠性好、渗透压高,适用于各种水果罐头及果酱、果冻中,可延长产品的保存期。 液体葡萄糖浆具有良好的可发酵性,适合面包、糕点生产中 的使用。 二、主要生产工艺 工艺有酸法、酸酶法和双酶法。 1、酸法工艺

酸法工艺是以酸作为水解淀粉的催化剂,淀粉是由多个葡萄糖分子缩合而成的碳水化合物,酸水解时,随着淀粉分子中糖苷键断裂,逐渐生成葡萄糖、麦芽糖和各种相对分子质量较低的葡萄糖多聚物。该工艺操作简单,糖化速度快,生产周期短,设备投资少。 1) 工艺流程 酸法工艺流程如图所示: 淀粉——调浆——糖化——中和——第一次脱色过滤——离子交换—— 第一次浓缩——第二次脱色——过滤——第二次浓缩——成品 图酸法工艺流程 2) 操作要点 (1) 淀粉原料要求常用纯度较高的玉米淀粉,次之为马铃薯淀粉和甘薯淀粉。 (2) 调浆在调浆罐中,先加部分水,在搅拌情况下,加入粉 碎的干淀粉或湿淀粉,投料完毕,继续加入80C左右的水,使淀粉乳浓度达到22?24波美度(生产葡萄糖淀粉乳浓度为12?14波美度),然后加入盐酸或硫酸调值为 1 .8。调浆需用软水,以免产生较多的磷酸盐使糖液混浊。 (3) 糖化调好的淀粉乳,用耐酸泵送入耐酸加压糖化罐。边

葡萄糖浆生产工艺

第一章引言 凡是以淀粉为原料生产的糖统称为淀粉糖。淀粉糖主要应用于食品工业,医药工业和化学工业。 葡萄糖浆主要应用于食品工业,占全部用量的95%,非食品工业仅占5%,主要是医药工业。 在食品工业中使用量最大的是糖果,其次是水果加工、饮料、焙烤,此外,在罐头、乳制品中也有使用。葡萄糖浆在糖果制造中的作用主要是控制结晶度,以满足不同类型糖果的需要。添加的葡萄糖浆要根据具体情况分别对待。63DE糖浆能增加糖果的吸湿性、柔软度、降低教度、抑制微生物腐蚀,常用于胶糖、软糖的生产。而35—42DE酸转化葡萄糖浆可增加固形物含量,提高蔗糖溶解性,保证糖果粒度,常与蔗糖混合用于硬糖生产。果脯是水果加工中的一种重要产品,选用63DE葡萄糖浆,黏度低、渗透性好,容易渗入果肉或果皮间隙,而低DE 值的糖浆,因平均分子量高,黏度大,效果就差。 葡萄糖浆用于酒精饮料有两方面的作用,一是控制悬浮性、熟度和甜度;二是作为发酵碳水化合物来源,应选用高DE值葡萄糖浆,在发酵或蒸馏萃取后加入。葡萄糖浆在焙烤业中被大量使用,它能控制产品的流变特性,还原糖能提高面包皮的褐变反应。糖浆中的低聚糖能控制产品组织结构,高DE值葡萄糖浆能使蛋糕吸水防止干燥,延长货架期。葡萄糖浆用于冰棋淋生产,能控制产品柔软度、晶体形成和冰点,使产品变得光滑,无冰晶产生,不过甜,不掩盖风味。葡萄糖浆在医药工业领域的应用包括作为抗生素生产的原料, 作为药丸糖衣,与蔗糖共同作为止咳液的载体。 医药工业:有食品级和医药两种。口服糖标准低于医药级,同时有的还加入维生素、钙质等以提高营养供病人、老人、儿童服用。 葡萄糖同时还是重要的化工原料,是生产山梨醇、革露醇、维生素丙、维生、葡萄糖酸、葡萄糖醛、味精、醋酸等各种产品的原料,广泛地应用工业。C素.葡萄糖浆的生产,需经过淀粉液化后再糖化步骤。方法通常有酸法,酸酶法和双酶法。酸法水解制葡萄糖由于需要高温和盐酸作催化剂,因此会产生一些不可发酵性糖及一系列有色物质这不仅降低转化率,而且由于生产的糖液质量差,对后续精制带来不利影响。酸酶法即酸法液化、酶法糖化。在酸法液化时,控制水解反应,使DE值在20%~25%时即停止水解,迅速进行中和.调节pH值4.5左右,温度为55~60℃后加葡萄糖淀粉酶进行糖化,直至所需DE值,然后升温、灭酶、脱色、离子交换、浓缩。酸酶法工艺虽能较好地控制糖化液最终DE值,但和酸法一样,仍存在一些缺点,设备腐蚀严重,使用原料只能局限在淀粉,反应中生成副产物较多,最终糖浆甜味不纯,因此淀粉糖生产厂家大多改用酶法生产工艺。其最大的优点是液化、糖化都采用酶法水解,反应条件温和,对设备几乎无腐蚀;可直接采用原粮如大米(碎米)作为原料,有利于降低生产成本,糖液纯度高、得率也高。考虑到实际情况,本文介绍利用双酶法。液化采用两次加酶工艺的低压蒸汽喷射液化。 二工艺理论 一液化理论 1、液化:液化是淀粉加水成淀乳,加温糊化后,加液化酶使其水解成小颗粒,降低粘度的过程叫液化。

淀粉糖生产工艺讲座总结最新总结

淀粉糖生产工艺讲座总结 很高兴能够有机会参加10月17日在我们学院举行的由双桥公司技术部周经理介绍的关于淀粉糖的讲座。本讲座主要内容是双桥公司的大致概况、淀粉糖概念、关键生产技术以及前景介绍、人才的定义等。令我们对淀粉糖有了一个大概的了解和对我们食品专业前景的肯定。下面详细展开介绍。双桥公司相信大家并不会感到很陌生,双桥味精想毕大家都应该有所耳闻。双桥公司以前是做味精为主的,现在的重点是做淀粉糖。在淀粉糖这一块,他们300多个人创造了6个多亿的产值。淀粉糖是利用含淀粉的粮食、薯类等为原料,经过酸法、酸酶法或酶法制取的糖,包括麦芽糖、葡萄糖浆、果葡糖浆、低聚糖、糖醇等,统称为淀粉糖。淀粉糖是淀粉深加工产量最大的产品.它的消费领域广长期以来被广泛地应用于食品,医药,造纸等诸多行业,比如在奶粉和鸡精中都会加入葡萄糖浆,而在我们所吃的烧烤上都会涂有麦芽糖,我们所喝的酸奶中有添加低聚糖等,且淀粉糖的消费数量巨大,其中仅果脯糖浆一项,可口可乐和百事可乐两家公司一年的消耗量都在一百万吨左右。由此可见其为推动食品工业的发展和促进以生物科技带动农业产业化发展作出了重要贡献.在我国蔗糖的价格不稳定且尚不能满足市场需求的情况下,淀粉糖的发展为市场提供了多糖源,这对于稳定市场价格,促进农业和食品工业协调发展有着重要意义.淀粉糖作为新型甜味剂正在越来越广泛地应用在食品工业中,并有

逐步替代蔗糖的趋势,虽然其在某些方面无法完全代替蔗糖,甜度也只有蔗糖的70%,但其凭借这它价格稳定,原料丰富,具有保健功能的优势,实现大部分替代蔗糖的地位是很有肯定的。与此同时,我们国家的淀粉糖产业也快速发展着,淀粉糖的产量从xx年的60万吨发展到xx年的500万吨,足足增长了8倍多,位居世界第二(美国位居世界第一),我国淀粉糖生产企业的生产规模、生产技术和产品质量均已达世界先进水平,国内市场占有率达90%以上,国外市场占有率也逐步提高.xx年淀粉糖产值达110亿元,出口创汇 3.14亿美元。虽然我国在淀粉糖生产上有这许多的成就,但在淀粉糖是生产过程中一些关键技术上面还是比不上国外,例如在酶的生产上面国产酶实在是无法与进口酶相比,难怪周经理不停的感慨着国产酶怎么不争气,这也提醒我们食品专业的同学要好好学习自己的专业知识,为我国的食品工业作出自己的贡献。尽管淀粉糖市场有着广阔的前景,但是在其发展过程中还是存在着一些瓶颈,主要表现在一下几个方面,首先是生产过程中的原料问题,大家都应该知道,生产淀粉糖的原料如玉米,薯类等都主要产于东北一带,原料分布不均导致了交通运输成本的上涨。其次,每一个淀粉糖厂都有一个盈利半径,大概是三百公里,如果超出了这个半径就会出现亏损,这也无形中制约了淀粉糖工业的发展。最后,也是比较关键的一点,由于淀粉糖工业的起步比较晚,专业技术人才比较少,人才的缺少很大程度上减缓了淀粉糖工业的发展速度和发展的效率。作为食品专业一员的我,深感自己责任重大,我国食品行业的发展任重而道远。学好自己的专业只

淀粉生产工艺

第五章淀粉生产技术 本章重点和学习目标 玉米、薯类等淀粉的工业提取工艺原理、工艺流程和操作要点;淀粉生产副产品的综合利用;变性淀粉制备的工艺原理、工艺方法和操作要点。 淀粉是食品的重要组分之一,是人体热能的主要来源。淀粉又是许多工业生产的原、辅料,其可利用的主要性状包括颗粒性质;糊或浆液性质;成膜性质等。由于天然淀粉并不完全具备各工业行业应用的有效性能,因此,根据不同种类淀粉的结构、理化性质及应用要求,采用相应的技术可使其改性,得到各种变性淀粉,从而改善了应用效果,扩大了应用范围。淀粉和变性淀粉可广泛应用于食品、纺织、造纸、医药、化工、建材、石油钻探、铸造以及农业等许多行业。 淀粉经水解作用可制得若干种类的淀粉糖产品,如糊精、麦芽糖、淀粉糖浆、葡萄糖、功能性低聚糖。葡萄糖经异构化还可以生产高果糖浆。淀粉经水解、发酵作用可转化成酒精、有机酸、氨基酸、核酸、抗生素、甘油、酶、山梨醇等若干种类的转化产品。 第一节淀粉的原料及理化性质 一、淀粉分类 1、按来源分 ◆禾谷类淀粉:玉米、大米、大麦、小麦、燕麦、荞麦、高粱等的淀粉存在于胚 乳、糊粉层、胚(玉米 25%含量)中。 ◆薯类淀粉:甘薯、木薯、葛根的淀粉存在于块根中;马铃薯、山药的淀粉存在 于块茎中。 ◆豆类淀粉;蚕豆、绿豆、豌豆、赤豆等的淀粉存在于子叶中。 ◆其他淀粉:香蕉、白果等存在于果实中;菠萝等存在于基髓中。 2、按化学成分分为直链淀粉和支链淀粉 一般地讲,直链淀粉具有优良的成膜性和膜强度,支链淀粉具有较好的粘结性。大多数植物所含的天然淀粉都是由直链和支链两种淀粉以一定的比例组成的。也有一些糯性品种,其淀粉全部是由支链淀粉所组成,如糯玉米、糯稻等。 3 二、淀粉原料 1、生产淀粉原料的条件 ◆淀粉含量高、产量大、副产品利用率高

淀粉糖生产工艺

淀粉糖工艺淀粉糖是指以淀粉为原料经水解、精制或再经深加工而获得的糖制品。淀粉分子是由成千上万个葡萄糖分子(C6H12O6)连接而成,一个葡萄糖分子有6个碳原子,与下一个葡萄糖分子相连时有三种连法:一是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连;二是第6个碳原子与下一个葡萄糖分子的第1个碳原子相连;三是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连,同时第6个碳原子与另一个葡萄糖分子的第1个碳原子相连。全部葡萄糖分子都以第一种连法连接的是直链淀粉,自然界很少存在;全部葡萄糖分子都以第二种连法连接无法形成长链,形不成淀粉;葡萄糖分子以三种连法混合连成的淀粉分子是自然界存在的淀粉的主流,其中以第三种连法连接的部位形成支叉,所以叫支链淀粉。 果糖与葡萄糖一样都是单糖,果糖的分子式也是C6H12O6,属于葡萄糖的同分异构体,通过异构酶的作用,葡萄糖的醛基变成酮基即得到果糖。蔗糖、麦芽糖及异麦芽糖都属于双糖,一个葡萄糖的第4个碳原子另一个葡萄糖分子的第1个碳原子相连即为麦芽糖,一个葡萄糖的第6个碳原子另一个葡萄糖分子的第1个碳原子相连即为异麦芽糖,而蔗糖则由一个葡萄糖分子与一个果糖分子连接而成。三个葡萄糖分子相连而成的三糖有麦芽三糖和潘糖。4~8个葡萄糖连成的短链糖品叫低聚糖,9个以上葡萄糖连成的中分子物质叫做糊精,其甜味已经不明显,大量的葡萄糖连在一起就形成了淀粉或者形成更大分子量的纤维素。 以淀粉为原料选用不同的酶来水解或控制不同的水解程度可以得到不同的淀粉糖品。以诺维信酶制剂为例: 1、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE6~10,经精制和喷雾干燥后可以制得糊精制品; 2、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX 糖化到DE40~50,可以获得食品行业常用的葡萄糖浆; 3、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX 糖化到DE99.5~101,可以得到葡萄糖含量97%以上的糖液。经过精制后在50℃以下结晶可以制取一水结晶葡萄糖,在50℃以上结晶可以制取无水结晶葡萄糖; 4、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用真菌淀粉酶FUNGAMYL 800L 糖化到DE45~48,可以获得麦芽糖含量50~55%的普通麦芽糖浆; 5、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用β-淀粉酶Novozym WBA 和普鲁兰酶Promozyme(适于水解糖链的支叉部位)糖化到DE43~46,可以获得麦芽糖含量60%以上的高麦芽糖浆或芽糖含量70%以上的超高麦芽糖浆。 以葡萄糖为原料,经固定化异构酶Sweetzyme IT异构化可以获得糖分组成中果糖约占42%的F42果葡糖浆,F42果葡糖浆经色谱分离可以获得糖分组成中果糖最多约占90%的F90超高果糖浆,F90超高果糖浆还可以通过结晶制得结晶果糖。 以葡萄糖为原料,经高压加氢可以制得山梨醇,通过结晶可以制得结晶山梨醇。 以F90超高果糖浆为原料,经高压加氢可以制得含甘露醇45%与山梨醇45%以上的混合液,通过结晶可以制得高附加值的结晶甘露醇。 所以,使用淀粉为原料可以生产非常多品种的淀粉糖品。 淀粉糖的生产中用到了非常多的化工技术与操作,现以甘露醇的制造为例叙述如下:

主要淀粉糖品的生产工艺流程

主要淀粉糖品的生产工艺流程 (工艺有酸法、酸酶法和双酶法) 1酸法工艺 酸法工艺是以酸作为水解淀粉的催化剂,淀粉是由多个葡萄糖分子缩合而成的碳水化合 物,酸水解时,随着淀粉分子中糖苷键断裂,逐渐生成葡萄糖、麦芽糖和各种相对分子质量 较低的葡萄糖多聚物。该工艺操作简单,糖化速度快,生产周期短,设备投资少。 1 )工艺流程.酸法工艺流程如图6—4所示: 淀粉一调浆一糖化一中和一第一次脱色过滤一离子交换一第一次浓缩一第二次脱色过滤一第二次浓缩一成品 图6-4 酸法工艺流程 2 )操作要点 (1)淀粉原料要求常用纯度较高的玉米淀粉,次之为马铃薯淀粉和甘薯淀粉。 (2)调浆在调浆罐中,先加部分水,在搅拌情况下,加入粉碎的干淀粉或湿淀粉,投料 完毕,继续加入80?左右的水,使淀粉乳浓度达到22~24波美度(生产葡萄糖淀粉乳浓度为12~14波美度),然后加入盐酸或硫酸调pH值为1.8。调浆需用软水,以免产生较多 的磷酸盐使糖液混浊。 (3)糖化调好的淀粉乳,用耐酸泵送入耐酸加压糖化罐。边进料边开蒸汽,进料完毕后,

升压至(2.7~2.8)×104pa(温度142~144?),在升压过程中每升压 0.98×104pa, 开排气阀约0.5 min,排出冷空气,待排出白烟时关闭,并借此使糖化醪翻腾,受热均匀, 待升压至要求压力时保持3~5 min后,及时取样测定其DE值,达38~40时,糖化终止。 (4)中和糖化结束后,打开糖化罐将糖化液引人中和桶进行中和。用盐酸水解者,用10%碳酸钠中和,用硫酸水解者用碳酸钙中和。前者生成的氯化钙,溶存于糖液中,但数量不多, 影响风味不大,后者生成的硫酸钙可于过滤时除去。 糖化液中和的目的,并非中和到真正的中和点pH值7,而是中和大部分盐酸或硫酸, 调节pH值到蛋白质的凝固点,使蛋白质凝固过滤除去,保持糖液清晰。糖液中蛋白质凝固 最好pH值为4.75,因此,一般中和到pH值4.6~4.8为中和终点。中和时,加入干 物质量0.1%的硅藻土为澄清剂,硅藻土分散于水溶液中带负电荷,而酸性介质中的蛋白 质带正电荷,因此澄清效果很好。 (5)脱色过滤中和糖液冷却到70~75?,调pH值至4.5,加入于物质量 0?25%的粉末活性炭,随加随搅拌约5 min,压人板框式压滤机或卧式密闭圆桶形叶滤机过滤出清 糖滤液。

淀粉糖的分类及应用

各种糖的性质及应用糖的分类: 工业上生产的淀粉糖产品主要有以下几种: 1)结晶葡萄糖 2)全糖 3)葡麦糖浆 4)麦芽糖浆 5)结晶果糖 6)麦芽糊精 7)低聚糖 8)糖醇 9)果葡糖浆 糖的性质 不同淀粉糖品具有不同甜度和其他功能性质: 1)甜味 2)溶解度 3)结晶性质 4)吸潮性和保潮性 5)渗透压力 6)代谢性质 7)黏度 8)冰点降低 9)化学稳定性 10)发酵性 11)抗氧化性

1)甜味:甜味的高低称为甜度。 糖品的甜度受若干因素影响,特别是其浓度。糖液浓度增高,则甜度增高,但甜度增高的程度,不同糖品之间存在差别。 2)溶解度:各种糖品在水中的溶解度不相同,果糖最高,其次是蔗糖、葡萄糖。 葡萄糖的溶解度较低,在室温下葡萄糖溶液浓度约为50%,浓度过高则葡萄糖将结晶析出。此浓度葡萄糖溶液的渗透压力较低,不足以抑制微生物的生长,储存性差。工业上储存葡萄糖溶液或酶法淀粉糖化液,一般是在较高的温度下储存较高浓度的溶液。 3)结晶性质: 蔗糖易于结晶,晶体能长得很大;葡萄糖也相当易于结晶,但晶体细小;果糖难结晶;葡麦糖浆是葡萄糖、低聚糖和糊精的混合物,不能结晶,并能防止蔗糖结晶。这种结晶性质的差别与应用有紧密的联系。糊精能增加糖果的韧性、强度和黏性,使糖果不易碎裂。 4)吸潮性和保潮性:吸潮性是指在较高空气湿度的情况下吸收水分的性质。保潮性是指在较高湿度下吸收水分和在较低湿度下散失水分的性质。 不同种类食品对于糖品吸潮性和保潮性的要求不同。例如,硬糖果需要吸潮性低,避免遇潮湿大气吸收水分导致溶化,所以用蔗糖和低或中转化糖浆为宜。转化糖和果葡萄糖浆均含有吸潮性强的果糖,不宜使用。但软糖果则需要保持一定的水分,以免在干燥天气时变化,应用高转化糖浆和果葡萄糖浆为宜。面包、糕点类食品也要保持松软,应用高转化糖浆和果葡萄糖浆为宜。果糖的吸潮性是各种糖品中最高的。 5)渗透压力:糖品虽不是消毒剂,但是较高浓度的糖液能抑制许多微生物的生长,糖藏是一种重要的保存食品的方法,如果酱、蜜饯等。 6)代谢性质:果糖的代谢不依赖胰岛素。注射葡萄糖浓度一般为5%,因为这个浓度与身体组织细胞具有相等的渗透压力。减轻水肿可以用较高浓度的葡萄糖溶液进行注射。山梨醇、果糖、木糖醇代谢不需要胰岛素控制,适用于糖尿病患者用作甜

论述与淀粉糖生产有关的酶类及其这些酶类在淀粉糖生产中的应用。

论述与淀粉糖生产有关的酶类及其这些酶类在淀粉糖生产中的应用。 答: 1.α-淀粉酶 α-淀粉酶属内切型淀粉酶,它作用于淀粉时从淀粉分子内部以随机的方式切断α-1,4糖苷键(不能水解支链淀粉中的α-1,6键,也不能水解相邻分支点的α-1,4键;不能水解麦芽糖,但可水解麦芽三糖及以上的含α-1,4键的麦芽低聚糖;由于在水解产物中,还原性末端葡萄糖分子中C1的构型为α-型,故称为α-淀粉酶)。 由于其较耐温,可作为液化酶用于全酶法生产淀粉糖过程中的液化阶段;也可用于糖化阶段,起协同糖化作用(见2、4)。使糊化淀粉水解到糊精和低聚糖程度(液化是使糊化后的淀粉发生部分水解,暴露出更多可被糖化酶作用的非还原性末端。它是利用糊化酶使糊化淀粉水解到糊精和低聚糖程度,使黏度大为降低,流动性增高,所以工业上称为液化。酶液化和酶糖化的工艺称为双酶法或全酶法;液化也可以用酸,酸液化和酶糖化的工艺称为酸酶法。)。 2.β-淀粉酶 β-淀粉酶是一种外切型淀粉酶,它作用于淀粉时从从非还原性末端一次切开相隔的β-1,4键,顺次将它分解为两个葡萄糖基,同时发生尔登转化作用,最终产物全是β-麦芽糖。所以也称麦芽糖酶。(淀粉若是由偶数个葡萄糖单位组成,则最终水解产物全部为麦芽糖,若是由奇数个葡萄糖单位组成,则最终水解产物还有少量的葡萄糖。因为其不能水解支链淀粉中的α-1,6键,也不能跨过分支点继续水解,故水解支链淀粉是不完全的,残留下β-极限糊精。β-淀粉酶水解淀粉时,由于是从分子末端开始,总有大分子存在,因此黏度下降慢,不能作为糖化酶使用;而水解淀粉水解产物如麦芽糖、麦芽低聚糖时,水解速度很快,可作为糖化酶使用)。 可作为生产麦芽糖过程中的糖化酶,用于水解淀粉水解产物如麦芽糖、麦芽低聚糖,产生麦芽糖。 3.糖化酶(葡萄糖淀粉酶) 糖化酶(葡萄糖淀粉酶)对淀粉的水解作用是从淀粉的非还原性末端开始,依次水解α-1,4葡萄糖苷键,顺次切下每个葡萄糖单位,生成葡萄糖(葡萄糖淀粉酶酶专一性差,除水解α-1,4葡萄糖苷键外,还能水解α-1,6键和α-1,3键,但后两种键的水解速度较慢,由于该酶作用与淀粉糊时,糖液黏度下降较慢,还原能力上升很快,所以又称糖化酶)。 主要用于葡萄糖生产过程中的糖化阶段。 4.脱支酶 脱支酶是水解支链淀粉、糖原等大分子化合物中的α-1,6糖苷键的酶,脱支酶又可分为直接脱支酶和间接脱支酶两大类,前者可水解未经改性的支链淀粉或糖原中的α-1,6糖苷键,后者仅可作用于经酶改性的支链淀粉或糖原。 主要应用是和β-淀粉酶或葡萄糖淀粉酶协同糖化,提高淀粉转化率,提高麦芽糖或葡萄糖得率。 5.其它酶类 1)其它淀粉酶 除上述的淀粉酶外,还有其它淀粉酶,能对直链淀粉、支链淀粉等底物作用,从非 还原性末端生成含有2个以上的葡萄糖残基的低聚糖。如从斯氏假单胞杆菌中发现 的一种酶水解淀粉能产生含有4个葡萄糖残基的低聚糖,从产气气杆菌中发现发现

α-淀粉酶的生产工艺

α-淀粉酶的发酵生产工艺 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。 1.菌种的选育 1. 1 细菌的分离与初步鉴定: 将土壤系列稀释,把10-3 、10-4、10-5分别涂布到淀粉培养基上,27℃倒置培养2天,将长出的菌落接入斜面。将细菌从斜面接种到淀粉培养基培养2天,用碘液染色,记录透明圈大小和菌落直径,计算D/d值。保菌供下次实验用。 1.2 紫外线诱变育种: 取活化后的菌种配成菌悬液、稀释;倒淀粉培养基平板,将菌悬液涂布其表面;用紫外线处理平板0、2min、4min、6min、8min、10min,每个处理2次重复;放到黑暗中倒置培养,37℃培养48h,分别计数诱变组和对照组平板上的菌落数,并计算致死率;加入碘液,分别测量诱变组和对照组菌落的透明圈直径和菌落直径,计算D/d值;将D/d值最大的菌种保存到斜面培养基上。 诱变方法以及变异菌株的筛选 ①诱变出发菌株在完全培养基中培养至对数生长期后期。 ②以NTG为诱变剂,按一定处理剂量(μg/ml),在一定pH值的缓冲液中30℃恒温振荡处理1~4 h。 ③经高速离心分离,移植于液体完全培养基进行后培养。 ④经稀释涂布在含有1%淀粉BY固体培养基上,经24 h培养形成小菌落。 ⑤把单菌落分别移植于含2%淀粉BY液体培养基中,30℃培养36 h。 ⑥用2#定性滤纸制成5 mm disc(小圆纸片),并用2%琼脂BY培养基灭菌后加入较大剂量青霉素(抑菌)。倒入200 mm×300mm长方形不锈钢玻璃培养皿中,冷却凝固。然后把5 mm disc 纸顺序放在培养基表面。 ⑦用微量注射器分别吸取培养液,移植到相应的disc上。把disc培养皿经37℃,24h分别培养。 ⑧把KI-I2液用喷雾器均匀分布在disc培养皿培养基的表面上,并挑出淀粉水解圈大的disc,

相关文档
最新文档