工具变量估计与两阶段最小二乘法

对比分析最小二乘法与回归分析

对比分析最小二乘法与回归分析

摘要 最小二乘法是在模型确定的情况下对未知参数由观测数据来进行估计,而回归分析则是研究变量间相关关系的统计分析方法。 关键词:最小二乘法回归分析数据估计

目录 摘要 (2) 目录 (3) 一:最小二乘法 (4) 主要内容 (4) 基本原理 (4) 二:回归分析法 (6) 回归分析的主要内容 (6) 回归分析原理 (7) 三:分析与总结 (10)

一:最小二乘法 主要内容 最小二乘法又称最小平方法是一种数学优化技术。它通过定义残差平方和的方式,最小化残差的平方和以求寻找数据的最佳函数匹配,可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称 为经验公式.利用最小二乘法可以十分简便地求得未知的数据,并使 得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化 熵用最小二乘法来表达。 基本原理 考虑超定方程组(超定指未知数大于方程个数): 其中m 代表有m 个等式,n 代表有n 个未知数(m>n);将其进行向量化后为: ,

, 显然该方程组一般而言没有解,所以为了选取最合适的 让该等式"尽量成立",引入残差平方和函数S (在统计学中,残差平方和函数可以看成n 倍的均方误差当时, 取最小值,记作: 通过对进行微分求最值,可以得到: 如果矩阵非奇异则 有唯一解:

二:回归分析法 回归分析是确定两种或两种以上变量间相互依赖的相关关系的一种 统计分析方法。回归分析是应用极其广泛的数据分析方法之一。它基于观测数据建立变量间适当的依赖关系,建立不同的回归模型,确立不同的未知参数,之后使用最小二乘法等方法来估计模型中的未知参数,以分析数据间的内在联系。当自变量的个数等于一时称为一元回归,大于1时称为多元回归,当因变量个数大于1时称为多重回归,其次按自变量与因变量之间是否呈线性关系分为线性回归与非线性 回归。最简单的情形是一个自变量和一个因变量,且它们大体上有线性关系,叫一元线性回归。 回归分析的主要内容 ①从一组数据出发,确定某些变量之间的定量关系式,即建立数 学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。 ②对这些关系式的可信程度进行检验。 ③在许多自变量共同影响着一个因变量的关系中,判断哪个(或 哪些)自变量的影响是显著的,哪些自变量的影响是不显著的,将影 响显著的自变量加入模型中,而剔除影响不显著的变量,通常用逐步回归、向前回归和向后回归等方法。 ④利用所求的关系式对某一生产过程进行预测或控制。

最小二乘法及其应用..

最小二乘法及其应用 1. 引言 最小二乘法在19世纪初发明后,很快得到欧洲一些国家的天文学家和测地学家的广泛关注。据不完全统计,自1805年至1864年的60年间,有关最小二乘法的研究论文达256篇,一些百科全书包括1837年出版的大不列颠百科全书第7版,亦收入有关方法的介绍。同时,误差的分布是“正态”的,也立刻得到天文学家的关注及大量经验的支持。如贝塞尔( F. W. Bessel, 1784—1846)对几百颗星球作了三组观测,并比较了按照正态规律在给定范围内的理论误差值和实际值,对比表明它们非常接近一致。拉普拉斯在1810年也给出了正态规律的一个新的理论推导并写入其《分析概论》中。正态分布作为一种统计模型,在19世纪极为流行,一些学者甚至把19世纪的数理统计学称为正态分布的统治时代。在其影响下,最小二乘法也脱出测量数据意义之外而发展成为一个包罗极大,应用及其广泛的统计模型。到20世纪正态小样本理论充分发展后,高斯研究成果的影响更加显著。最小二乘法不仅是19世纪最重要的统计方法,而且还可以称为数理统计学之灵魂。相关回归分析、方差分析和线性模型理论等数理统计学的几大分支都以最小二乘法为理论基础。正如美国统计学家斯蒂格勒( S. M. Stigler)所说,“最小二乘法之于数理统计学犹如微积分之于数学”。最小二乘法是参数回归的最基本得方法所以研究最小二乘法原理及其应用对于统计的学习有很重要的意义。 2. 最小二乘法 所谓最小二乘法就是:选择参数10,b b ,使得全部观测的残差平方和最小. 用数学公式表示为: 21022)()(m in i i i i i x b b Y Y Y e --=-=∑∑∑∧ 为了说明这个方法,先解释一下最小二乘原理,以一元线性回归方程为例. i i i x B B Y μ++=10 (一元线性回归方程)

SPSS数据分析—两阶段最小二乘法

传统线性模型的假设之一是因变量之间相互独立,并且如果自变量之间不独立,会产生共线性,对于模型的精度也是会有影响的。虽然完全独立的两个变量是不存在的,但是我们在分析中也可以使用一些手段尽量减小这些问题产生的影响,例如采用随机抽样减小因变量间的相关性,使其满足假设;采用岭回归、逐步回归、主成分回归等解决共线性的问题。以上解决方法做都会损失数据信息,而且似乎都是采取一种回避问题的态度而非解决问题,当碰到更复杂的情况例如因变量和自变量相互影响时,单靠回避是无法得到正确的分析结果的,那么有没有更好的直接解决问题的方法呢?接下来介绍的 两阶段最小二乘法和路径分析就是解决此类问题比较好的方法。当因变量与自变量存在相互作用时,会直接违反传统回归模型的基本假设,也就无法再使用普通最小 二乘法,解决此类问题的方法是:首先确定和因变量有相互作用的自变量,将这些自变量作为因变量拟合回归方程,该方程中的自变量和原始因变量无关,用这些自变量的估计值代替原值进行分析,由于估计值是根据与原始因变量无关的变量预测而来,因此可以认为这些估计值也和因变量的作用是单向的,从而避免了相互作用的影响,整个过程用了两次最小二乘法,因此成为两阶段最小二乘法。当然,还有三阶或多阶最小二乘法。 两阶段最小二乘法在SPSS中有一个单独的过程: 分析—回归—两阶段最小二乘法 我们通过一个例子来说明其用法 现在想研究受教育年限、种族、年龄对收入的影响,表面上看,可以采用以教育年限、种族、年龄为自变量,收入为因变量的多重线性回归进行分析,但是根据常识,教育年限和收入存在双向的影响,这使得线性模型的基本假定被否定,分析结果可能不正确。此时,我们可以采用二阶段最小二乘法进行分析,为此,我们找到了父亲和母亲的受教育年限这两个变量,以此来估计原始变量的受教育年限,我们把这种在第一阶段用于预测自变量的变量称为工具变量,而被预测的自变量,称为内生变量。

第15章 工具变量与两阶段最小二乘

第15章 工具变量估计与两阶段最小二乘法 在本章中,我们进一步研究多元回归模型中的内生解释变量(endogenous explanatory variable )问题。在第3章中,我们推导出,遗漏一个重要变量时OLS 估计量的偏误;在第5章中,我们说明了在遗漏变量(omitted variable )的情况下,OLS 通常是非一致性的。第9章则证明了,对未观测到的解释变量给出适宜的代理变量,能消除(或至少减轻)遗漏变量偏误。不幸的是,我们不是总能得到适宜的代理变量。 在前两章中,我们解释了存在不随时间变化的遗漏变量的情况下,对综列数据如何用固定效应估计或一阶差分来估计随时间变化的自变量的影响。尽管这些方法非常有用,可我们不是总能获得综列数据的。即使能获得,如果我们的兴趣在于变量的影响,而该变量不随时间变化,它对于我们也几无用处:一阶差分或固定效应估计排除了不随时间变化的变量。此外,迄今为止我们已研究出的综列数据法还不能解决与解释变量相关的随时间而变化的遗漏变量的问题。 在本章中,我们对内生性问题采用了一个不同的方法。你将看到如何用工具变量法(IV )来解决一个或多个解释变量的内生性问题。就应用计量经济学中线性方程的估计而言,两阶段最小二乘法(2SLS 或TSLS )是第二受人欢迎的,仅次于普通最小二乘。 我们一开始先说明,在存在遗漏变量的情况下,如何用IV 法来获得一致性估计量。此外,IV 能用于解决含误差变量(errors-in-variable )的问题,至少是在某些假定下。下一章将证明运用IV 法如何估计联立方程模型。 我们对工具变量估计的论述严格遵照我们在第1篇中对普通最小二乘的推导,其中假定我们有一个来自基本总体的随机样本。这个起点很合人意,因为除了简化符号之外,它还强调了应根据基本总体来表述对IV 估计所做的重要的假定(正如用OLS 时一样)。如我们在第2篇中所示,OLS 可以应用于时间序列数据,而工具变量法也一样可以。第15.7节讨论IV 法应用于时间序列数据时出现的一些特殊问题。在第15.8节中,我们将论述在混合横截面和综列数据上的应用。 15.1 动机:简单回归模型中的遗漏变量 面对可能发生的遗漏变量偏误(或未观测到的异质性),迄今为止我们已讨论了三种选择:(1)我们可以忽略此问题,承受有偏、非一致性估计量的后果;(2)我们可以试图为未观测到的变量寻找并使用一个适宜的代理变量;(3)我们可以假定遗漏变量不随时间变化,运用第`13与14章中的固定效应或一阶差分方法。若能把估计值与关键参数的偏误方向一同给出,则第一个回答是令人满意的。例如,如果我们能说一个正参数(譬如职业培训对往后工资的影响)的估计量有朝零偏误 ,并且我们找到了一个统计上显著的正的估计值,那么我们还是学到了一些东西:职业培训对工资有正的影响,而我们很可能低估了该影响。不幸的是,相反的情况经常发生,我们的估计值可能在数值上太大了,以致我们要得出任何有用的结论都非常困难。 第9.2节中讨论的代理变量解也能获得令人满意的结果,但并不是总可以找到一个好的代理。该方法试图通过用代理变量取代不可观测的变量,来解决遗漏变量的问题。 另一种方法是将未观测到的变量留在误差项中,但不是用OLS 估计模型,而是运用一种承认存在遗漏变量的估计方法。这便是工具变量法所要做的。 举例来说,考虑成年劳动者的工资方程中存在未观测到的能力的问题。一个简单的模型为: ,)log(210e abil educ wage +++=βββ 其中e 是误差项。在第9章中,我们说明了在某些假定下,如何用诸如IQ 的代理变量代替能力,从而通过以下回归可得到一致性估计量 )log(wage 对IQ educ , 回归

第五章--最小二乘问题的解法

第五章 最小二乘问题的解法 1.最小二乘问题 1)回归方程问题 []T i i l i y t t )() ()(1 ,,...,,m i ,...,2,1=是m 个实验点。现要根据这些点确定y 与l 个物理量 l t t t ,...,,21之间的关系式。 设这种关系式为),...,,,...,(11n l x x t t F y =,其中n x x ,...,1是方程中需要待定的n 个参数(系数)。 因此问题是如何通过)(n m m >个实验点,确定方程中的系数。 由于实验点的个数大于待定系数的个数,因此方程中系数的确定是一个超静定问题,无法按一般的方法进行求解。 此时将实验点到曲面距离最短的那个曲面作为所求曲面,从而求取该曲面方程。 即求解[]∑=-m i i i y x t F 12 )()(),(min ,这就是最小二乘问题。 2)非线性方程组问题 求解非线性方程组?? ? ?? ??===0),...,(. 0 ),...,(0 ),...,(11211n n n n x x f x x f x x f 可转化为求解如下形式的最小二乘问题。 ∑ =m i n i x x f 1 12 ),...,(min 显而易见,最小二乘法的一般形式可写为)()(min x f x f T 最小二乘法问题实际上是具有n 个变量的无约束极小化问题,前面解无约束优化问题的方法均可应用。 但是最小二乘问题具有一定的特殊性,即目标函数的表达式是由多个表达

式的平方和组成,理应有更、更有效的方法。这正是最小二乘解法要解决的问题。 2.线性最小二乘问题的解法 最小二乘法的一般形式可写为)()(min x f x f T 特别地,当b Ax x f -= )(,即)(x f 为线性函数时,则最小二乘问题可表示为: 2 min b Ax - 1) 线性最小二乘问题解的条件 定理1:*x 是线性最小二乘问题极小点的充要条件是*x 满足b A Ax A T T =。 证明:(1)必要性 令2 )(b Ax x s -= ,于是有: b b Ax b b A x Ax A x b Ax b A x b Ax b Ax x s T T T T T T T T T T +--=--=--=))(()()()( 由于b A x T T 是一个数,而一个数的转置是它的本身,因此有: Ax b A x b b A x b A x T T T T T T T T T T ===) () ( 故上式可化为:b b Ax b Ax A x x s T T T T +-= 2)( b A Ax A x s T T 22)(-=? 若*x 是)(x s 的极小点,则必有0)(=?x s ,则必有:b A Ax A T T = (2)充分性 若*x 满足b A Ax A T T =* ,即0)(*=-b Ax A T 考虑任一点n R z x v ∈+=*,计算

普通最小二乘法(OLS)

普通最小二乘法(OLS ) 普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值i i x y ,(i=1,2,…,n )的情况下 (见图中的散点),假如模型()的参数估计量已经求得到, 为^0β和^ 1β,并且是最合理的参数估计量,那么直线方程(见 图中的直线) i i x y ^ 1^0^ββ+= i=1,2,…,n 应该能够最 好地拟合样本数据。其中^i y 为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 ),()(1022101ββββQ u x y Q i i n i i ==--=∑∑= ()()),(min ????1021 10212?,?1100ββββββββQ x y y y u Q n i i n i i i =--=-==∑∑∑== 为什么用平方和因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 2 1 ^1^012 ^ ))(()(∑∑+--=n i i n i i x y y y Q ββ= 是^0β、^1β的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q 对^0β、^ 1β的一阶偏导数为0时,Q 达到最小。即

0011001100?,?1 ?,?0 =??=??====ββββββββββQ Q 容易推得特征方程: ()0)??(0?)??(1011 10==--==-=--∑∑∑∑∑==i i i i n i i i i i i n i i e x x y x e y y x y ββββ 解得: ∑∑∑∑∑+=+=2^ 1^0^1^0i i i i i i x x x y x n y ββββ () 所以有:???? ?????-=---=--=∑∑∑∑∑∑∑=======x y x x y y x x x x n y x y x n n i i n i i i n i i n i i n i i n i i n i i i 10121 21121111??)())(()()()(?βββ () 于是得到了符合最小二乘原则的参数估计量。 为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记 ∑=-i x n x 1 ∑=-i y n y 1 y y y x x x i i i i -=-= ()的参数估计量可以写成

2动态过程数学模型参数估计的最小二乘方法

第二章 参数估计的最小二乘方法Least Squares §2—1静态线性模型参数的最小二乘估计(多元线性回归) 一、 什么是最小二乘估计 系统辨识三要素:模型,数据,准则。 例: y = ax + ε 其中:y 、x 可测;ε — 不可测的干扰项; a —未知参数。通过 N 次实验,得到测量数据 y k 和 x k k = 1、2、3 …,确定未知参数 a 称“参数估计”。 使准则 J 为 最小 : 令:? J / ? a = 0 , 导出 a = ? 称为“最小二乘估计”,即残差平方总和为最小的估计,Gauss 于 1792 年提出。 min )(2 1 =-=∑=k N k k ax y J 0)(21 =--=??∑=k k N k k ax y x a J

二、多元线性回归 线性模型 y = a 0+ a 1x 1+ + a n x n + ε 式(2 - 1- 1) 引入参数向量: θ = [ a 0,a 1, a n ]T (n+1)*1 进行 N 次试验,得出N 个方程: y k = ?k T θ + εk ; k=1、2…、N 式(2 -1- 2) 其中:?k = [ 1,x 1,x 2, ,x N ] T (n+1) *1 方程组可用矩阵表示为 y = Φ θ + ε 式(2 -1- 3) 其中:y = [ y 1,y 2, 。。。,y N ] T (N *1) ε = [ ε1, ε2, 。。。,ε N ] T (N *1) N *(n+1) 估计准则有: = (y — Φ θ)T ( y — Φ θ) (1*N) ( N *1) ?????? ? ???????=??????? ?? ???=T N T T nN N n n x x x x x x ???φ.... 1...........1 (1211212) 111 21)(θ?T k N k k y J -=∑=[] ? ? ?? ? ?????----=)(..)(*)(...)(1 111θ?θ?θ?θ?T N N T T N N T y y y y J

工具变量法的S命令及实例

工具变量法的Stata命令及实例 ●本实例使用数据集“”。 ●先看一下数据集的统计特征: . sum Variable Obs Mean Std. Dev. Min Max rns 758 .2691293 .4438001 0 1 rns80 758 .292876 .4553825 0 1 mrt 758 .5145119 .5001194 0 1 mrt80 758 .8984169 .3022988 0 1 smsa 758 .7044855 .456575 0 1 smsa80 758 .7124011 .452942 0 1 med 758 10.91029 2.74112 0 18 iq 758 103.8562 13.61867 54 145 kww 758 36.57388 7.302247 12 56 year 758 69.03166 2.631794 66 73 age 758 21.83509 2.981756 16 30 age80 758 33.01187 3.085504 28 38 s 758 13.40501 2.231828 9 18 s80 758 13.70712 2.214693 9 18 expr 758 1.735429 2.105542 0 11.444 expr80 758 11.39426 4.210745 .692 22.045 tenure 758 1.831135 1.67363 0 10 tenure80 758 7.362797 5.05024 0 22 lw 758 5.686739 .4289494 4.605 7.051 lw80 758 6.826555 .4099268 4.749 8.032 ●考察智商与受教育年限的相关关系: . corr iq s (obs=758) iq s iq 1.0000 s 0.5131 1.0000 上表显示,智商(在一定程度上可以视为能力的代理变量)与受教育年限具有强烈的正相关关系(相关系数为)。 ●作为一个参考系,先进行OLS回归,并使用稳健标准差:

Chapter4-工具变量法

第1章 两阶段最小二乘法 在模型的基本假定中,解释变量与误差项正交保证了参数估计量的无偏性和一致性。当这一假定被违背时,称解释变量是内生的。常见的几种情况会导致内生问题:忽略重要的解释变量、变量的测量误差、变量的联立性。工具变量估计是解决解释变量内生问题的基本方法。本章介绍工具变量法和两阶段最小二乘法,以及模型内生性检验和过度识别约束检验等问题。 1.1 变量的内生性 如果模型中的解释变量与误差项出现相关,即(')E =X u 0,称解释变量是内生的。导致 解释变量内生性的原因有很多,主要的几个原因包括:模型中忽略了重要的解释变量、变量因果关系的双向性、变量的测量误差等。 模型中出现内生解释变量时,OLS 估计量是不一致的。根据OLS 估计量: 11111?(')(')(')(')(')(')N N -----==+=+βX X X y βX X X u βX X X u (1.1) 由假定Rank(X)=K 和大数定律,样本均值的概率极限等于总体均值,可得: 1Plim(')E(')N -=≡X X X X A , 1Plim(')E(')N -=≠X u X u 0。 (1.2) 又由Slustky 定理, 111Plim(')N ---=X X A 1?Plim E(')-=+≠β βA X u β (1.3) 1.2 工具变量估计 1.2.1 工具变量 在如下模型中, y = X β+ u 第i 个解释变量x i 为内生解释变量。如果存在变量z ,z 满足如下两个条件: 正交条件:与u 不相关,即cor(z, u) = 0 相关条件:与x 相关,即cor(z, x i ) ≠ 0,也称为识别约束条件。 那么,z 被称作x i 的工具变量。

最小二乘法参数估计

【2-1】 设某物理量Y 与X1、X2、X3的关系如下:Y=θ1X 1+θ2X 2+θ3X 3 由试验获得的数据如下表。试用最小二乘法确定模型参数θ1、θ2和θ3 X1: 0.62 0.4 0.42 0.82 0.66 0.72 0.38 0.52 0.45 0.69 0.55 0.36 X2: 12.0 14.2 14.6 12.1 10.8 8.20 13.0 10.5 8.80 17.0 14.2 12.8 X3: 5.20 6.10 0.32 8.30 5.10 7.90 4.20 8.00 3.90 5.50 3.80 6.20 Y: 51.6 49.9 48.5 50.6 49.7 48.8 42.6 45.9 37.8 64.8 53.4 45.3 解:MATLAB 程序为: Clear all; A= [0.6200 12.000 5.2000 0.4000 14.2000 6.1000 0.4200 14.6000 0.3200 0.8200 12.1000 8.3000 0.6600 10.8000 5.1000 0.7200 8.2000 7.9000 0.3800 13.0000 4.2000 0.5200 10.5000 8.0000 0.4500 8.8000 3.9000 0.6900 17.0000 5.5000 0.5500 14.2000 3.8000 0.3600 12.8000 6.2000 ]; B=[51.6 49.9 48.5 50.6 49.7 48.8 42.6 45.9 37.8 64.8 53.4 45.3]'; C=inv(A'*A)*A'*B =[0.62 12 5.2;0.4 14.2 6.1;0.42 14.6 0.32;0.82 12.1 8.3; 0.66 10.8 5.1;0.72 8.2 7.9;0.38 13 4.2;0.52 10.5 8; 0.45 8.8 3.9;0.69 17 5.5;0.55 14.2 3.8;0.36 12.8 6.2] 公式中的A 是ΦN, B 是YN ,运行M 文件可得结果: 在matlab 中的运行结果: C= 29.5903 2.4466 0.4597 【2-3】 考虑如下模型 )()(3.03.115.0)(2 12 1t w t u z z z z t y ++-+=---- 其中w(t)为零均值、方差为1的白噪声。根据模型生成的输入/输出数据u(k)和y(k),分别采用批处理最小二乘法、具有遗忘因子的最小二乘法(λ=0.95)和递推最小二乘法估计模型参数(限定数据长度N 为某一数值,如N=150或其它数

第四章参数的最小二乘法估计

精心整理 第四章最小二乘法与组合测量 §1概述 最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。例如,取重复测量数据 其后在 x x, , 2 1 n 2 1 显然,最可信赖值应使出现的概率P为最大,即使上式中页指数中的因子达最小,即 权因子: 2 2 o i i w 即权因子 i w∝ 2 1 i ,则 再用微分法,得最可信赖值x

11 n i i i n i i w x x w 即加权算术平均值 这里为了与概率符号区别,以i 表示权因子。 特别是等权测量条件下,有: 以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,称之为最小二乘法 1x +3x =0.5 2x +3x =-0.3 这是一个超定方程组,即方程个数多于待求量个数,不存在唯一的确定解,事实上,考虑到测量有误差,记它们的测量误差分别为4321,,,v v v v ,按最小二乘法原理 Min v i 2 分别对321,,x x x 求偏导数,令它们等于零,得如下的确定性方程组。

(1x -0.3)+(1x +3x -0.5)=0 (2x +0.4)+(2x +3x +0.3)=0 (1x +3x -0.5)+(2x +3x +0.3)=0 可求出唯一解1x =0.325,2x =-0.425,3x =0.150这组解称之为原超定方程组的最小二乘解。 以下,一般地讨论线性参数测量方程组的最小二乘解及其精度估计。 即 x j ][][][][2211y a x a a x a a x a a t t t t t t 式中,j a ,y 分别为如下列向量 ][k l a a 和][y a j 分别为如下两列向量的内积: ][k l a a =nk nl k l k l a a a a a a 2211 ][y a j =n nj j j y a y a y a 2211

参数的最小二乘法估计

第四章最小二乘法与组合测量 §1概述 最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。例如,取重复测量数据的算术平均值作为测量的结果,就是依据了使残差的平方和为最小的原则,又如,在本章将要用最小二乘法来解决一类组合测量的问题。另外,常遇到用实验方法来拟合经验公式,这是后面一章回归分析方法的内容,它也是以最小二乘法原理为基础。 最小二乘法的发展已经经历了200多年的历史,它最先起源于天文和大地测量的需要,其后在许多科学领域里获得了广泛应用,特别是近代矩阵理论与电子计算机相结合,使最小二乘法不断地发展而久盛不衰。 本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用,一些深入的内容可参阅专门的书籍和文献。 §2最小二乘法原理 最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。对某量x 测量一组数据n x x x ,,,21 ,假设数据中不存在系统误差和粗大误差,相互独立,服从正态分布,它们的标准偏差依次为:n σσσ ,,21记最可信赖值为x ,相应的残差x x v i i -=。测值落入),(dx x x i i +的概率。 根据概率乘法定理,测量n x x x ,,,21 同时出现的概率为 显然,最可信赖值应使出现的概率P 为最大,即使上式中页指数中的因子达最小,即

权因子:2 2o i i w σσ=即权因子i w ∝21i σ,则 再用微分法,得最可信赖值x 1 1 n i i i n i i w x x w === ∑∑即加权算术平均值 这里为了与概率符号区别,以i ω表示权因子。 特别是等权测量条件下,有: 以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,称之为最小二乘法原理。它是以最小二乘方而得名。 为从一组测量数据中求得最佳结果,还可使用其它原理。 例如 (1)最小绝对残差和法:Min v i =∑ (2)最小最大残差法:Min v i =max (3)最小广义权差法:Min v v i i =-m in m ax 以上方法随着电子计算机的应用才逐渐引起注意,但最小二乘法便于解析,至今仍用得最广泛。 §3.线性参数最小二乘法 先举一个实际遇到的测量问题,为精密测定三个电容值:321,,x x x 采用的测量方案是,分别等权、独立测得323121,,,x x x x x x ++,列出待解的数学模型。 1x =0.3 2x =-0.4 1x +3x =0.5

伍德里奇《计量经济学导论》(第5版)笔记和课后习题详解-第15章 工具变量估计与两阶段最小二乘法【圣

第15章 工具变量估计与两阶段最小二乘法15.1复习笔记 一、动机:简单回归模型中的遗漏变量 1.面对可能发生的遗漏变量偏误(或无法观测异质性)的四种选择 (1)忽略遗漏变量问题,承受有偏而又不一致估计量,若能把估计值与关键参数的偏误方向一同给出,则该方法便令人满意。 (2)试图为无法观测变量寻找并使用一个适宜的代理变量,该方法试图通过用代理变量取代无法观测变量来解决遗漏变量的问题,但并不是总可以找到一个好的代理。 (3)假定遗漏变量不随时间变化,运用固定效应或一阶差分方法。 (4)将无法观测变量留在误差项中,但不是用OLS 估计模型,而是运用一种承认存在遗漏变量的估计方法,工具变量法。 2.工具变量法 简单回归模型 01y x u ββ=++其中x 与u 相关: ()Cov 0 ,x u ≠(1)为了在x 和u 相关时得到0β和1β的一致估计量,需要有一个可观测到的变量z,z 满足两个假定: ①z 与u 不相关,即Cov(z,u)=0;

②z 与x 相关,即Cov(z,x)≠0。 满足这两个条件,则z 称为x 的工具变量,简称为x 的工具。 z 满足①式称为工具外生性条件,工具外生性意味着,z 应当对y 无偏效应(一旦x 和u 中的遗漏变量被控制),也不应当与其他影响y 的无法观测因素相关。z 满足②式意味着z 必然与内生解释变量x 有着或正或负的关系。这个条件被称为工具相关性。 (2)工具变量的两个要求之间的差别 ①Cov(z,u)是z 与无法观测误差u 的协方差,通常无法对它进行检验:在绝大多数情形中,必须借助于经济行为或反思来维持这一假定。 ②给定一个来自总体的随机样本,z 与x(在总体中)相关的条件则可加以检验。最容易的方法是估计一个x 与z 之间的简单回归。在总体中,有 01x z v ππ=++从而,由于 ()() 1Cov /ar V ,x z z π=所以式Cov(z,x)≠0中的假定当且仅当10π≠时成立。因而就能够在充分小的显著水平上,相对双侧对立假设110H π≠:而拒绝虚拟假设010H π=:。就能相当有把握地肯定工具z 与x 是相关的。 3.工具变量估计量 (1)参数的工具变量(IV)估计量 参数的识别意味着可以根据总体矩写出1β,而总体矩可用样本数据进行估计。为了根据总体协方差写出1β,利用简单回归方程可得z 与y 之间的协方差为:

第五章 异方差性 答案

第五章 异方差性 一、判断题 1. 在异方差的情况下,通常预测失效。( T ) 2. 当模型存在异方差时,普通最小二乘法是有偏的。( F ) 3. 存在异方差时,可以用广义差分法进行补救。(F ) 4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。(F ) 5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。( T ) 二、单项选择题 方法用于检验( A ) A.异方差性 B.自相关性 C.随机解释变量 D.多重共线性 2.在异方差性情况下,常用的估计方法是( D ) A.一阶差分法 B.广义差分法 C.工具变量法 D.加权最小二乘法 检验方法主要用于检验( A ) A.异方差性 B.自相关性 C.随机解释变量 D.多重共线性 4.下列哪种方法不是检验异方差的方法( D ) A.戈德菲尔特——匡特检验 B.怀特检验 C.戈里瑟检验 D.方差膨胀因子检验 5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B ) A.重视大误差的作用,轻视小误差的作用 B.重视小误差的作用,轻视大误差的作用 C.重视小误差和大误差的作用 D.轻视小误差和大误差的作用 6.如果戈里瑟检验表明,普通最小二乘估计结果的残差i e 与i x 有显著的形式 i i i v x e +=28715.0的相关关系(i v 满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B ) A. i x B. 21i x C. i x 1 D. i x 1 7.设回归模型为i i i u bx y +=,其中()2i 2i x u Var σ=,则b 的最有效估计量为( D )

第七章_联立方程模型和两阶段最小二乘法

第七章联立方程模型和两阶段最小二乘法 建立一个OBJECT。确定内外生变量: cc=c(1)+c(2)*PP+c(3)*PP(-1)+c(4)*(WP+WG) ii=c(5)+c(6)*PP+c(7)*PP(-1)+c(8)*KK WP=c(9)+c(10)*XX+c(11)*XX(-1)+c(12)*AA INST WG GG TT AA PP(-1) KK XX(-1) C 回归结果: System: KLEINMODEL Estimation Method: Two-Stage Least Squares Date: 07/13/11 Time: 15:29 Sample: 1921 1941 Included observations: 21 Total system (balanced) observations 63

Coefficient Std. Error t-Statistic Prob. C(1) 16.55476 1.467979 11.27725 0.0000 C(2) 0.017302 0.131205

0.131872 0.8956 C(3) 0.216234 0.119222 1.813714 0.0756 C(4) 0.810183 0.044735 18.11069 0.0000 C(5) 20.27821 8.383249 2.418896 0.0192 C(6) 0.150222 0.192534

0.780237 0.4389 C(7) 0.615944 0.180926 3.404398 0.0013 C(8) -0.157788 0.040152 -3.929751 0.0003 C(9) 1.500297 1.275686 1.176070 0.2450 C(10) 0.438859 0.039603

第四章参数的最小二乘法估计分解

第四章 最小二乘法与组合测量 §1概述 最小二乘法是用于数据处理和误差估计中的一个很得力的数学工具。对于从事精密科学实验的人们来说,应用最小乘法来解决一些实际问题,仍是目前必不可少的手段。例如,取重复测量数据的算术平均值作为测量的结果,就是依据了使残差的平方和为最小的原则,又如,在本章将要用最小二乘法来解决一类组合测量的问题。另外,常遇到用实验方法来拟合经验公式,这是后面一章回归分析方法的内容,它也是以最小二乘法原理为基础。 最小二乘法的发展已经经历了200多年的历史,它最先起源于天文和大地测量的需要,其后在许多科学领域里获得了广泛应用,特别是近代矩阵理论与电子计算机相结合,使最小二乘法不断地发展而久盛不衰。 本章只介绍经典的最小二乘法及其在组合测量中的一些简单的应用,一些深入的内容可参阅专门的书籍和文献。 §2最小二乘法原理 最小二乘法的产生是为了解决从一组测量值中寻求最可信赖值的问题。对某量x 测量一组数据n x x x ,,,21 ,假设数据中不存在系统误差和粗大误差,相互独立,服从正态分布,它们的标准偏差依次为:n σσσ ,,21记最可信赖值为x ,相应的残差x x v i i -=。测值落入),(dx x x i i +的概率。 dx v P i i i i )2exp(21 22 σπ σ-= 根据概率乘法定理,测量n x x x ,,,21 同时出现的概率为

n i i i n i i dx v P P )]()(21exp[)2(12∑- ∏= ∏=σπσ 显然,最可信赖值应使出现的概率P 为最大,即使上式中页指数中的因子达最小,即 ∑=i i i Min v 2 2 σ 权因子:22o i i w σσ=即权因子i w ∝21 i σ,则 2 []i i wvv wv Min ==∑ 再用微分法,得最可信赖值x 1 1 n i i i n i i w x x w === ∑∑ 即加权算术平均值 这里为了与概率符号区别,以i ω表示权因子。 特别是等权测量条件下,有: ∑===Min v vv i 2][ 以上最可信赖值是在残差平方和或加权残差平方和为最小的意义下求得的,称之为最小二乘法原理。它是以最小二乘方而得名。 为从一组测量数据中求得最佳结果,还可使用其它原理。 例如 (1)最小绝对残差和法:Min v i =∑ (2)最小最大残差法:Min v i =max (3)最小广义权差法:Min v v i i =-min max 以上方法随着电子计算机的应用才逐渐引起注意,但最小二乘法便于解析,

基于最小二乘法的系统参数辨识

基于最小二乘法的系统参数辨识 研究生二队李英杰 082068 摘要:系统辨识是自动控制学科的一个重要分支,由于其特殊作用,已经广泛应用于各种领域,尤其是复杂系统或参数不容易确定的系统的建模。过去,系统辨识主要用于线性系统的建模,经过多年的研究,已经形成成熟的理论。但随着社会、科学的发展,非线性系统越来越受到人们的关注,其控制与模型之间的矛盾越来越明显,因而非线性系统的辨识问题也越来越受到重视,其辨识理论不断发展和完善本。文重点介绍了系统参数辨识中最小二乘法的基本原理,并通过热敏电阻阻值温度关系模型的辨识实例,具体说明了基于最小二乘法参数辨识在Matlab中的实现方法。结果表明基于最小二乘法具有算法简单、精度较高等优点。 1. 引言 所谓辨识就是通过测取研究对象在人为输入作用下的输出响应,或正常运行时的输入输出数据记录,加以必要的数据处理和数学计算,估计出对象的数学模型。这是因为对象的动态特性被认为必然表现在它的变化着的输入输出数据之中,辨识只不过是利用数学的方法从数据序列中提炼出对象的数学模型而已[1]。最小二乘法是系统参数辨识中最基本最常用的方法。最小二乘法因其算法简单、理论成熟和通用性强而广泛应用于系统参数辨识中。本文基于热敏电阻阻值与温度关系数据,介绍了最小二乘法的参数辨识在Matlab中的实现。 2. 系统辨识 一般而言,建立系统的数学模型有两种方法:激励分析法和系统辨识法。前者是按照系统所遵循的物化(或社会、经济等)规律分析推导出模型。后者则是从实际系统运行和实验数据处理获得模型。如图1 所示,系统辨识就是从系统的输入输出数据测算系统数学模型的理论和方法。更进一步的定义是L.A.Zadeh 曾经与1962 年给出的,即“系统辨识是在输入和输出的基础上,从系统的一类系统范围内,确立一个与所实验系统等价的系统”。另外,系统辨识还应该具有3 个基本要素,即模型类、数据和准则[5]。被辨识系统模型根据模型形式可分为参数模型和非参数模型两大类。所谓参数模型是指微分方程、差分方程、状态方程等形式的数学模型;而非参数模型是指频率响应、脉冲响应、传递函数等隐含参数的数学模型。在辨识工程中,模型的确定主要根据经验对实际对象的特性进行一定程度上的假设,如对象的模型是线性的还是非线性的、是参数模型还是非参数模型等。在模型确定之后,就可以根据对象的输入输出数据,按照一定的辨识算法确定模型的参数[4]。 图1 被研究的动态系统 3. 最小二乘法(LS)参数估计方法 对于参数模型辨识结构,系统辨识的任务是参数估计,即利用输入输出数据估计这些参数,建立系统的数学模型。在参数估计中最常用的是最小二乘法(LS)、

内生性与工具变量估计方法

内生性与工具变量估计方法 一 一元模型的IV 估计 采用MROZ 数据,进行练习。 估计教育对工资收入的回报: 01log()wage educ ββμ =++ 为了便于比较首先得到OLS 估计结果,在命令窗口输入 smpl 1 428 equation eq01.ls log(wage) c educ 教育的系数估计值表明,每多接受一年教育可得到月11%的回报。 接下来,我们用父亲的受教育程度(fatheduc )作为educ 的工具变量。我们必须认为fatheduc 与u 不相关;第二个要求是educ 与fatheduc 相关。为了验证第二点,作一个educ 对fatheduc 的回归。 equation eq02.ls educ c fatheduc 可以看出,educ 与fatheduc 之间存在统计显著的正相关。

采用fatheduc 作为educ 的工具变量,进行工具变量回归。 equation eq03.tsls log(wage) c educ @ fatheduc IV 估计量的标准误是OLS 标准误的2.5倍,这在我们的意料之中。 二 多元模型的IV 估计 采用card 数据,进行练习。 估计教育对工资收入的回报: 012log()var wage educ Control iables βββμ =+++ 为了便于对照,先做OLS 回归 Smpl 1 3010 Equation eq01.ls log(wage) c educ exper expersq black smsa south smsa66 reg662 reg663 reg664 reg665 reg666 reg667 reg668 reg669

利用最小二乘法估算仿射变换参数

%% M文件功能:利用最小二乘法估算仿射变换参数 % [ ui vi ]' = [ a1 a2; a3 a4 ]*[ xi yi ]' + [ tx ty ]' % A * x = B; % A = [ x1 y1 0 0 1 0; % x2 y2 0 0 1 0; % : : : ........; % ....................; % xn yn 0 0 1 0; % 0 0 x1 y1 0 1; % 0 0 x2 y2 0 1; % : : : ........; % ....................; % 0 0 xn yn 0 1; ]; % B = [ x1'; x2';...; xn';y1';...; yn' ]; % H = [a1; a2; a3; a4; tx; ty]; % H = pinv(A)*B; %% clc; clear; % addpath E:\Master\Etone\SURFmex\examples\panorama %添加你的数据所在路径

po=importdata('point_O.txt');%读取数据,引号内为文件名pt=importdata('point_T.txt'); [m,n]=size(po); A=zeros(2*m,2*n); A(1:m,1:n)=po; A(1+m:end,1+n:end)=po; m2=size(A,1); n2=size(A,2); A(1:m2/2,(n2+1):(n2+2))=repmat([1 0],m2/2,1); A(m2/2+1:end,(n2+1):(n2+2))=repmat([0 1],m2/2,1); Bx=pt(:,1); By=pt(:,2); Bn=[Bx;By]; H=pinv(A)*Bn; H2=reshape(H,2,3); H3=H2; H3(1,2)=H2(2,1); H3(2,1)=H2(1,2); H3(3,1:3)=[0;0;1]; H4=pinv(H3); disp(H);

相关文档
最新文档