炮孔填塞水袋隧道水压爆破施工工法

炮孔填塞水袋隧道水压爆破施工工法
炮孔填塞水袋隧道水压爆破施工工法

炮孔填塞水袋隧道水压爆破施工工法

RJGF(闽)—1—2009

完成单位:中铁二十四局集团福建铁路建设有限公司

主要完成人:郑志强杨水波林志勇罗跃林

1前言

1.0.1 为了解决温福铁路客运专线长、大隧道开挖过程中存在进度慢、洞内环境差、用炸药量大的难题,中铁二十四局集团福建铁路建设有限公司在承建的温福铁路(福建段)第Ⅱ 合同段的施工过程中,应用了水压爆破技术,根据大断面隧道的特点,完善和推广了这种开挖方法,并形成了本工法。

1.0.2 本工法于2006 年初在温福铁路客运专线首次应用,2007 年在甬台温客运专线的隧道中再次得到了成功的应用。本工法于2007 年底通过了中铁二十四局集团公司组织的成果评审,并鉴定为达到中国铁道建筑总公司先进水平。

2工法特点

2.0.1 本工法显著的特点是往炮眼中一定位置安装一定量的水袋并用专用设备制成的炮泥回填堵塞。

2.0.2 通过在炮孔内配置水袋和回填堵塞,提高了炸药能量利用率,提高了炮眼使用效率,

提高了经济效益,并保护了作业环境。

3适用范围

本工法适用范围为铁路、公路、矿山和水电等建设的隧道爆破掘进。

4工艺原理

4.0.1 隧道爆破掘进,围岩能够达到破碎是由炸药爆炸产生的应力波和爆炸气体膨胀共同作用的结果。炮眼中的炸药,从起爆点爆炸开始到炸药爆炸完毕,在炸药中传播的是爆轰波,爆轰波沿炮眼方向传到炮眼的空间称为击波,而击波传到炮眼围岩中称为应力波,炮孔填塞水袋隧道爆破法最大可能地降低了击波的能量损失,阻止了爆炸气体从炮眼口冲出。炮孔填

塞水袋隧道爆破法与目前全国普遍采用的隧道爆破掘进无回填堵塞相比显著提高了炸药能量利用率,即炸药爆炸产生的应力波和爆炸高压气体利用率提高,非常有利于围岩的破碎。

4.0.2 隧道掘进常规爆破即炮眼无回填堵塞,如图4.0.2 所示。因炮眼无回填堵塞而被空气充满,一旦炸药爆炸,压缩空气大大损失了击波的能量,这就相应地削弱了在围岩中传播的应力波能量,降低了应力波的强度,不利于岩石的破碎;同时,由于炮眼无回填堵塞,爆炸气体膨胀从炮眼口冲出,因而损失了膨胀气体大部分的能量,从而削弱了膨胀气体进一步破碎岩石的作用。

雷管炸药

导爆管

图4.0.2 隧道掘进爆破炮眼无回填堵塞示意图

4.0.3 将图4.0.2 中炮眼无回填堵塞部位改为图4.0.3 中的用水袋与炮泥回填堵塞,这样在水中传播的击波对水不可压缩,爆炸能量没有损失地经过水传递到炮眼围岩中,十分有利于围岩破碎,由于用专门设备制成的炮泥回填堵塞炮眼,抑制膨胀气体冲出炮眼口,提高了

爆炸能量使用效率。

水袋雷管炸药水袋炮泥

图4.0.3 炮孔填塞水袋炮眼装药结构示意图

5施工工艺流程及操作要点

5.1工艺流程炮孔填塞水袋爆破与隧道掘进常规爆破

相比主要区别在于增加了以下两道工序:

5.1.1炮眼注水工艺往炮眼中注水的工艺是先把水灌入到塑料袋中密封,然后把水袋填入炮眼

底部和中部。水袋是由2004 年研制成功的PSP-1 型炮孔水袋自动封装机生产而成,水袋机为普通设备,外型尺寸1000×600×400(mm),整机功率0.85KW,电源

AC220V,50HZ,一台水袋机

一小时可以制作700 袋,可供两三个循环使用。塑料袋为常用的聚乙烯塑料,袋厚为0.8mm 左右,隧道爆破一般为水平眼,为便于装填,水袋长200mm~300mm,直径为35mm~40mm 为

宜。

5.1.2炮泥制作工艺

炮泥是由近几年研制成功的PNJ-1 型炮泥机生产而成,炮泥机为普通设备,外型尺寸1712 × 590× 1293(mm),两个人一小时可制作200~400 个,可足够一个爆破循环所需的数量。制作炮泥材料为普通的粘土。制好的炮泥以表面光滑、用手略微一捏可以变形为宜。为了保证制作质量,粘土含砂率控制在10%左右,含水率控制在15%左右。拌和均匀,待混合均匀以后,装入炮泥机的进料仓,开动电钮,这时按200mm~300mm的长度切割。

5.1.3施工工艺流程图如图5.1.3 。

图5.1.3 炮孔填塞水袋爆破施工工艺流程图

5.2操作要点

5.2.1炮孔填塞水袋隧道爆破炮眼装药结构如图5.2.1 所示:

炮泥

图5.2.1 炮眼装药结构示意图

L1——眼底水袋长;L2——炸药长;L3——炮眼中间水袋;L4——炮泥回填堵塞长

其关系为:

L=L1+L2+L3+L4 (5.2.1 )L1 一般为一节水袋的长度,L2 为水压爆破所需的炮眼装药量的药卷长度。如果L3 过小,L4 过大,则水的作用不大,如果L3 过大,L4 过小,则抑制爆炸气体膨胀作用不大。

5.2.2水袋制作

装水的塑料袋为长22cm 聚乙烯塑料袋,是由塑料厂家专门加工制作而成的。水袋制作的关键是封口,装水时不宜过满,充满水袋的90%即可,将袋口扎紧。水袋放置、运输时有

轻微变软,不影响装填及最后的爆破效果。

隧道爆破,一般为水平炮眼,为便于装填水袋,水袋长一般为200mm,直径35mm,厚度0.8mm。

5.2.3炮泥制作

炮泥的主要成份以黏土和细砂为宜,在与水搅和之前,如有石块必须拣出,小石过多应过筛。炮泥应按照粘土含砂率控制在10%左右,含水率控制在15%左右的比例制作。如砂

过多,炮泥成形较差,过少则炮泥比重小;水要适中,过少起不到粘合及降尘作用,过多炮泥软,不易捣固坚实。

5.2.4水袋、炸药、炮泥装填从炮眼底到炮眼口依次装填水袋、炸药、水袋和炮泥,它们之间的连接必须紧密。装填水袋时,用炮棍轻轻推到炮眼一定位置;回填堵塞炮泥时,除与水袋接触的炮泥之外,其余回填堵塞的炮泥要用炮棍捣固坚实。

6材料与设备

6.1材料

本工法所需材料如表6.1 :

表6.1 材料表

6.2机具设备

表6.2 机具设备表

7质量控制

7.1质量控制标准

7.1.1施工时应严格执行以下标准、规范:

1《客运专线铁路隧道工程施工质量验收暂行标准》(铁建设[2005]160 号)

2《客运专线铁路隧道工程施工技术指南》TZ 212

7.2质量控制要求

7.2.1严格认真清洗炮眼,防止有棱角的碎石在填塞水袋时划破水袋而引起水袋漏水,导致炸药受潮失效。

7.2.2水袋要盛满水,封口密实,不漏水。合格的水袋坚实挺拔,方便装填炮眼中。

7.2.3在使用前2h~3h 制作炮泥,以避免时间过长,炮泥失水变硬。

8安全措施

8.0.1 施工时应严格执行以下安全标准、规范:

1《爆破安全规程》GB 6722-2003

2《铁路工程施工安全技术规程》TB 10401.1 、TB 10401.2

8.0.2 本工法除按隧道掘进常规爆破安全措施执行外,针对炮孔填塞水袋隧道水压爆破施工的特点,为确保安全,需增加如下安全措施:

1防止设备漏电

炮泥机和水袋封口机都是用电设备,为防止因水出现漏电,在开机前要用仪表检查设备

是否漏电,以便采取相关措施。

2正确操作炮泥机

炮泥机上料仓中有螺旋搅拌翅,工作时不能用任何工具或棍棒拨弄料仓中的物料,防止

出现事故。可待停机后用棍棒清除料壁或搅拌翅上的泥土。

3严格控制炮泥回填堵塞长度

炮泥可抑制膨胀气体从炮眼口冲出,有利于岩石进一步破碎,而且还能起到抑制飞石飞

的过远的作用。为充分发挥这种双重作用,炮泥堵塞长度应大于或等于水袋的长度。

9环保措施

9.0.1 噪声控制

1 严格执行《建筑施工场界噪声限值》GB 12523,控制和降低施工机械和运输车辆造成的噪声污染。

2 加强教育,按规定使用防护用品,防止听觉受损。

9.0.2 污染控制

1 采用湿式凿岩方法,避免中毒或窒息。

2 加强教育,按规定使用防护用品,防止尘肺病或中毒。

3采用大功率的鼓风机对隧道进行通风,并设排水沟,排水沟汇入沉淀池,避免污水直接排放。

10效益分析

10.0.1 社会效益

1 水压爆破法具有显著的“节能环保”作用,符合国家的可持续发展的战略方针,具有很广阔的推广前景。

2 水压爆破所产生的声响和震动比常规爆破要小,对周围居民的影响较小,水压爆破方法比用常规爆破方法所产生的粉尘和毒气要少很多,大大减少粉尘对施工人员的伤害。10.0.2 经济效益

以温福铁路(福建段)第Ⅱ标段青岙隧道为例,用水压爆破法施工,降低了环境污染,降低了成本,提高光面爆破的效果。

水压爆破中每个循环钻孔数量,钻孔深度跟常规爆破一样,但多装了100 个炮泥,200 个水袋,平均每个循环多进尺22cm,节省炸药20kg ~30kg 左右(按25kg 计算),隧道内粉尘降低45%(改善了作业环境,保护了施工人员的身体健康),爆破后岩碴偏小率达70%(比较接近做路基填料)。

实际经济效益我们通过爆破每立方米节省的费用来计算:首先算出每循环爆破后节省的费用

1 每循环水压爆破可节省投资为:

3

开挖=0.22 ×121.15 × 54.45 (元/m3)=1451.25 (元);

炸药=25× 7.25 (元/kg )=181.25 (元)。

2 比常规爆破增加的费用:

制造炮泥、水袋的人工费:4(人)× 25=100(元);

水袋费用:200× 0.05=10 (元);

设备每循环损耗费为:75(元)。采用水压爆破方法开挖隧道时,每循环可节省的保守费用为:1451.25+181.25-100-10-75=1447.5 (元)。① 常规爆破情况下该循环所能爆破的方量为:

3

3.2 × 121.15=387.68m 3②

故采用水压爆破方法时每立方米节省的费用为:

①÷② =1447.5 ÷ 387.68=3.73 元。

11应用实例

本工法综合总结了国内外的一些经验,已成功应用于温福铁路(福建段)第Ⅱ标段青岙隧道工程、重庆市郊渝怀铁路歌乐山隧道工程、宜万铁路马鹿箐隧道工程、甬台温铁路乌岩下二号隧道工程等工程项目中,工程质量均满足预定要求。现以温福铁路(福建段)第Ⅱ标段青岙隧道工程为实例。

11.0.1 工程概况

温福铁路(福建段)第Ⅱ标段青岙隧道全长6852 米,位于霞浦县境内。隧道进口里程为DK143+725,出口里程DK150+577。隧道内曲线段长度4065.03m ,隧道其余地段位于直线上。隧道每延长米开挖断面平均129m2,隧道内设人字坡,变坡点里程为DK145+900,其纵坡为3‰与-4.7 ‰,坡长分别为2200m及4652m,竖曲线半径为20000m。洞内Ⅱ级围岩

隧道光面爆破专项施工方案

隧道光面爆破专项施工方案 一、编制依据 1、xxxA1合同段工程施工总承包招标文件及设计文件、两阶段施工图设计等; 2、国家、交通部现行的公路工程建设施工规范、设计规范、验收标准、安全规范等; 3、国家及福建省相关法律、法规及条例等; 4、现场踏勘收集到的地形、地质、气象和其它地区性条件等资料; 5、近年来高速公路等类似施工经验、施工工法、科技成果; 6、福建省高速公路标准化建设指南和施工要点; 7、我单位拥有的国家级、部级工法、科技成果和长期从事高等级公路建设所积累的丰富施工经验。 二、工程概况 1、工程概况 我部承建的xx隧道0.5座,为分离式双洞隧道,隧道全长855.8m,为长隧道,左洞长854.1m,右洞长857.5m。隧道进出口均位于平面曲线内,进口左右线曲线半径分别为R左=3000m和R右=2850m;隧道纵坡坡率/坡长:左洞为0.7%/854.1m,右洞0.7%/857.5m;隧道进口设计桩号:左洞为ZK63+572,右洞为YK63+565;进口设计高程:左洞为586.69m,右洞为586.64m。。 2、地形、地貌 隧址区属剥蚀低山地貌,隧道轴线大致呈南北走向,地形呈波状起伏,起伏较大,隧道最大埋深约为160m,地表植被较发育,覆盖层较薄。进口

侧山坡自然坡度25~30°,出口侧山坡自然坡度35~40°。 3、地层岩性 本隧址场区表层多为第四系残坡积土,一般厚度3-6m,冲沟底部及陡坎略薄些,下伏侏罗系南园组(J3n)凝灰熔岩及其风化层。 隧道洞身围岩为侏罗系南园组(J3n)的凝灰熔岩,属较硬-坚硬岩,岩体一般较完整,对隧道洞身围岩的稳定较有利,据地质调绘及钻孔揭露隧道区主要发育有3条裂隙带及断裂构造带,对隧道围岩不利,影响隧道围岩级别,隧道开挖时,围岩稳定性较差,易产生塌方掉块,应加强支护和监测措施,各段的具体评价见隧道纵断面图。 拟建隧道最大埋深约160m,深部围岩主要为微风化凝灰熔岩,节理裂隙发育较少-较发育,较有利于地应力的释放和调整,但钻孔中未见有岩芯饼化等高应力作用现象,综合临近泉三高速公路等工程经验分析,本隧道在隧洞区内出现高地应力的可能性不大。 隧址区未见有矿体分布,不会产生瓦斯等有害气体。但施工中粉尘可能较大,施工中应注意粉尘污染监测工作,并做好通风工作。 4、地质构造及地震动参数 根据《厦门至沙县高速公路(安溪至沙县)泉州段线路工程地震安全性评价》,线路地震设防烈度属于6度区,测区内50年超越概率10%的平均土质条件下峰值加速度为0.05g,中硬土场地动反应谱特征周期为0.45s,区域地质相对稳定,建议抗震设计按《公路工程抗震设计规范》(JTJ004-89)

隧道光面爆破施工工法

隧道光面爆破施工工法

一、工艺原理 光面爆破是控制开挖轮廓的一种爆破技术,它沿开挖轮廓周边布孔,利用主炮孔爆破后形成的良好临空面,在光爆层中起爆,借以减少光爆孔爆破的夹制作用,降低炸药单耗,减少一次起爆药量,使其获得平滑的开挖廓面,减轻围岩的破坏,减小超欠挖和避免产生冒顶和坍塌。 二、光面爆破技术要点 隧道开挖应根据工程地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具和爆破器材等结合爆破振动要求进行钻爆设计。施工中应根据爆破效果不断调整爆破参数。 2.1爆破参数选定 2.1.1周边眼间距E 周边眼间距直接控制开挖轮廓线平整度的主要因素,一般E=(12~15)d,其中炮眼直径d=35~45cm,对于节理发育,层理明显的围岩地段,周边眼的间距可适当减小,也可在两个炮眼之间 2.1.2最小抵抗线W(光面层厚度) 最小抵抗线W直接影响光面爆破效果和爆碴块度,周边抵抗线应大于周边眼间距E,软岩取较小的E值时,W值应适当增大。 2.2周边眼装药结构 2.2.1软岩周边眼装药结构 一般采用两种形式:一种是较破碎围岩采用空气间隔装药,导爆索传爆。导爆索作为炮眼装药时,按10g/m折算为2号岩石硝铵炸药。另一种是较完整的软弱岩层采用小直径光爆炸药连续装药。

分别如下图所示: 2.2.2硬岩周边眼装药结构 硬岩一般采用导爆索间隔装药,装药结构如下图: 炮泥导爆索 药卷 周边眼间隔装药结构 (单位:cm) 除周边眼、中空眼外,其余掏槽、底眼、掘进眼的装药结构均为连续装药,只是装药长度不同 2.2本隧道钻爆参数 ①循环进尺的确定:根据实际情况,为减少对围岩的扰动,IV、V级围岩根据钢架支护间距确定,本隧道IV级围岩2.0m,V级围岩 1.0m,II、III级围岩不大于3.5m。 ②钻孔直径选择:采用Φ42mm钻眼直径,炸药选择2号岩石乳化炸药。 ③隧道开挖断面的大小:由岩石和开挖方法确定。, 总药量Q=q单×S×L,式中q单是单耗,本隧道初步确定q单=0.9Kg/m3

水压爆破施工方案

目录 一、编制依据 (2) 二、编制原则 (2) 三、工程概况 (2) 四、工程水文地质 (3) 4.1地形、地貌 (3) 4.2地质构造 (3) 4.3场地水文地质情况 (4) 4.4不良地质、地下障碍物与特殊岩土 (4) 五、施工工艺 (5) 5.1爆破参数 (5) 5.2炮孔布置图 (9) 5.3炮眼内安装沙袋 (11) 5.4炮泥的制作 (11) 5.5工艺原理 (11) 5.6水压爆破施工工艺流程图 (12) 5.7施工要点 (14) 六、施工安全措施 (15) 6.1安全措施 (15) 6.2现场爆炸物品安全管理措施 (16)

一、编制依据 ?杭州市紫之隧道(紫金港路-之江路)工程第Ⅱ标段施工合同; ?杭州市紫之隧道(紫金港路-之江路)工程第Ⅱ标段施工图设计; ?设计、施工过程中涉及的有关规范、规程; ?紫之隧道(紫金港路-之江路)工程Ⅰ标《岩土工程勘察报告》 《公路隧道施工技术规范》JTJ042-94 《爆破安全规程》GB6722-2003 《民用爆炸物品安全管理条例》2006.9 《爆破作业项目管理要求》GA991-2012 《爆破作业单位资质条件和管理要求》GA990-2012 《中华人民共和国安全生产法》 ?国内相关工程的施工经验。 二、编制原则 遵循招标文件、设计文件、施组、质量标准等规定,严格按照有关规定条款进行施工组织、运作,确保工程按照规定要求达标,即质量、安全、工期、文明施工、环境保护、工程成本等的最佳组合;强化内部管理、提高技能素质,依靠科技,精心施工,合理安排,严格按照项目法管理原则进行操作,实现工程成本与管理的最佳组合。 三、工程概况 紫之隧道(紫金港路—之江路)工程南起之浦路,北至紫金港路,隧道南北端各设一对匝道,线路全长约14.4km,其中隧道全长约13.9km。工程总体规模为双向六车道,为机动车专用车道。 本标段为杭州市紫之隧道(紫金港路—之江路)工程第Ⅱ标段施工,标段涵盖内容为:1#隧道部分区段(西线K1+530~K3+550、东线K1+570~K3+555)、南

水压爆破施工技术要点分析与应用效果

水压爆破施工技术要点分析与应用效果 发表时间:2019-07-30T09:52:35.377Z 来源:《基层建设》2019年第14期作者:贺鑫 [导读] 摘要:水压爆破施工技术是不可以压缩的过程,通过减少爆炸能量,从而达到控制围岩的损失,这有利于调整岩石破损问题。 中铁十二局集团第一工程有限公司陕西西安 710038 摘要:水压爆破施工技术是不可以压缩的过程,通过减少爆炸能量,从而达到控制围岩的损失,这有利于调整岩石破损问题。爆炸气体出现膨胀,产生水膜的效果,促进岩体深层次的破裂,产生雾化降尘的效果,解决水压爆破可能产生的各类危害问题,及时处理各类施工技术要点。本文将针对水压爆破施工的技术要点进行分析,研究水压爆破施工中可以采取的技术应用方式和效果内容。 关键词:水压爆破;技术要点;应用效果 引言 工程水压爆破过程中,需要采用预裂爆破、光面爆破等方式。利用炸药产生的冲击波、龅牙爆破气体作用,实现结构岩体上的作用,完成爆破施工处理。其主要体现在飞石、噪声、空气、冲击波上的影响。根据周围建筑物、环境的整体影响水平,将药包放置在满水的容器内,完成设计位置的水压爆破处理。这种方法是通过水传播爆破压力控制,作用在容器上,使其破坏,达到空气冲击波、飞石噪声的效果。水压爆破可以有效的减少炸药的整体使用比例关系,提高整体利用率,提升施工效率,降低经济成本,提高经济价值水平,降低空气中可能产生的污染程度,从而减少环境污染及人体可能造成的各类损失问题。 一、水压爆破的具体类别分析 水压爆破是通过药包的作用条件进行区别的。钻孔水压爆破是通过药包的整体位置,确定水钻孔的爆破标准,确定截止抵抗线大小。根据破坏截止的时间长度,气质作用状况,整体运行可能引发的介质厚度水平,载荷作用等,对应分析介质的时间长度、波传播的速度、整体运用的效果。在整体应力的传播过程中,直接考虑整体惯性的运动效果。利用水的特性作用,分析传播能量的损失比例。爆炸瞬间水传播冲击到容器壁,发生变形,产生位移,产生二次的加载,破坏容器,最终使容器均匀的破损。 二、水压爆破的工作标准原理 水压爆破被破坏的形式有两种,一种是冲击波,一种是气泡压力波。冲击波是利用爆炸超压力的破坏作用,气泡脉动压力波是实现相关因素的力量作用。 炸药爆炸后,能量是以冲击波的形式进行水中径向的传播。爆炸瞬间产生较强的高压,高压能量可以实现有效的转化。在水中传播的强压波、水扩散运动过程。随着压缩爆炸形成的膨胀过程,压力快速的衰减。冲击波在传播速度超过超声速度的时候,四周迅速冲击运动。冲击快速的衰减,持续时间超过几毫秒。冲击波在传播过程中,压力距离逐步增大,然后逐步下降,直到冲击波能量的距离反比。爆炸的球形汽包内温度可以达到3000℃,压力控制在5万大气压范围内。爆炸后短时间内,可以达到峰值的压力。汽包脉动压力波是通过高压气团向周围扩散产生的。伴随着运动排开的水吸收能量,达到组织气泡膨胀,运动停止的过程。气泡内压力,冷却,周围压力下降。随着海水的惯性作用,气泡压缩达到一定程度,内压超过周围的静压,产生二次气泡作用。气泡脉动在水中膨胀、压缩、又膨胀、又压缩。二次波的作用时间可能超过冲击波压力的作用效果,造成目标破坏。根据不同原因,不同位置,不同改变,目标的距离爆心半径位置发生变化,引发冲击波。 三、水压爆破的基本特点 常规工程爆破技术分析中,水的物理力学作用在不同的情况下,水压爆破可能产生的特点不同。对不同的水压爆破技术进行分析,判断水压的整体基本特点和特殊情况。 1 压缩性较小、密度大、流动年度较大 水肿爆炸可能产生爆轰的膨胀过程。爆炸冲击的整体强度高,作用时间长。 2 水介质压缩性作用均匀 水介质压缩性、高度传递、堵塞作用传递长,爆破能量分布均匀,利用率水平高。 3 水压爆破产生碎块 水压爆破作用会产生碎块,爆破震动、空气冲击波、飞石等,水压爆破过程中,需要合理的调整控制和安全可靠水平,以有效的限制作用,调整毒气体产生的古城,逐步降低爆破产生的粉尘,从而降低施工对人体可能造成的损害。 水压爆破施工技术中,工程应用具有较强的价值。在拆除地形结构过程中,需要对建筑构造、矿石进行二次的破碎分析,提高整体有效的利用优势效果。 四、钻孔水压爆破的处理方式 按照实际应用过程,调整炸药的比例量、类型、岩体性质等,对不同的使用需求,不同的装药结构进行分析。根据药包的不同类型、不同位置,调整水压爆破的装药结构主体方式。分析径向水耦合的爆破过程,分析药包间隔的爆破,药包底的水间隔。 根据雷管脚线、水、炸药等进行处理。准确的分析径向水耦合的爆破,调整药包的尺寸,炮孔的位置,大小、充水耦合、爆破能量等,使其云军的施加在孔壁的不同位置上。炮孔药包上进行水间隔的爆破,调整上、下两个药包的爆破效果,调整水柱的产生强度冲击过程,确定密闭的高压效果。爆炸孔药包底部水间隔,确定炮孔底端。在冲击的作用下,底部间隔段水快速的移动,形成密闭、高压的水激泼效果。作用在孔底岩石上,克服根底,实现缓水的快速移动。通过水的缓冲,降低岩石过度粉碎的过程。 炮孔上下间隔爆破处理过程中,需要对装药的方式进行调整,根据药量,根据水的传递介质,调整水孔底装药的比例关系。调整装药量的大小,判断爆破块产生的状况。 根据同等的药量,调整水作用下的传递介质,控制衰减的作用。水孔底部的装药相比无水集中装药的比例关系,装药位置对爆破的作用较大,表现战鼓纲要的坐位水平较低。控制装药量的多少,分析爆破不会产生的较大比例影响关系,调整装药量的数量,爆破块与药量的多少相反。当不耦合系数相同的时候,水压爆破药量相对较为独立,爆破基本不会随着药量的降低发生变化。当药量较少的时候,块度均匀;非钻孔水压爆破,空气不耦合装药结构的时候,药量降低,块度会明显增大。 五、水压爆破施工技术的应用 根据拆除岩石、建筑物进行破碎处理,调整露天水压爆破、进水压爆破等比例关系。使用炮孔水压的爆破关系,降低飞石的距离。以

3隧道微台阶开挖施工工法

隧道微台阶开挖施工工法 中铁二局贵广铁路工程指挥部 二〇一一年一月十日

Ⅳ、Ⅴ级围岩隧道微台阶开挖施工工法 中铁二局贵广铁路工程指挥部 1.前言 新奥法隧道施工方法自上世纪六十年代末被引入到我国,七、八十年代得到迅速发展,九十年代开始被广泛应用,是当前使用最广泛的隧道施工方法。新奥法施工一般有全断面法、台阶法、分部开挖法。全断面法开挖主要适用于Ⅰ~Ⅲ级硬质围岩;台阶法主要适用于Ⅲ、Ⅳ、Ⅴ级中等硬度围岩;分部开挖法主要适用于Ⅴ、Ⅵ级以下软弱围岩地质条件。台阶法施工又分为长台阶、短台阶法,对于自稳较好的Ⅲ、Ⅳ级围岩常采用长台阶法,上台阶长度超过50m;短台阶法适用偏软的Ⅳ、Ⅴ级围岩,上台阶长度为5~50m;围岩稳定性较差时,台阶长度应控制在一倍洞径。 近年来,国内外隧道施工过程中发生多起坍塌事故,造成较大的人员伤亡和财产损失。调查统计表明,发生这些事故的主要原因是隧道开挖台阶长度过长、初期支护未及时封闭成环和二次衬砌未及时跟进导致围岩失稳造成。为了控制和降低铁路隧道施工安全事故,铁道部对仰拱与掌子面的距离要求越来越严格,《铁路隧道工程施工安全技术规程》(TB10304-2009)规定:III级围岩中仰拱与掌子面的距离不得超过90m,IV级围岩不得超过50m,V级及以上围岩不得超过40m.铁道部《关于进一步明确软弱围岩及不良地质铁路隧道设计施工有关技术规定的通知》(铁建设[2010]120号)文件对隧道开挖掌子面与仰拱、二衬之间的距离做出强制性规定:隧道开挖后初期支护应及时施作并封闭成环, IV、V、VI级围岩仰拱封闭位置距离掌子面不得大于35m,IV级围岩二次衬砌与掌子面距离不大于90m;V、VI级围岩二衬与掌子面距离不大于70m。 无论围岩的稳定性如何,采用长台阶法施工,都难以满足上述工序安全距离的强制性规定;采用长度大于20m的短台阶法施工时,受变台阶处交通和仰拱施工作业空间要求的限制,工序安全距离仍然会超标;采用长度小于20m的短台阶法施工时,虽然能满足工序安全距离的要求,但因为上台阶作业空间窄小,工序间相互干扰严重,机械设备的工作效率大大受阻,施工进度缓慢。 本文所介绍的Ⅳ、Ⅴ级围岩隧道微台阶开挖施工工法,有效地解决了上述问题,即保障了隧道施工安全,也提高了施工进度。

隧道爆破方案

歌乐山隧道爆破方案 1、编制依据 《新建兰渝铁路引入重庆枢纽工程及广元地区相关工程站前施工总承包代建站前施工1标段--投标文件技术分册》; 《铁路隧道工程施工技术指南》(TZ204——2008)。 2、隧道地质情况 低山丘陵地貌,隧道穿越地层由新到老为侏罗系中统新田沟组、中下统自流井组、下统珍珠冲组,三叠系上统须家河组、雷口坡组、嘉陵江组、飞仙关组。观音峡背斜DRK3+980处与线路近垂直相交,两翼地层对称,层理产状渐变明显,构造节理发育。侏罗系中、下统以泥岩夹砂岩为主,工程地质条件一般;三叠系须家河组含第4-第1段,其中2、4段为长石石英砂岩、石英砂岩夹页岩、炭质页岩,节理较发育,岩体较完整,工程地质条件较好;第1、3段为泥质砂岩、砂岩夹页岩、薄煤层,一般地下水具侵蚀性,同时施工时可能会遇煤层采空区及瓦斯等不良地质,揭穿煤洞可能造成突水、突泥,工程地质条件较差。T2i及T1j 的2、4段为白云岩、灰岩及岩溶角砾岩,围岩稳定性差,易产生洞内坍塌,且含有石膏,地下水具有硫酸盐侵蚀;T1j 的1、3段及T1f的三段以灰岩为主,夹泥质灰岩及白云岩,地表见溶洞、溶蚀洼地、溶槽等岩溶形态发育,隧道施工可能揭穿暗河、溶洞等岩溶形态,造成突水、突泥。隧道开挖遇有害气体。核部段,岩体较破碎。地下水较发育,施工可能会产生突水、突泥,工程地质条件较差。非可溶岩地带最大涌水量4080m3/d,正常涌水量39391m3/d,雨季最大涌水量58080m3/d。 3、隧道爆破设计 (1)爆破设计的原则 尽量提高炸药能量利用率,以减少炸药用量。 采用光面爆破,要求炮眼痕迹残留率硬岩≥90% ;中硬岩≥80% ;软岩≥60%。减少对围岩的破坏,控制好开挖轮廓。 合理设计起爆顺序,提高光爆效果。 在保证安全的前提下,尽可能提高掘进速度、缩短工期。 掏槽及底板眼按抛掷爆破设计,采用楔形掏槽法,及充分利用楔形掏槽的易抛掷来减轻震动,保持围岩稳定。 其它炮眼采用浅孔微振动控制爆破,在保证爆破效果的前提下,尽量减少炮眼的炸药用量。采用微差爆破,减少对围岩的扰动及降低振动强度,采取光面爆

光面爆破施工工法

隧道全断面开挖光面爆破工法光面爆破是通过正确选择爆破参数和合理的施工方法,达到爆后壁面平整规则、办公设备线符合设计要求的一种控制爆破技术。隧道全断面开挖光面爆破工法,是应用光面爆破技术,对隧道实施全断面一次开挖的一种施工方法。它与传统的爆破法相比,最显著的优点是能有效地控制周边眼炸药的爆破作用,从而减少对围岩的扰动,保持围岩的稳定,确保施工安全,同时,又能减少超、欠挖,提高工程质量和进度。 一、光面爆破作用原理 光面爆破的破岩机理是一个十分复杂的问题,目前仍在探索之中。尽管在理论上还不甚成熟,但在定性分析方面已有共识。一般认为,炸药起爆时,对岩体产生两种效应:一是药包爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心边线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心边线上形成裂缝,随后,爆炸气的膨胀使裂缝进一步扩展,形成平整的爆裂面。 二、光面爆破的技术要点 要使光面爆破取得良好效果,一般需掌握以下技术要点: 1、根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。 2、严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。 3、周边眼宜使用小直径药卷和低猛度、低爆速的炸药。为满足装结构要求,可借助导爆索(传爆线)来实现空气间隔装药。 4、采用毫秒微差有序起爆。要安排好开挖程序,使光面爆破具

有良好的临空面。 (一)周边眼常用参数的选择 1、周边眼间距E 它是直接控制开挖轮廓面平整度的主要因素。一般情况下E=(12~15)d,其中炮眼直径d=35~45mm。对于节理较发育、层理明显以及开挖轮廓要求较高的地下工程,周边眼间距可适当减小,也可在两炮眼之间增加一个不装药的导向空眼。 2、最小抵抗线W(光面层厚度) W直接影响光面爆破效果和爆碴块度。其取值在(13~22)d围,且W≥E。 3、周边眼密集系数K 一般情况,以K=E/W=0.7~1.0为宜。 4、装药集中度q 采用2号岩石炸药进行光面爆破时,若预留光爆层,q=0.15~0.2kg/m;若全断面一次爆破,则q=0.2~0.3kg/m。如果采用其它炸药,则需进行换算,其换算系数C按下式求得: C=1/2(2#岩石炸药猛度/换算炸药猛度+2#岩石炸药爆力/换算炸药爆力) 选取光面爆破参数可用类比法或查表(见表1),必要时要在与所做工程地质条件相类似的岩层中试验,以求得更准确的爆破参数。

隧道工程钻眼爆破工法

在石质隧道中,采用最多的是钻眼爆破法。其原理是利用装入钻孔中的炸药爆炸时产生的冲击波及爆炸物做功来破碎坑道范围内的岩体,可以用爆破漏斗来解释(图4-20)。 隧道工程中,钻爆作业必须按照钻爆设计钻眼、装药、连线和引爆,同时应满足钻眼爆破施工的质量要求。为此岩石隧道开挖前,应根据工程地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具、爆破器材和出渣能力等因素综合考虑。做好钴爆设计,合理地确定炮眼布置、数目、深度和角度、装药量和装药结构、起爆方法和起爆顺序等,安排好循环作业等,以正确指导钻爆施工,达到预期的效果。 隧道工程中,一般要求钻眼爆破应满足以下条件。 (1)开挖轮廓成型规则,岩面平整,超欠挖量符合规定要求。 (2)爆破对围岩的扰动破坏小,以保证围岩(坑道)的稳定性。 (3)爆破后的石渣块度大小适中,抛掷范围相对集中,符合装渣作业要求。 (4)钻眼工作量少,耗用炸药等爆破材料少等。

(5)防止对周围设备的破坏,减少对环境尤其是水的污染。为此应充分研究下面的问题:岩石的抗爆破性及抗钻性;炸药品种及用量;炮眼布置形式和炮眼数量、直径、长度;装药结构;起爆顺序和起爆网络等。 炮眼的布置 炮眼布置首先应确定施工开挖轮廓线,然后进行炮眼布置。因此钻眼前应定出开挖断面中线、水平线和断面轮廓,标出炮眼位置,经检查符合钻爆设计要求后方可钻眼。而炮眼的布置、深度、角度、间距等应按钻爆设计要求确定。 隧道爆破通常采用掏槽爆破,即将开挖断面上的炮眼分区布置和分区顺序起爆,逐步扩大完成一次爆破开挖,分区是按照炮眼的位置、作用的不同有三种炮眼:即掏槽眼、辅助眼和周边眼。这三种炮眼除共同完成一个循环进尺的爆破掘进外,还各有其作用,并各有不同的布置要求及长度、方向和间距等要求。 (1)隧道洞身开挖轮廓线及预留变形量。坑道开挖后,围岩由于失去部分约束而产生向坑道方向的收缩变形,所以施工开挖轮廓线应在设计开挖轮廓线的基础上适当加大,称为预留变形量预留变形量的大小,主要取决于围岩级别、开挖断面大小,隧道跨度大小、开挖方法掘进方式、支撑或支护方法等因素的影响,变形量的大小可以根据实际测量数据分析确定并可进行调整。 (2)隧道钻爆开挖中炮眼的布置。隧道开挖爆破的炮眼数目与隧道断面的大小有关,多在几十至数百范围内。炮眼按其所在位置、爆破作用、布置方式和有关参数的不同可分为如下几种: 1)掏槽眼的布置。 ①掏槽眼的作用是将开挖面上适当部位先掏岀一个小型槽口,以形成新的临空面,为后爆辅助炮创造更有利的临空面,提高爆破效率。 ②掏槽眼本身只有一个临空面,且受周围岩石的夹制作用,故常采用较大的炸药单耗量k值和较大的装药系数a值,以增大爆破粉碎区,并利用爆炸冲击波及爆炸产物作功,将岩石抛掷出槽口。 ③为保证掏槽炮能有效地将石渣拋出槽口,常将掏槽眼比设计掘进进尺加深10~20cm 并采用孔底反向连续装药和双雷管起爆 ④槽口尺寸常在1.0~2.5m2之间,要与循环进尺、断面大小和掏槽方式相协调。要求掏槽眼口间距误差和眼底间距误差不得大于5cm。 ⑤合理布置掏槽眼,应掌握好炮眼的三度:深度、密度和斜度,并通过计算确定用药量及放炮顺序。 ⑥掏槽方式一般可分为斜眼掏槽和直眼掏槽两大类,如图4-21和图所示。

隧道爆破方案.(DOC)

重庆轨道交通三号线一期工程新牌坊~郑家院子、郑家院子车站、郑家院子~唐家院子区间 爆 破 施 工 方 案 施工单位: 项目负责人: 项目总工程师: 项目安全质量负责人: 编制人: 2007年12月20日

爆破方案 一、工程概况 该工程属重庆轨道交通公司新建轻轨3号线一期工程,位于重庆市渝北区,本标段主要由三部分组成,即一个地下车站和两个地下区间,线路总长1487.347m,其中新郑区间长894m,郑家院子车站163.8m,郑唐区间427.947m。 新郑区间由上下行两条单洞单线组成,起讫里程为SK14+753.67~SK15+647.25,线路位于半径分别为325m、338m 的曲线上。其中SK14+753.67~SK15+113为明挖段,SK15+113~+647.25为暗挖段,埋深为5~14m。 郑家院子站为三层地下岛式车站,为明挖地下车站,埋深2m,主体结构为箱型框架结构,结构总宽20m。 郑唐区间为单洞三线结构,起讫里程为SK16+112.053~SK16+540明挖地下段,其中SK16+340~SK16+540段为敞开段。 主要工程数量包含:开挖土石方41万方,回填土石方20万方,灌注砼数量76391方,喷砼数量10390方。 二、工程地质 该标段地表上覆人工填土、粉质粘土、强风化基岩,下伏基岩为呈互层状的砂岩和砂质泥岩,岩体呈大块状的砌体结构,裂隙不发育~较发育,岩体较完整,地下水贫乏。或厚度小于1.5倍压力拱高度的中等风化砂岩和砂质泥岩,洞室围岩V级。 上覆层及下伏层厚度在本标段内变化较大,地质构造复杂。 隧道暗挖段围岩类型分别为Ⅳ、Ⅴ、Ⅵ级,其中Ⅳ级围岩长696.32m,Ⅴ级围岩长236.769m,Ⅵ级围岩长136.78m。 三、工程特点及周围环境 1、本标段工程位于重庆市主城区,钻爆施工不但要有严格的安全要求,而且还有严格的减震、降噪要求。 2、本标段车站工程及郑唐区间工程所处地段地面建筑物众多,

1、全断面法施工工艺工法讲解

全断面法施工工艺工法 QB/ZTYJGYGF-SD-0101-2011 第五工程有限公司李雪峰 1 前言 1.1工艺工法概况 钻爆法是目前国内应用最为广泛的隧道施工方法,其具有适应性强,灵活方便,机械化程度高等优点,其中全断面钻爆法施工掘进速度最快,该方法能够创造大的作业空间,并尽可能地实现了各工序间的平行作业,在长大隧道施工中得到广泛的应用和发展。 1.2工艺原理 全断面法施工借助新奥法原理,强调充分发挥岩体(围岩)结构的自承作用,尽量减少对围岩的多次扰动和破坏,借助施工作业平台并配备相应功能的大型机械设备,按照一定设计和规范确定循环进尺,在隧道设计断面轮廓线上和轮廓内部按照设计布置钻孔,利用炸药能量一次性爆破成型进尺内断面,外运碴体,紧跟施工设计的初期支护措施,待掌子面循环掘进超前一定距离,围岩监控量测变形量满足要求判定为稳定状态后,再开始组织仰拱和二次衬砌工序施工,通过各工序沿隧道纵向错开合理安全距离,形成各主要工序平行作业,最终完成整个隧道设计措施。 2 工艺工法特点 2.1采用全断面法施工可减少对围岩的扰动,充分发挥围岩的自承作用,利于施工安全的管控。 2.2全断面法施工可一次创造大的作业空间,较分部法施工可减少工序及循环时间,可使各道工序尽可能平行交叉作业,大幅提高施工进度。 2.3全断面法施工机械化程度高,可有效减少劳动力配置,降低作业人员工作强度,提高工作效率,经济效果显著。 2.4全断面法施工一次轮廓成型并及时进行下道工序——初期支护的施工,对初期支护质量和作业安全有利。 2.5全断面法一次掘进开挖量大,应进行严密爆破设计,并在施工过程不断需根据地质围岩情况进行优化调整,减少一次爆破用药,达到光爆效果,减少对围岩扰动,节省成本。

隧道聚能水压爆破施工技术

聚能水压爆破施工技术 一、工程概况 该隧道处于陕北东南部黄土残塬区,上部覆盖厚层黄土,由于受到强烈侵蚀作用,黄土塬已破碎不堪,零星分布,地表沟壑纵横,冲沟发育,地质主要为冲积砂质新黄土,冲洪积砂质老黄土、黏质老黄土及砂类土;下部为水平层状砂岩、泥岩等,最大埋深310m在施工过程中主要存在滑坡、高地应力、游离态有害气体、浅埋、断层等高风险,隧道结构穿越黄土、土石混合断面、水平岩层。施工难度大、安全风险高等诸多不利因素。 二、常规光面爆破技术 1 、技术原理 常规光面爆破技术原理是炮眼中的炸药爆炸后,在岩石中传播应力波产生径向压应力和切向拉应力 , 由于炮眼相邻互为“空眼” , 所以在炮眼连线两侧产生应力集中度很高的拉应力 ,超过岩石抗拉强度 , 炮眼之间的岩体形成的初始裂缝要比其他方向厉害的多 , 除此之外 ,由于炸药爆炸生成的高压气体膨胀产生的静力作用促使初始裂缝进一步延伸扩大。 2、工艺流程 3、装药结构 常规(或普通、传统)隧道爆破采用连续装药,炮眼间距炮眼中仅装炸药而无回填堵塞,其装药结构如下图所示。 炮眼无回填堵塞装药结构 4、爆破参数 常规爆破设计参数表 周边眼深度3.5m,进尺2.8m,开挖断面面90.98m3,炸药单耗0.98kg/m3 5、常规爆破存在的问题 1)炮眼间距为40-50cm,布眼过密、打眼过多、打眼作业时间占用时间过长。 2)由于炮孔内充满了空气,应力波部分能量因压缩空气而损失,所以应力波的强度因无回填堵塞而降低,结果削弱了对围岩的破碎。 3)常常出现超挖,增加混凝土衬砌量提高施工成本,隧道爆破开挖出现亏损,超挖是致命的“罪魁祸首”。 4)常规爆破后有害气体浓度高,粉尘大。再加上斜井通风困难,放炮后通风时间需要 30-40 分钟,机械才能够到达掌子面进行出碴,对工序衔接造成了极大的影响。 三、水压光面爆破技术 1 、技术原理 水压光面爆破原理为“往炮眼中一定位置注入一定量的水,并用专用的炮泥回填堵塞炮眼,利用在水中传播的冲击波对水的不可压缩性,使爆炸能量经过水传递到围岩中几乎无损失,同时,水在爆炸气体膨胀作用下产生的“水楔”效应,有利于岩石破碎,炮眼中的水可以起到雾化降尘作用,大大降低粉尘对环境的污

隧道光面爆破施工工法

隧道光面爆破施工工法 一、工艺原理 光面爆破是控制开挖轮廓的一种爆破技术,它沿开挖轮廓周边布孔,利用主炮孔爆破后形成的良好临空面,在光爆层中起爆,借以减少光爆孔爆破的夹制作用,降低炸药单耗,减少一次起爆药量,使其获得平滑的开挖廓面,减轻围岩的破坏,减小超欠挖和避免产生冒顶和坍塌。 二、光面爆破技术要点 隧道开挖应根据工程地质条件、开挖断面、开挖方法、掘进循 环进尺、钻眼机具和爆破器材等结合爆破振动要求进行钻爆设计。 施工中应根据爆破效果不断调整爆破参数。 2.1 爆破参数选定 2.1.1 周边眼间距E 周边眼间距直接控制开挖轮廓线平整度的主要因素,一般E= (12~15) d,其中炮眼直径d=35~45cm,对于节理发育,层理明 显的围岩地段,周边眼的间距可适当减小,也可在两个炮眼之间

2.1.2最小抵抗线W(光面层厚度) 最小抵抗线W直接影响光面爆破效果和爆碴块度,周边抵抗线应大于周边眼间距E,软岩取较小的E值时,W值应适当增大。 2.2 周边眼装药结构 2.2.1 软岩周边眼装药结构 一般采用两种形式:一种是较破碎围岩采用空气间隔装药,导爆索传爆。导爆索作为炮眼装药时,按10g/m折算为2号岩石硝铵炸药。另一种是较完整的软弱岩层采用小直径光爆炸药连续装药。

分别如下图所示: 空先间旖柱装药 小直径药卷连嬪装药 222硬岩周边眼装药结构 位位位 位cm 位 除周边眼、中空眼外,其余掏槽、底眼、掘进眼的装药结构均 为连续装药,只是装药长度不同 2.2本隧道钻爆参数 ① 循环进尺的确定:根据实际情况,为减少对围岩的扰动, IV 、V 级围岩根据钢架支护间距确定,本隧道 IV 级围岩2.0m , V 级围岩1.0m ,II 、III 级围岩不大于3.5m 。 ② 钻孔直径选择:采用042mn 钻眼直径,炸药选择2号岩石乳 化炸药 ③ 隧道开挖断面的 大小:由岩石和开挖方法确定。 , 炮泥 药 片

大量渗水、涌水隧道施工方案

大量渗水、涌水隧道施工 目录 一、大量涌水隧道施工 (1) 1.施工方法 (1) 2.施工工艺 (1) 3.劳动力组织 (4) 4.机械设备配置 (5) 5.质量控制要点 (5) 6.安全措施 (5) 二、大量渗水隧道施工 (6) 1.施工方法 (6) 2.施工工艺 (6) 3.劳动力组织 (8) 4.施工工具配备见下表 (9) 5. 质量控制要点 (9) 6.安全质量措施 (9) 一、大量涌水隧道施工1.施工方法运用新奥法原理,沿隧道开挖轮廓线(含底部)按轴向辐射状布孔(开挖面中心也布孔),进行全断面全封闭深孔注浆固结止水,使隧道周边及开挖面形成一个堵水帷幕(加固区),切断地下水流通路,保持围岩稳定,增强施工安全。 2.施工工艺 (1)施工程序(见施工程序图) (2)超前地质预报对于构造复杂、水量丰富的地层,必须准确预报工作面前方20~25M 范围的工程 地质和水文地质情况,以便为制定施工方案和确定注浆参数提供依据。 ①钻孔方法:利用液压钻孔台车或YQ-100A施钻深孔,在拱顶、起拱线和隧道中下部位各钻φ76mm孔,孔深超出注浆段5m左右。 ②预报内容:预测工作面前方注浆段长度范围的地质构造和岩性、地下水出露位置和水量大小,以及围岩变化情况。 ③预报方法:采用钻眼排碴取样分析,记录钻速、水质水量变化情况以及开挖后的岩面观测素描,综合判断预报前方水文、地质条件。

(3)钻孔作业①封堵墙(止浆墙)施工:首先按照注浆设计施工封堵墙,封堵墙设于开挖面后端,封堵墙厚0.8 ~1.0m,用C20砼灌注一次成型。 ②布孔:由测工站在工作平台上,用红油漆在掌子面上按设计准确画出钻孔位置,标注编号。 ③钻孔: A .钻孔时台车大臂必须顶紧在掌子面上,以防止过大颤动而影响施钻精度。 B .钻机开孔时钻速宜低,钻深20cm后转入正常钻速。 C.第一根钻杆钻完后,凿岩机与钻杆脱离,使用联接套接第二根,依次接杆直至钻到设计深度。 D. 钻孔深度达到设计要求后,凿岩机后退带出钻杆,人工用卡或大扳手卡紧前杆,凿岩机反转,松开连接套卸下钻杆,按同样方法依次拆卸钻杆退出孔外。 E.注浆孔角度参数:仰角、俯角、左偏角、右偏角均控制在最小3°、最大26°内。 ④开孔孔径及深度:注浆孔用φ100 钻头开孔,孔内放置长3~6m的φ86钢管(或橡胶止浆塞管)做孔口管,掏孔清碴时用φ76 钻头。注浆段长度为20m一环。 ⑤钻孔深度控制:台车大臂按设计布孔位置点对正,用简易垂球量角器测钻杆仰角,调整至设计角度,并在钻杆上安装导向指示器,控制钻孔偏角。 ⑥台车钻孔工作参数:凿岩台车钻孔作业的推进压力2.5 ~4.0MPa,回转压力5.0 ~ 6.0MPa,冲击压力19~20MPa。 (4)注浆作业 ①注浆材料:水泥:用425 号以上的普通硅酸盐水泥,质量应符合标准。 水玻璃:用出厂浓度42~45Bé,比重1.42 ~1.45 ,模数2.4 ~2.8 的水玻璃原 拌合水:水质应符合《铁路砼及砌石工程施工规范》中的各项规定。 ②配合比控制:水灰比(W/C)为0.8 ;水玻璃稀释浓度为25~35Bé;双液体积比 (C/S)为1:0.5 ~0.7 。 ③凝胶与凝结时间控制:为满足浆液扩散半径的要求,采用凝结时间为:一般地段3 分钟,富水地段1~2 分钟。 施工控制分以下三种: A .水灰比固定,水玻璃浓度不变,变换双浆比例。当水玻璃溶液所占比例由小到大,凝胶时间则由长到短,初、终凝由慢到快。

水压爆破施工方案

目录 令狐采学 一、编制依据 (2) 二、编制原则 (2) 三、工程概况 (3) 四、工程水文地质 (3) 4.1地形、地貌 (3) 4.2地质构造 (4) 4.3场地水文地质情况 (4) 4.4不良地质、地下障碍物与特殊岩土 (5) 五、施工工艺 (6) 5.1爆破参数 (6) 5.2炮孔布置图 (10) 5.3炮眼内安装沙袋 (10) 5.4炮泥的制作 (10) 5.5工艺原理 (10) 5.6水压爆破施工工艺流程图 (12) 5.7施工要点 (14) 六、施工安全措施 (16) 6.1安全措施 (16) 6.2现场爆炸物品安全管理措施 (16)

一、编制依据 ?杭州市紫之隧道(紫金港路-之江路)工程第Ⅱ标段施工合 同; ?杭州市紫之隧道(紫金港路-之江路)工程第Ⅱ标段施工图 设计; ?设计、施工过程中涉及的有关规范、规程; ?紫之隧道(紫金港路-之江路)工程Ⅰ标《岩土工程勘察报 告》 《公路隧道施工技术规范》JTJ042-94 《爆破安全规程》GB6722-2003 《民用爆炸物品安全管理条例》2006.9 《爆破作业项目管理要求》GA991-2012 《爆破作业单位资质条件和管理要求》GA990-2012 《中华人民共和国安全生产法》 ?国内相关工程的施工经验。 二、编制原则 遵循招标文件、设计文件、施组、质量标准等规定,严格按照有关规定条款进行施工组织、运作,确保工程按照规定要求达标,即质量、安全、工期、文明施工、环境保护、工程成本等的最佳组合;强化内部管理、提高技能素质,依靠科技,精心施工,

合理安排,严格按照项目法管理原则进行操作,实现工程成本与管理的最佳组合。 三、工程概况 紫之隧道(紫金港路—之江路)工程南起之浦路,北至紫金港路,隧道南北端各设一对匝道,线路全长约14.4km,其中隧道全长约13.9km。工程总体规模为双向六车道,为机动车专用车道。 本标段为杭州市紫之隧道(紫金港路—之江路)工程第Ⅱ标段施工,标段涵盖内容为:1#隧道部分区段(西线K1+530~K3+550、东线K1+570~K3+555)、南口匝道(西线K0+000~K0+733.574、东K0+000~K1+105.196)及匝道接线道路(K0+000~K0+495.213),主要内容为:隧道、道路、地下风机房、管理用房、防排水、管沟及路面、给排水(含消防)及附属工程的预埋结构等工程的施工及质量保修。 隧道的断面形式包括两车道、三车道、大跨段和单车道等。设计时速60km/h,匝道设计时速30km/h。 四、工程水文地质 4.1地形、地貌 紫之隧道穿越区属于杭嘉湖平原的西南端,天目山系余脉的低山丘陵地貌,地势呈西高东低之势。隧道沿线植被覆盖率超过

水压爆破方案

. 裴岭二号隧道水压爆破工艺隧道概况一裴岭二号隧道位于浙江省衢州市开化县裴源村附近,起始里 米。隧道最大埋深约为1784.0,双线隧道,全长程为 DK243+535.00°,山40165m。隧址位于低山区,最大高差约200m,自然坡度°~50 上植被十分发育,多为灌木及小乔木。左右为吴家村庄,为确保建(构)筑物的安全,洞口小里程300m尽量减少施工对周边建筑及人员的伤把爆破震速控制在设计范围内,害,现场施工推行水压爆破技术。二、水压爆破以位置水压爆破,是将药包置于注满水的被爆容器中的设计上,飞石及噪水作为传爆介质传播爆轰压力使容器破坏,且空气冲击波、声等均可有效控制的爆破方法。、基本原理1炸药爆炸瞬间水传是利用水的不可压缩性质,能量传播损失小。加剧容播冲击波到容器壁使其位移,并产生反射作用形成二次加载,遂使容器均匀解体破碎。此法简便易行,效果良好。器壁的破坏,采用在炮眼中先技术正是针对这一情况,“隧道掘进水压爆破”“注水”后用“炮泥”回填堵塞的新技术,来变革隧道掘进爆破技术使爆炸能量的。它利用在水中传播的爆破应力波对水的不可压缩性,经过水传递到炮眼围岩中几乎无损失,十分有利于岩石破碎。同时,效应有利于岩石进一步破碎,“水楔”水在爆炸气体膨胀作用下产生的.

范文. . 炮眼中有水可以起到雾化降尘作用,大大降低粉尘对环境的污染。、常规爆破与水压爆破对比2 常规爆破法: 水压爆破法:

. 范文. . 水压爆破与常规爆破对比:3. 炮眼中增添了水袋和炮泥3.1利用水的不可压缩特征,无损失传递炸药爆炸能量,利于3.2围岩破碎,

产生的“水楔”作用进一步破碎围岩,还可以防止岩爆炮眼最底部的水袋代替药卷,利用在水中反射波作用不但3.3 爆破作用时间延长,而且水楔作用效果更好,更有利围岩破碎水与炮泥复合堵塞炮眼,有效利用爆破生成的膨胀气体对3.4 围岩产生最后破碎作用。炮眼中有水,爆破产生的水雾对降尘起到极其重要作用,3.4 这对暗挖隧道保障地面上环境不被污染。左右,装药量减水压爆破相对常规爆破装药量可节省20%3.6有炮眼由于采取水袋与炮泥复合堵塞,少相对爆破震动减弱,效控制冲击强度。三、水压爆破施工工艺流程、水压爆破施工工艺路程3.1. 范文. . 钻爆设计→施工准备(炮泥制作、水袋制作)→钻孔台车就位→清孔→施工准备→安装炸药、水袋和炮泥→联网→起爆→出渣→钻爆循环结束。 3.2、水压爆破炮眼装药流程 第一步:炮眼最底部装一袋水袋 第二步:装填一卷半药卷(注意一卷药卷紧挨着炮眼底部水袋,另半卷药卷定个在离炮眼口0.6m)两者用传爆线链接起来。 第三部:装填一袋水袋 第四部:用炮泥堵塞炮眼口

雅康高速二郎山隧道钻爆方案(水压爆破)

雅安至康定高速公路C1标段二郎山隧道 二郎山隧道钻爆专项施工方案 (水压爆破) 中国中铁 编制:日期:年月日编制:日期:年月日编制:日期:年月日 中铁隧道股份有限公司 雅康高速公路C1标段项目经理部 二〇一四年十一月十八日

二郎山隧道钻爆专项施工方案(水压爆破) 一、编制依据 1、国家、地方政府建设行业主管部门管理要求。 2、设计图纸、合同文件中相关规定和要求。 3、现行相关施工规范、法律法规、验收标准。 4、工地现场勘查、调查所采集、咨询获取的资料。 5、重大施工方案及专家评审意见。 6、爆破安全规程(GB6722-2011)。 二、工程概况 二郎山隧道为分离式隧道,全长13398米。本合同段左线长6702米,右线长6696米。其中主要围岩级别为Ⅲ、Ⅳ、Ⅴ,隧道开挖采取钻爆开挖。截止2014年12月,二郎山隧道左右线均突破2800m大关,通过与我公司重庆地铁五号线项目交流学习,吸收引进隧道水压爆破施工技术,旨在降低围岩扰动、改善施工人员作业环境、炮眼利用率高等要求,项目决定采取水压爆破施工技术。 三、地质地形情况 地形地貌:本工程位于四川盆地向青藏高原东南缘的过渡地带,从东向西高程由670m 急速上升至2460m,地形逐渐变得陡峻,形成由西向东倾斜地势。本标段隧道穿越地层岩性主要包括粉砂质泥岩、钙质泥岩互层、粉砂层、炭质页岩、灰岩、砂岩、泥岩、花岗岩等,隧道穿越的区域断裂主要有新沟断裂、保凰断裂、二郎山断裂的东支、中支等。隧道不良地质主要包括岩爆、软岩大变形、断层破碎带、高压涌突水及岩溶等。 本标段河流主要属岷江水系。标段内地下水丰富,类型齐全。地下水补给源主要为大气降水和地表水直接或间接渗入补给。 四、设计方案 1、水压爆破概述 隧道水压爆破是往炮眼中的一定位臵注入一定量的水,然后用专门的炮泥机生产炮泥回填堵塞。由于炮眼中有水,因水具有压缩性极小、变形能低、热能损失小等特性,在水中传播的水激波能够按照水的“液压”作用,较均匀的、几乎无损失地把能量传递到围岩中。 在水激波做功的同时,被爆炸气体冲击压缩的高压水挤入爆生裂隙中,形成“水楔”,这种“水楔”的尖劈作用加剧了裂隙的延伸和扩展,使破碎块度更均匀;同时,炮眼中的

静力爆破施工工法

静力爆破施工方法 1.1爆破安全操作标准 国家法令及国家标准 《爆破安全规程》(GB6722-2003) 《民用爆炸物品安全管理条例》(国务院2006年5月10日) 《中华人民共和国安全生产法》(2001.11) 《特种作业人员安全技术考核管理规则》(GBJ5306-85) 《工程测量规范》(GB50026-93) 《土方爆破工程施工及验收规范》(GBJ201-83) 《中华人民共和国安全生产法》(2002.11) 依据该工程的地质勘探资料与爆区周围环境条件建设单位的要求。 其他适用于本工程的国家爆破技术标准相关资料。 1.2.1 确保质量 建立健全资料保证系统,完善质量管理制度,建立质量控制流程,抓关键线路,抓特殊工序,确保本工程达到一次性验收合格标准。 1.2.2 确保安全 (1)严格按国家安全法律法规及本工程安全规范程序施工,项目部成立安全管理委员会,制定安全目标,建立安全责任制,安全责任层层分解,落实到人。 (2)爆破期间确保人员、设备等的安全。 (3)施工中不断改进爆破参数,并严格按设计的爆破参数施工。 (4)建立健全安全保证系统,坚持安全第一,预防为主的方针,文明施工,确保整个爆破施工过程安全无事故。 第二章工程概况 2.1 工程概况 本工程场地位于富川县城东新区内,在开挖过程中遇到岩石急需进行爆破,以加快施工进度 2.2 周围环境 爆区东距消防大队100米,南面为修理厂,西面为宿舍区,北面瑶王府酒店10米,周围环境复杂,爆破防护要求高。

30m空地 爆破地形地貌、警戒示意图(单位:m) 爆破施工作业必须成立爆破指挥小组,指挥具体的施工作业和做好具体的安全防护工作,加强爆区周围的安全防护措施,严密组织疏散警戒区 内人员至安全地带,才能实施爆破。 2.3 地形地貌及地质条件 爆破岩体凹凸不规则地分布不于长60m,宽45m的开挖范围内,爆破 高度4-6m不等,爆破方量约11000m3左右。爆体为灰色石岩灰,结构密实, 节理裂缝不发育,硬度为普氏r系数12-16。 第三章爆破施工方案 静爆破是近年来才发展起来的一种新型爆破施工技术,该种方法可在 无振动、无飞石、无噪音、无污染的条件下破碎岩石、拆除砼或钢筋砼圬 工结构物,或用于花岗岩、大理石、玉石等石材的开采和切割(提高石材 荒料成材率3~4倍)。尤其适用于不允许采用炸药爆破或机械破碎施工的 作业环境(如爆破作业点紧邻工厂、机关学校、医院、民宅;或高边坡危 岩刷方、文物保护抢救;城市深夜破碎施工;或作业点紧邻地下排水暗渠、 LNG燃气管道、输油管道、输汽管道、供暖管道、大型供水管道、输变电 站、高压输电线路、军民用油库、营运机场、高速公路、轻轨、高铁附近; 及国防光缆、通讯管线、城市中心旧建筑物拆除作业等作业环境受到严格 限制地段)。 静力爆破施工,首先在岩石上钻孔,然后灌装静力爆破剂(分粉剂和卷 型两种),依靠其膨胀力使岩石产生裂隙、裂缝,从而达到破碎目的。静力

相关文档
最新文档