全面地微系统技术

全面地微系统技术
全面地微系统技术

一、微系统技术

在微系统技术微系统技术的发展历史上,集成电路(IC)是技术的起点。电子器件小型化和多功能信成是微加工技术的推动力。如果没有微加工和小型化技术的迅猛发展,许多今天看来理所当然的科学和工程成就都不可能实现。

微系统技术是由集成电路技术发展而来的,经过了大约20年的萌芽阶段,即由20世纪60年代中期到20世纪80年代。在这段萌芽时期,主要是开展一些微系统技术的零散研究。例如,开发了硅各向异性腐蚀技术用于在平面硅衬底上加工三维结构;一些研究机构和工业实验室里的研究者开始利用集成电路的加工技术制造微系统技术器件,例如悬臂梁、薄膜和喷嘴;微传感器的关键部件,如单晶硅和多晶硅中的压阻被发现、研究和优化。

在微系统技术的研发时期,涌现出了一些具有重要意义的研究成果。1967年,Westinghouse公司发明了一种谐振栅晶体管(RGT)。它与传统的晶体管不同,RGT的电栅极不是固定在栅氧化层上,而是相对硅衬底可动。由静电力控制栅电极和衬底之间的间距。RGT是静电微执行器的最早实例。

佳能公司最早开发了基于热气泡技术的喷墨打印技术,而惠普公司在1978年首先发明了基于硅微机械加工技术的喷墨打印机喷嘴。喷嘴阵列喷射出热气泡膨胀所需液体体积大小的墨滴,如图1-1所示。气泡破裂又将墨汁吸入到存放墨汁的空腔中,为下一次喷墨做准备。通过滴入红、蓝、黄三种基本色实现彩色打印。

图1-1

在20世纪80年代后期,在微机械技术这个新领域的研究者主要是研究硅的应用——单晶硅衬底或者多晶硅薄膜。多晶硅薄膜技术的应用产生了一些表面微机械加工的机械结构,如弹簧、传动机械和曲柄等。

20世纪90年代,全世界的微系统技术研究进入一个突飞猛进、日新月异的发展阶段。非常成功的例子有美国Analog Devices(模拟器件)公司生产的用于汽车安全气囊系统的集成惯性传感器,以及美国Texas Instruments(仪器)公司用于投影显示的数字光处理芯片。

相对于宏观的机电传感器,微系统技术技术带来了两个重要的优点,即高灵敏度和低噪声。同时,由于微系统技术技术采用批量生产,而不是采用手工组装的方式,有效地降低了传感器的使用成本。

20世纪90年代后期,光微系统技术发展迅速。世界各地的研究人员竞相开发微光机电系统和器件,希望能将二元光学透镜、衍射光栅、可调光微镜、干涉滤波器,相位调制器等部件应用到光学显示、自适应光学系统、可调滤波器、

气体光谱分析仪和路由器等应用领域。

生物微系统技术包括生物学研究、医疗诊断和临床介入等方面的微系统技术研究和应用。由于生物微系统技术结构和器件的尺寸大小、集成功能多,它们已经在一些医疗方面得到应用,例如视网膜植入,耳蜗植入、嵌入生理传感器以及含有传感器的智能手术工具等。

二、微系统技术的本质特征

2.1小型化

毫无疑问,微系统技术将会不断有新的应用领域。技术发展和商业化的原因有时候并不完全相同。然而,微系统技术器件和微加工技术具有三种特点,称为“3M”,即小型化、微型电子集成及高精度的批量制造。典型的微系统技术器件

~1cm之间,当然,微系统技术器件阵列或整个微系统的长度尺寸大约在1m

技术系统的尺寸会更大一些。小尺寸能够实现柔性支撑、带来高谐振频率、低热惯性等很多优点。然而小型化带来的并不全是更好的特性,也可能带来问题。有些在宏观尺度下非常显著的物理效应,当器件尺寸变小以后,性能可能会变得很差。与之相反,有些对于宏观器件可忽略的物理效应,在微观尺寸围会突然变得突出,这称之为比例尺度定律。这人定律可以有效解释物理学在不同尺寸下的作用规律。例如,跳蚤可以跳过自身高度的几十倍,而大象则根本不能跳。定性观察表明:重量小的物体受重力影响小、小型化可以带来更快的速度、高功率密度和高效率。

尺度效应是微系统技术中许多物理现象不同于宏观现象的一个非常得要的

原因,随着尺寸的减小,表面积(2L)与体积(3L)之比相对增大,表面效应十分明显,这将导致微机电系统的受力环境与传统机电系统完全不同。以潜水艇为例,当把潜水艇缩小到针头大小时,螺旋桨即使转动与很难使潜水艇前进,这主要是由于尺度变化,使得潜水艇受到水的黏性阻力变得相当突出,二者的驱动原理已经完全不同。正因如此,像细菌一样的微小生物体它们在液体中依靠的是螺旋状长长的鞭毛边旋转边前进。

2.2微系统技术中的力

对于我们所考虑的微机电系统,其尺寸量级在微米和纳米之间,在这种围起主要作用的是万有引力和电磁力。物体间作用的万有引力和电磁力的强度主要取决于3个因素,即作用力的密度、物体的尺度及物体间的作用距离。

万有引力和静电力表达方式很相似,从作用距离来看,二者都与距离平方成反比。从作用体的尺度来看,二者也都与物体尺度成正比。但从作用力的密度来看,二者有很大区别。首先引力常数和库仑力常数相差就很大,其次静电力和电荷成正比,万有引力和质量成正比,而单位尺度下的质量却比单位尺度下的电荷也要小很多,因此,静电力的密度要比万有引力的密度大很多个量级。除此之外,万有引力一定是吸引力,而静电力可以是吸引力也可以是排斥力,取决于电荷的同号或异号。微机电系统结构的尺寸很小,质量也很小。由于万有引力的密度极小,因此对于微机电系统来说万有引力是可以忽略的。与万有引力不同,电磁力的作用却是普遍的和多样的。电磁力中包括静电力、电场力、磁场力、洛仑兹力、多极电场力以及偶极电场力引发的德瓦尔斯力等很多形式。

微机电系统的结构尺寸大多数都在微米量级,有的作用尺寸甚至达到纳米量

级。因此,对于微机电系统来说,表面力和线力相对体积力来说起到的作用更明显,如静电力、摩擦力、阻尼力、卡西米尔力等都属于表面力,它们在微机电系统中的重要作用都在不同程度上显现,而安培力属于线力,受尺度的影响最不显著,它在宏观和微观机电系统中,静电力常常可作为一种驱动力来产生电容两极间的相对运动,但当两极板间距较小或电压较大时,两个极板间的静电力也会引起板间的吸合。对于谐振系统,若要使两极板间产生周期振动,则周期性的驱动力是期望的主动动作,而极板间的吸合趋势就是不期望的被动作用。对于表电开关,极板间的吸合是期望的主动作用,未吸合的振动就变为不期望的被动作用。除此之外,微摩擦力和空气阻尼力等也在微机电系统中起着主动或被动的作用。空气阴尼会影响系统的品质因子,但空气阻尼也常常被用来调节品质因子。摩擦力会使微构件很快磨损而导致失效,但摩擦力有时也可用来作为约束或固定。

由于上述的在宏观尺度上被忽略的各种面力,在微观尺度下都显现出来。相对于宏观状态,微机电系统的力学环境发生了很大的变化。当系统特征尺度达到微米或纳米量级时,许多物理现象与宏观状态也有明显不同,当它受不同环境和不同加工过程的影响时,力学参数也会有明显变化。与尺度高次方成正比例的惯性力,电磁力等的作用相对减小,而与尺度低次方成比例的摩擦力、黏性力、弹性力、表面力、静电力的作用相对增大;原来宏观条件下被忽略的毛细力、空气阻尼力、卡西米尔力和德瓦尔斯力等,在微结构的相互作用中已不能再被忽略,因此微机系统是一个多场力作用的系统。另外,虽然微机电系统的基本结构都是固体形态的,但从微尺度角度考虑,温度引起的水滴液体形态和固有的空气气体形态等也都是同时存在的。因此,微机电系统又是一个多相共存的系统。总之,一般来说,从力学作用的角度看,微机电系统是一个多场共存并耦合和多相共存

并耦合的系统。因此,微机电系统具有特殊的力学环境。

三、 集成电路制造工艺也材料概述

3.1掺杂

定义:将特定杂质参入到半导体规定区域。

目的:改变材料电学性质。

基本方法:扩散法;离子注入法。

3.2外延(常常是用相同材料)

定义:在硅衬底上产生单晶层。

目的:产生不同导电类型、电阻率、不同厚度的隔离、防止击穿电压。

基本方法:气相外延。

3.3薄膜层技术(常常用不同的材料)

定义:形成厚度在~nm m 间的薄膜。

目的:实现特定功能

方法:物理沉积,包括:真空蒸镀;溅工艺。

3.4光刻工艺

光刻工艺过程举例:

图3-1

在图3-1中的是相关的典型步骤:

(a)清洁处理、涂敷光刻胶、前烘

(b)暴光

(c)显影

(d)坚膜

(e)腐蚀

(f)去胶

四、硅微机械加工工艺

4.1体硅微机械加工工艺

定义:直接在基底材料表面上腐蚀去除材料,形成三维结构。

图4-1

如图4-1中所示,体硅微机械加工艺一般是在硅、碳化硅、石英等材料上采用各向同性、各向异性或者自停止方法得到相应三维结构。

4.2表面硅微机械加工工艺

定义:通过去除薄膜结构下的支撑层来获得可动的机械单元,而不是在衬底下面加工。

硅二氧化硅多晶硅

图4-2

如图4-2所示典型牺牲层腐蚀工艺的具体步骤:

(1)氧化,做体硅腐蚀掩膜层;

(2)光刻氧化层,开体硅腐蚀窗口;

(3)体硅腐蚀出所需底层结构;

(4)去除SiO2;

(5)生长或淀积牺牲层材料;

(6)光刻牺牲层材料成所需结构;

(7)生长结构材料;

(8)光刻结构材料;

(9)牺牲层腐蚀,释放结构层;

(10)防粘结处理。

五、微系统技术的封装技术

5.1封装的定义与目的:

(1)狭义封装(PKG)

把微裸芯片固定于基板上,用外壳包封在基板上,包封腔灌注树脂或惰性气体,引出I/O接线端子。起防护目的。

(2)系统封装(SIP)

不同功能裸芯片通过微互联技术,混截于一个封装体,完成系统功能集成,对外引出I/O端子和机械固连方式。

封装的目的是把功能集成,并使设备小型化,增强包容性、兼容性,减小信号传输路径。

5.2微系统技术加工的新发展趋势及存在的问题

(1)趋势:

◆低温键合(150℃以下);

◆防粘附(表面粗糙技术、表面钉台技术);

◆片上封装(在晶圆上);

◆ 特高深宽比(与现有工艺兼容);

◆ 传统特种加工进军微系统技术;

◆ 发展封装技术(已相对独立于IC 、微系统技术)。

(2)存在的问题

◆ 层间、焊盘、焊点的界面应力清除问题;

◆ 热胀系数不匹配、残余应力、变形、本征应力清除问题;

◆ 微结构工作过程中热变形;

◆ 结构粘附(由于加工过程中干、湿引起的问题)。

六、 微结构静电场及电场力

6.1无限大平板模型

两个导体可组成一个电容。当在导体上施加一电压时,导体上就会产生电荷。导体形成的电容可定义为

q C u

= 在微机电系统中,许多微结构间都是通过构成电容来工作的。结构间的静电力就是电荷之间库仑力的宏观表现。因此可以应用库仑定律计算结构间的静电力。在实际应用中,一般不去计算点电荷之间的库仑力,取而代之的是计算两导体之间的电势能,然后应用虚位移原理,确定微结构间的静电力。

任意两导体之间储存的能量实际上是电容的能量,可表示为

212

W CU =

无限大平板模型是目前微结构中应用最多的,此模型假设a 、b 相对于d 无限大,即忽略电容的边缘效应,根据电容定义,可求得

ab C d

ε= 利用电势能和虚位移原理可求得平行运动静电力为

22122x W C b F U U a a d

ε??===?? 以及垂直运动静电力为

22122y W C b F U U d d d

ε??===-?? 对于微机电系统中的静电微结构,尺度为微米量级甚至更小,而且由于加工条件限制,a 、b 不能过长,而间距d 不能太小,d 相对于a 、b 不能取无限大,一般不能简单直接应用上述公式,而需要考虑边缘效应带来的影响。另外,由于实际的平行板可能并不真正平行,平行结构的连接还存在拐角。平行板厚度也会影响。因此针对实际问题,需在无限大平板电容模型的基础上,考虑各类效应的影响。

6.2考虑边缘效应模型

基于分离变量法得到的级数解

对于这种模型,采用求解极板间电场分布的拉普拉斯方程来确定极板间的电容,可得如下的电容关系式

()0

21coth 2421k k d a b c k πεπ∞=??+????=+∑

式中,coth 为双曲余切函数。其能量为:212

W CU =。从而有横向驱动力 ()2

220d 121sin 2x k b U F a k d h a επ∞==??+????∑

法向驱动力

()2

20121sin 2k y W bU F d k d h a a επ∞=?==???+????∑

在求解过程中,电场边界不是完全封闭的,且没有考虑极板厚度对电容的影响,因此上式都不是精确解。

6.3基于保角变换计算式

应用保角变换是求解二维平板电容的一种典型方法,相关文献给出了考虑边缘电场的电容计算式,由于在求解过程中作了近似处理,因此该解析式也是近似解。

0221ln 1ln 1ab b a a C d d d εεπππ??????=

+++++?? ????????? 所以,2

12W CU =。横向驱动力为

()22

22212212ln 12x b b d a d F U U d a d a d εεπππ?

?+ ?+??=++++∕∕∕ 在实际应用中,a

d 为10~50,所以上式可以化简为

212x b b d F U d d a d εεπ????=+ ???+????

法向驱动力为

()2

22212112ln 12y d W abU a d F d d a d a d επππ??+???+==+???+++??????∕∕∕ 对上式静电力进一步简化为

221y abU d F d a d επ?

?=+ ?+??

6.4考虑极板厚度是的边缘效应

平行板电容的模型是假设电荷都附在表面上,并未考虑板厚的影响。这对无限大平行平板是可行的,但对于有限宽度a 的平行板,电荷在板厚的边缘也有分布,因此当厚度较大时,也需要考虑板厚对电容的影响。

由于边缘效应,微机械加工结构的电容比用无限大平板公式计算偏大。要获得精确的微机械加工电容值只能通过泊松方程。

对于一个厚极板电容,电容极板的宽度为a ,极板间距d ,长度为b ,上极板厚度为h ,则电容的近似解析式为

0C C β=

式中,β是一个修正常数,

221ln ln 122d

a d h a d a d πβππ???=++++ ? ???

0ab

C d ε=

0C 是不考虑边缘效应时的电容。此时横向驱动力为

2122x b b F U d a εεπ??=+ ???

法向驱动力为

2222322222212244y h h h h d d d d d c ab b b F U U U d d d h εεεππ????+++ ? ??==++? 上式,经简化整理可得

2

2122y ab d F U d a επ?=++ ? 括号中第三项在0h =是有极小值,当0h > 时,第三项随着h 的增大而单调递增。当h →∞时,第三项d

2h a π→ ,即第二项与第三项相等,显然只有当2d a π

时,边缘电容的影响才可以忽略不计。

七、 毛细力

毛细管插入液体中时,液体沿管径上升或下降一定的高度,这就是毛细现象。能够产生

明显毛细现象的管叫做毛细管。

液体之所以能在毛细管上升或下降是因为液体表面类似紧的橡皮膜,如果液面是弯曲的,它就有变平的趋势。因此凹液面对下面的液体施以拉力,凸液面对

下面的液体施以压力。

浸润体在毛细管中的液面是凹形的,它对下面的液体施加拉,使液体沿着管壁上升,当向上的拉力跟管液柱所受的重力相等时,管的液体停止上升,达到平衡。同样的分析也可以解释不浸润液体在毛细管下降的现象。

7.1毛细力在平行板间的作用

在微表面加工艺中,当牺牲层被刻蚀完成以后,器件要用去离子水清洗刻蚀剂及刻蚀物,从去离子水中取出时,在两个平行平面间形成一个“液体桥”界面。即使加工中不存在“液桥”,由于湿度的作用在微结构的间隙间也容易形成“液桥”。液桥的形成也是毛细作用的结果,而引起毛细现象的原因说到底都是来源于分子间相互作用的表面力。表面力σ是界面上每单位面积的自由能,即形成单位表面所需的功。

如图7.1所示,在平行板之间形成一液桥。根据拉普拉斯公式,液桥会产生单位面积的拉普拉斯压力,大小为

11211P P r r νσ??-=+ ???

图7.1

式中,σ为液面的表面力,1r ,2r 为表示液体表面的两个曲率半径,θ 为接

触角。

然而,在微机械结构中,横向尺寸常常比纵向尺寸大得多,因此

12r r ,同

时若设两板间距离为l ,则上式的表达式可以简化为 112cos P P r l νσ

σθ-==

式中,θ为液体在固体表面上的接触角;l 是两平行板的距离,12cos l r θ= 。

当液桥的上下平板不是同一种材料时,其对应的接触角也可能不一样,此时的拉普拉斯方程可写为

()

121cos cos P P l νσθθ+-=

该式的液桥拉普拉斯压力表明,在气压界面处,气压大于液桥液体的压力,形成向的合压力。设该向的合压力为l P α ,则有l v l P P P α=- 。

接触角一般和液体的润湿性及固体表面的粗糙度有关。液体水和固体玻璃形成的接触角一般只有十几度。而对不润湿液体,其接触角可以是钝角。

在表面微型机械结构的制造过程中,较强的毛细相互作用常使得组成这些结构的微桥、微梁与基底粘附而导致失效。而在微尺度试验中,微桥与微梁又是微尺度材料常数和性能检测时常用的试件样式,如果实验中加载端与被检测的微尺度试件发生毛细粘附,将直接影响检测数据的准确性。对于梳齿结构的谐振器等器件来说,若相对温度大而形成液滴,则这种液滴就会在齿间产生液桥,进面坚齿间的相对运动产生阻力或粘附力。

对于微机电系统结构来说,如果封装不好,在65%相对湿度下水就开始毛

细凝聚。毛细力的作用下,如果结构的恢复力不强的话,微结构中的梁就会和底座间发生粘连。此外,当有水气凝聚时,除长程的毛细引力外,微结构中还有由氢键、化学键及金属键引起的短程作用,致使微结构发生粘连。为避免由于加工过程产生的水气导致毛细力的作用进而引起微机电结构失效,了解毛细力的产生过程并加以适当的干燥方法是必要的。

元器件封装及基本管脚定义说明(精)知识讲解

元器件封装及基本管脚定义说明 以下收录说明的元件为常规元件 A: 零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。包括了实际元件的外型尺寸,所占空间位置,各管脚之间的间距等,是纯粹的空间概念。因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装. 普通的元件封装有针脚式封装(DIP与表面贴片式封装(SMD两大类. (像电阻,有传统的针脚式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD )这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD 元件放上,即可焊接在电路板上了。 元件按电气性能分类为:电阻, 电容(有极性, 无极性, 电感, 晶体管(二极管, 三极管, 集成电路IC, 端口(输入输出端口, 连接器, 插槽, 开关系列, 晶振,OTHER(显示器件, 蜂鸣器, 传感器, 扬声器, 受话器 1. 电阻: I.直插式 [1/20W 1/16W 1/10W 1/8W 1/4W] AXIAL0.3 0.4 II. 贴片式 [0201 0402 0603 0805 1206] 贴片电阻 0603表示的是封装尺寸与具体阻值没有关系 但封装尺寸与功率有关通常来说 0201 1/20W 0402 1/16W 0603 1/10W

0805 1/8W 1206 1/4W 电容电阻外形尺寸与封装的对应关系是: 0402=1.0x0.5 0603=1.6x0.8 0805=2.0x1.2 1206=3.2x1.6 1210=3.2x2.5 1812=4.5x3.2 2225=5.6x6.5 III. 整合式 [0402 0603 4合一或8合一排阻] IIII. 可调式[VR1~VR5] 2. 电容: I.无极性电容[0402 0603 0805 1206 1210 1812 2225] II. 有极性电容分两种: 电解电容 [一般为铝电解电容, 分为DIP 与SMD 两种] 钽电容 [为SMD 型: A TYPE (3216 10V B TYPE (3528 16V C TYPE (6032 25V D TYP E (7343 35V] 3. 电感: I.DIP型电感 II.SMD 型电感

微系统三维_3D_封装技术

- 1 - 微系统三维(3D )封装技术 杨建生 (天水华天科技股份有限公司,甘肃 天水 741000) 摘 要:文章论述塑料三维(3D )结构微系统封装技术相关问题,描述了把微电机硅膜泵与3D 塑料密封垂直多芯片模块封装(MCM-V )相结合的微系统集成化。采用有限元技术分析封装结构中的封装应力,根据有限元设计研究结果,改变芯片载体结构,降低其发生裂纹的危险。计划采用板上芯片和塑料无引线芯片载体的替代低应力和低成本的3D 封装技术方案。 关键词:有限元;微系统;封装技术;塑料无引线芯片载体;热机械应力;三维 中图分类号:TN305.94 文献标识码:A 文章编号:1681-1070(2011)10-0001-06 3D Packaging for Microsystems YANG Jian-sheng (Tianshui Huatian Technology Co ., Ltd ., Tianshui 741000,China ) Abstract: Issues associated with the packaging of microsystems in plastic and three-dimensional (3D) body styles are discussed. The integration of a microsystem incorporating a micromachined silicon membrane pump into a 3D plastic encapsulated vertical multichip module package (MCM-V) is described. Finite element techniques are used to analyze the encapsulation stress in the structure of the package. Cracks develop in the chip carrier due to thermomechanical stress. Based on the results of a ? nite element design study, the structures of the chip carriers are modi ? ed to reduce their risk of cracking. Alternative low stress 3D packaging methodologies based on chip on board and plastic leadless chip carriers are discussed.Key words: ? nite element; microsystem; packaging; PLCC; thermomechanical stress; 3D 收稿日期:2011-07-26 1 引言 微系统是一种微型化的材料诸如硅、金属和塑料的阵列。与标准的集成电路器件不同,它包含动态元器件诸如泵或膜,这些元件主要是应付与外部环境有关的形变。需要对微系统进行封装,使其在最极端环境中具有可靠性。 如同集成电路封装一样,微系统封装的主要作用之一就是为微系统提供结构稳定性。成功的封装设计要求对封装材料问题、器件性能及其可靠性方 面的知识细节的理解。对低成本、高容积的微系统 器件产品而言,实际中已使用标准的IC 封装设备、工艺和材料诸如划片、粘片、压焊、塑封、打印及切筋成形等。 残余应力和杂散力是传感器封装中不稳定性和参数漂移的主要原因,应力常常随着温度改变,因此设计的传感器要考虑到在热改变环境中运作的状况。对压力传感器应有对压力响应的温度依赖性。 设计的微传感器应具有在液态或高湿度环境中的功能,湿度渗透的结果会导致频繁的失效。当选择湿度保护密封剂时,密封剂的粘附性与渗透性一

微电子封装复习题

电子封装是指将具有一定功能的集成电路芯片,放置在一个与之相适应的外壳容器中,为芯片提供一个稳定可靠的工作环境;同时,封装也是芯片各个输出、输入端的向外过渡的连接手段,以及起将器件工作所产生的热量向外扩散的作用,从而形成一个完整的整体,并通过一系列的性能测试、筛选和各种环境、气候、机械的试验,来确保器件的质量,使之具有稳定、正常的功能。 从整个封装结构讲,电子封装包括一级封装、二级封装和三级封装。 芯片在引线框架上固定并与引线框架上的管脚或引脚的连接为一级封装; 管脚或引脚与印刷电路板或卡的连接为二级封装; 印刷电路板或卡组装在系统的母板上并保证封装各组件相对位置的固定、密封、以及与外部环境的隔离等为三级封装。 前工程: 从整块硅圆片入手,经过多次重复的制膜、氧化、扩散,包括照相制版和光刻等工序,制成三极管、集成电路等半导体组件卫电极等,开发材料的电子功能,以实现所要求的元器件特性。 后工程: 从由硅圆片切分好的一个一个的芯片入手,进行装片、固定、键合连接、塑料灌封、引出接线端子、按印检查等工序,完成作为器件、部件的封装体,以确保元器件的可靠性并便于与外电路连接。 ?环保和健康的要求 ?国内外立法的要求 ?全球无铅化的强制要求 1、无铅钎料的熔点较高。 比Sn37Pb提高34~44 oC。高的钎焊温度使固/液界面反应加剧。 2 、无铅钎料中Sn含量较高。 (SnAg中96.5% Sn ,SnPb中63%Sn),因为Pb不参与固/液和固/固界面反应,高Sn含量使固/液、固/固界面反应均加速。 3 小尺寸钎料在大电流密度的作用下会导致电迁移的问题。

(1) 无毒化,无铅钎料中不含有毒、有害及易挥发性的元素 (2) 低熔点,无铅钎料的熔点应尽量接近传统的Sn-Pb 共晶钎料的熔点(183℃),熔化温度间隔愈小愈好。 (3) 润湿性,无铅钎料的润湿铺展性能应达到Sn-Pb 共晶钎料的润湿性,从而易于形成良好的接头。 (4) 力学性能,无铅钎料应具有良好的力学性能,焊点在微电子连接中一个主要作用是机械连接。 (5) 物理性能,作为微电子器件连接用的无铅钎料,应具有良好的导电性、导热性、延伸率,以免电子组件上的焊点部位因过热而造成损伤,从而提高微电子器件的可靠性。 (6) 成本,从Sn-Pb 钎料向无铅钎料转化,必须把成本的增加控制在最低限度。因此应尽量减少稀有金属和贵重金属的含量,以降低成本。 电子元器件封装集成度的迅速提高,芯片尺寸的不断减小以及功率密度的持续增加,使得电子封装过程中的散热、冷却问题越来越不容忽视。而且,芯片功率密度的分布不均会产生所谓的局部热点,采用传统的散热技术已不能满足现有先进电子封装的热设计、管理与控制需求,它不仅限制了芯片功率的增加,还会因过度冷却而带来不必要的能源浪 。电子封装热管理是指对电子设备的耗热元件以及整机或系统采用合理的冷-~IJl 散热技术和结构设计优化,对其温度进行控制,从而保证电子设备或系统正常、可靠地工作。 热阻 由于热导方程与欧姆定律形式上的相似性,可以用类似于电阻的表达式来定义热阻 式中,?T 是温差,q 为芯片产生的热量。 该式适用于各种热传递形式的计算。 1、 具有极高耐热性 2、 具有极高吸湿性 3、 具有低热膨胀性 4、 具有低介电常数特性 电解铜箔是覆铜板(CCL)及印制电路板(PCB)制造的重要的材料。电解铜箔生产工序简单,主要工序有三道:溶液生箔、表面处理和产品分切。 q T R th ?=

集成电路封装基础知识

集成电路封装基础知识教材

集成电路封装基础知识 第一章集成电路的概述 第一■节序言 第二节集成电路的产生 第三节集成电路的定义 第四节集成电路的前道和后道的定义 第五节集成电路的分类 第二章集成电路的构成 第一节集成电路的主要构成 第二节各组成部分的作用 第三章集成电路的封装类型 第一节国外集成电路的封装类型 第二节国内集成电路的命名 第三节本公司内部的集成电路的封装类型 第四节集成电路未来发展的趋势 第四章集成电路的一脚(INDEX)识别 第一节集成电路的一脚构成 第二节集成电路的一脚识别 第五章集成电路封装的主要材料 第一节集成电路的主要原材料 第二节各原材料的组成、保管、主要参数 第六章集成电路封装工艺流程 第一节集成电路封装的主要工艺流程第二节集成电路封装的详细工艺流程第三节封装中工艺流程的变化第七章集成电路封装设备的主要结构 第一节封装设备的通用结构 第二节设备各部分的作用 第三节各工序各部分的结构不同 第四节设备操作面板上常用英文和日文单词注释 第八章集成电路封装设备的主要控制原理 第一节PLC的概念 第二节PLC的控制原理 第三节设备的控制原理

第九章集成电路封装中的常用单位换算 第一节长度单位换算表 第二节质量单位换算表 第三节体积和容积单位换算表第四节力单位换算表 第五节力矩和转矩单位换算表第六节压力和应力单位换算表第七节密度单位换算表

第一节序言 从本世纪50年代末开始,经历了半个多世纪的无线电电子技术正酝酿着一场新的革命.这场革命掀起的缘由是微电子学和微电子技术的兴起?而这场革命的旋涡中心则是集成电路和以其为基础的微型电子计算机. 集成电路的问世,开辟了电子技术发展的新天地,而其后大规模和超大规模集成电路的出现,则迎来了世界新技术革命的曙光?由于集成电路的兴起和发展,创造了在一块小指甲般大小的硅片上集中数千万个晶体管的奇迹;使过去占住整幢大楼的复杂电子设备缩小到能放入人们的口袋 , 从而为人类社会迈向电子化,自动化,智能化和信息化奠定了最重要的物质基础?无怪乎有人将集成电路和微电子技术的兴起看成是跟火和蒸汽机的发明具有同等重要意义的大事 1 ?集成电路的产生

LED显示屏分类及简单封装技术要求

LED显示屏分类及简单封装技术要求 近几年随着北京奥运会、上海世博会、广州亚运会的举办,led显示屏的身影随处可见。LED显示屏可以显示变化的数字、文字、图形图像;不仅可以用于室内环境还可以用于室外环境,具有投影仪、电视墙、液晶显示屏无法比拟的优点。 LED受到广泛重视并得到迅速发展,与它本身所具有的优点密不可分。这些优点概括起来是:亮度高、工作电压低、功耗小、小型化、寿命长、耐冲击和性能稳定。LED的发展前景极为广阔,目前正朝着更高亮度、更高耐气候性、更高的发光密度、更高的发光均匀性,可靠性、全色化方向发展。 一、LED显示屏的种类 1、根据颜色分类 单基色显示屏:单红或单绿;双色显示屏:红和绿双基色,256级灰度、可以显示65536种颜色;全彩显示屏:红、绿、蓝三基色,256级灰度的全彩色显示屏可以显示1600多万种色。 2、根据组成像素单元分类 图文显示屏:显示像素为点阵模块,适于播放文字、图像信息; 视频显示屏:分室内全彩显示屏和户外全彩;像素由许多贴片/直插发光二极管组成,可以显示视频、动画等各种视频文件。 3、根据使用位置分类 户内显示屏:发光点小,像素间距密集,适合近距离观看; 半户外显示屏:介于户内和户外之间,不防雨水,适合在门楣作信息引导等用; 户外显示屏:发光点大,像素间距大,亮度高,可在阳光下工作,具有防风、防雨、防水功能,适合远距离观看。 4、按驱动方式有静态、横向滚动、垂直滚动和翻页显示等。 二、显示屏用LED种类及优缺点 根据显示屏的分类,所使用的像素LED也可以分为以下几种: 1、点阵模块 优点:成本低、加工工艺成熟、品质稳定;缺点:亮度、颜色一致性不好控制,容易出现马赛格现象; 2、直插灯 优点:色彩一致性比较好控制,像素间距大小可以根据需要自由调整组合;缺点:红绿蓝混色效果不佳,角度不大,不好控制角度的一致性,加工上容易出现高低不平、上下左右容易错位; 3、贴片 优点:显示色彩、混色效果、角度一致性等都是最好的;缺点:包装、加工等成本高; 三、显示屏用LED封装技术要求 不同应用位置将使用不同规格的显示屏,不同的显示屏又需要不同技术要求的LED器件,那么显示屏用LED到底有哪些技术要求呢,下面按照不同的分类逐一说明: 1、户内显示屏用贴片LED。 户内显示屏用的贴片LED又分为“三并一”和“三合一”,其中前者多用于比较低成本,显示要求不高的领域,目前已经给逐渐淘汰;后者目前已经是主流产品,显示效果较佳,成本也相对较高,下面主要就“三合一”做一些说明; 1、亮度:(单位;mcd ) 首先要考虑的是产品亮度的合适比例配搭,目前大多数全彩显示屏的红绿蓝亮度配搭都是按照3:6:1(就是一个像素里

微电子封装技术

第一章绪论 1、封装技术发展特点、趋势。(P8) 发展特点:①、微电子封装向高密度和高I/O引脚数发展,引脚由四边引出向引出向面阵列排列发展;②、微电子封装向表面安装式封装(SMP)发展,以适合表面安装技术(SMT);③、从陶瓷封装向塑料封装发展;④、从注重发展IC芯片向先发展后道封装再发展芯片转移。 发展趋势:①、微电子封装具有的I/O引脚数将更多;②、应具有更高的电性能和热性能;③、将更轻、更薄、更小;④、将更便于安装、使用和返修;⑤、可靠性会更高;⑥、性价比会更高,而成本却更低,达到物美价廉。 2、封装的功能(P19) 电源分配、信号分配、散热通道、机械支撑和环境保护。 3、封装技术的分级(P12) 零级封装:芯片互连级。 一级封装:将一个或多个IC芯片用适宜的材料(金属、陶瓷、塑料或它们的组合)封装起来,同时在芯片的焊区与封装的外引脚间用如上三种芯片互连方法(WB、TAB、FCB)连接起来使之成为有实用功能的电子元器件或组件。 二级封转:组装。将上一级各种微电子封装产品、各种类型的元器件及板上芯片(COB)一同安装到PWB或其它基板上。 三级封装:由二级组装的各个插板或插卡再共同插装在一个更大的母板上构成的,立体组装。4、芯片粘接的方法(P12) 只将IC芯片固定安装在基板上:Au-Si合金共熔法、Pb-Sn合金片焊接法、导电胶粘接法、有机树脂基粘接法。 芯片互连技术:主要三种是引线键合(WB)、载带自动焊(TAB)和倒装焊(FCB)。早期有梁式引线结构焊接,另外还有埋置芯片互连技术。 第二章芯片互连技术(超级重点章节) 1、芯片互连技术各自特点及应用 引线键合:①、热压焊:通过加热加压力是焊区金属发生塑性形变,同时破坏压焊界面上的氧化层使压焊的金属丝和焊区金属接触面的原子间达到原子引力范围,从而使原子间产生引力达到键合。两金属界面不平整,加热加压可使上下金属相互镶嵌;加热温度高,容易使焊丝和焊区形成氧化层,容易损坏芯片并形成异质金属间化合物影响期间可靠性和寿命;由于这种焊头焊接时金属丝因变形过大而受损,焊点键合拉力小(<0.05N/点),使用越来越少。②、超声焊:利用超声波发生器产生的能量和施加在劈刀上的压力两者结合使劈刀带动Al丝在被焊区的金属化层表明迅速摩擦,使Al丝和Al膜表面产生塑性形变来实现原子间键合。与热压焊相比能充分去除焊接界面的金属氧化层,可提高焊接质量,焊接强度高于热压焊;不需要加热,在常温下进行,因此对芯片性能无损害;可根据不同需要随时调节 键合能量,改变键合条件来焊接粗细不等的Al 丝或宽的Al带;AL-AL超声键合不产生任何化合 物,有利于器件的可靠性和长期使用寿命。③、 金丝球焊:球焊时,衬底加热,压焊时加超声。 操作方便、灵活、焊点牢固,压点面积大,又无 方向性,故可实现微机控制下的高速自动化焊接; 现代的金丝球焊机还带有超声功能,从而具有超 声焊的优点;由于是Au-Al接触超声焊,尽管加 热温度低,仍有Au-Al中间化合物生成。球焊用 于各类温度较低、功率较小的IC和中、小功率晶 体管的焊接。 载带自动焊:TAB结构轻、薄、短、小,封装高 度不足1mm;TAB的电极尺寸、电极与焊区节距均 比WB大为减小;相应可容纳更高的I/O引脚数, 提高了TAB的安装密度;TAB的引线电阻、电容 和电感均比WB小得多,这使TAB互连的LSI、VLSI 具有更优良的高速高频电性能;采用TAB互连可 对各类IC芯片进行筛选和测试,确保器件是优质 芯片,大大提高电子组装的成品率,降低电子产 品成本;TAB采用Cu箔引线,导热导电性能好, 机械强度高;TAB的键合拉力比WB高3~10倍, 可提高芯片互连的可靠性;TAB使用标准化的卷 轴长度,对芯片实行自动化多点一次焊接,同时 安装及外引线焊接可实现自动化,可进行工业化 规模生产,提高电子产品的生产效率,降低产品 成本。TAB广泛应用于电子领域,主要应用与低 成本、大规模生产的电子产品,在先进封装BGA、 CSP和3D封装中,TAB也广泛应用。 倒装焊:FCB芯片面朝下,芯片上的焊区直接与 基板上的焊区互连,因此FCB的互连线非常短, 互连产生的杂散电容、互连电阻和电感均比WB 和TAB小的多,适于高频高速的电子产品应用; FCB的芯片焊区可面阵布局,更适于搞I/O数的 LSI、VLSI芯片使用;芯片的安装互连同时进行, 大大简化了安装互连工艺,快速省时,适于使用 先进的SMT进行工业化大批量生产;不足之处如 芯片面朝下安装互连给工艺操作带来一定难度, 焊点检查困难;在芯片焊区一般要制作凸点增加 了芯片的制作工艺流程和成本;此外FCB同各材 料间的匹配产生的应力问题也需要很好地解决 等。 2、WB特点、类型、工作原理(略)、金丝球焊主 要工艺、材料(P24) 金丝球焊主要工艺数据:直径25μm的金丝焊接 强度一般为0.07~0.09N/点,压点面积为金丝直 径的2.5~3倍,焊接速度可达14点/秒以上,加 热温度一般为100℃,压焊压力一般为0.5N/点。 材料:热压焊、金丝球焊主要选用金丝,超声焊 主要用铝丝和Si-Al丝,还有少量Cu-Al丝和 Cu-Si-Al丝等。 3、TAB关键材料与技术(P29) 关键材料:基带材料、Cu箔引线材料和芯片凸点 金属材料。 关键技术:①芯片凸点制作技术②TAB载带制作 技术③载带引线与芯片凸点的内引线焊接技术和 载带外引线的焊接技术。 4、TAB内外引线焊接技术(P37) ①内引线焊接(与芯片焊区的金属互连):芯片凸 点为Au或Ni-Au、Cu-Au等金属,载带Cu箔引线 也镀这类金属时用热压焊(焊接温度高压力大); 载带Cu箔引线镀0.5μm厚的Pb-Sn或者芯片凸 点具有Pb-Sn时用热压再流焊(温度较低压力较 小)。 焊接过程:对位→焊接→抬起→芯片传送 焊接条件:主要由焊接温度(T)、压力(P)、时 间(t)确定,其它包括焊头平整度、平行度、焊 接时的倾斜度及界面的侵润性,凸点高度的一致 性和载带内引线厚度的一致性也影响。 T=450~500℃,P≈0.5N/点,t=0.5~1s 焊接后焊点和芯片的保护:涂覆薄薄的一层环氧 树脂。环氧树脂要求粘度低、流动性好、应力小 切Cl离子和α粒子含量小,涂覆后需经固化。 筛选测试:加热筛选在设定温度的烘箱或在具有 N2保护的设备中进行;电老化测试。 ②外引线焊接(与封装外壳引线及各类基板的金 属化层互连):供片→冲压和焊接→回位。 5、FCB特点、优缺点(略,同1) 6、UBM含义概念、结构、相关材料(P46) UBM(凸点下金属化):粘附层-阻挡层-导电层。 粘附层一般为数十纳米厚度的Cr、Ti、Ni等;阻 挡层为数十至数百纳米厚度的Pt、W、Pd、Mo、 Cu、Ni等;导电层金属Au、Cu、Ni、In、Pb-Sn 等。 7、凸点主要制作方法(P47—P58) 蒸发/溅射凸点制作法、电镀凸点制作法、化学镀 凸点制作法、打球(钉头)凸点制作法、置球及 模板印刷制作焊料凸点、激光凸点制作法、移置 凸点制作法、柔性凸点制作法、叠层凸点制作法、 喷射Pb-Sn焊料凸点制作法。 8、FCB技术及可靠性(P70—P75) 热压FCB可靠性、C4技术可靠性、环氧树脂光固 化FCB可靠性、各向异性导电胶FCB可靠性、柔 性凸点FCB可靠性 9、C4焊接技术特点(P61) C4技术,再流FCB法即可控塌陷芯片连接特点: ①、C4除具有一般凸点芯片FCB优点外还可整个 芯片面阵分布,再流时能弥补基板的凹凸不平或 扭曲等;②、C4芯片凸点采用高熔点焊料,倒装 再流焊时C4凸点不变形,只有低熔点的焊料熔 化,这就可以弥补PWB基板的缺陷产生的焊接不 均匀问题;③、倒装焊时Pb-Sn焊料熔化再流时 较高的表面张力会产生“自对准”效果,这使对 C4芯片倒装焊时的对准精度要求大为宽松。 10、底封胶作用(P67) 保护芯片免受环境如湿气、离子等污染,利于芯

元件封装的种类及辨识

元件封装的种类及辨识 2010年9月25日 13:47 目前接触到的封装的种类: 1.SMD电阻电容电感(SMD/NSMD) 2.SOT 3.SOD 4.SOP/TSOP/TSSOP/SOIC/SSOIC/SOPIC/SOJ/CFP 5.QFP 6.QFN/PLCC 7.BGA/CBGA/CSP 8.TO 9.CAN 10.SIP/DIP 11.其它类型 封装的具体介绍以及区别: 一、贴片电阻电容电感的封装 贴片的RLC按照通用的封装形式即可,一般根据形状的大小就可以分辨:1.电阻(不包括插件电阻) 从大到小的顺序,贴片电阻的封装形式有:2512(6332)/2010(5025)/1210(3225)/1206(3216)/0805(2012)/0603(1310)/0402(1005)其实际尺寸为0402(1.0*0.5mm)记作1005,其它以此类推 2.电容 片式电容最大的能做到1825(4564),焊盘的设计都采用的是H型。若为钽电容则封装会更大一些,可以做到73*43mm。 3.电感 电感的长和宽比较接近,整体呈现接近正方形,也是H型的焊盘。具体根据datasheet上的设计,有时候也会出现在对角线上,或者是四个脚。 注:①对于0201的封装,设计焊盘时要注意适当改善焊盘形状,主要是为了避免过炉时产生的立碑飞片等现象,适合的焊盘形状为矩形或者圆形,例如圆形焊盘:圆形边界最近 的距离为0.3mm,圆心之间的距离为0.4或0.5mm。 一般BGA的焊盘有两种:SMD和NSMD。SMD的阻焊膜覆盖在焊盘边缘,采用它可以提高锡膏的漏印量,但是会引起过炉后锡球增多的现象,NSMD的阻焊膜在焊盘之外。

全面的微系统技术

一、微系统技术 在微系统技术微系统技术的发展历史上,集成电路(IC)是技术的起点。电子器件小型化和多功能信成是微加工技术的推动力。如果没有微加工和小型化技术的迅猛发展,许多今天看来理所当然的科学和工程成就都不可能实现。 微系统技术是由集成电路技术发展而来的,经过了大约20年的萌芽阶段,即由20世纪60年代中期到20世纪80年代。在这段萌芽时期,主要是开展一些微系统技术的零散研究。例如,开发了硅各向异性腐蚀技术用于在平面硅衬底上加工三维结构;一些研究机构和工业实验室里的研究者开始利用集成电路的加工技术制造微系统技术器件,例如悬臂梁、薄膜和喷嘴;微传感器的关键部件,如单晶硅和多晶硅中的压阻被发现、研究和优化。 在微系统技术的研发时期,涌现出了一些具有重要意义的研究成果。1967年,Westinghouse公司发明了一种谐振栅晶体管(RGT)。它与传统的晶体管不同,RGT的电栅极不是固定在栅氧化层上,而是相对硅衬底可动。由静电力控制栅电极和衬底之间的间距。RGT是静电微执行器的最早实例。 佳能公司最早开发了基于热气泡技术的喷墨打印技术,而惠普公司在1978年首先发明了基于硅微机械加工技术的喷墨打印机喷嘴。喷嘴阵列喷射出热气泡膨胀所需液体体积大小的墨滴,如图1-1所示。气泡破裂又将墨汁吸入到存放墨汁的空腔中,为下一次喷墨做准备。通过滴入红、蓝、黄三种基本色实现彩色打印。

图1-1 在20世纪80年代后期,在微机械技术这个新领域的研究者主要是研究硅的应用——单晶硅衬底或者多晶硅薄膜。多晶硅薄膜技术的应用产生了一些表面微机械加工的机械结构,如弹簧、传动机械和曲柄等。 20世纪90年代,全世界的微系统技术研究进入一个突飞猛进、日新月异的发展阶段。非常成功的例子有美国Analog Devices(模拟器件)公司生产的用于汽车安全气囊系统的集成惯性传感器,以及美国Texas Instruments(德州仪器)公司用于投影显示的数字光处理芯片。 相对于宏观的机电传感器,微系统技术技术带来了两个重要的优点,即高灵敏度和低噪声。同时,由于微系统技术技术采用批量生产,而不是采用手工组装的方式,有效地降低了传感器的使用成本。 20世纪90年代后期,光微系统技术发展迅速。世界各地的研究人员竞相开发微光机电系统和器件,希望能将二元光学透镜、衍射光栅、可调光微镜、干涉滤波器,相位调制器等部件应用到光学显示、自适应光学系统、可调滤波器、气体光谱分析仪和路由器等应用领域。 生物微系统技术包括生物学研究、医疗诊断和临床介入等方面的微系统技术

微系统封装术语汇总表

微系统封装术语汇总表 A accelerated stress test 加速应力测试 accelerator 促进剂 active components 有源元件 active trimming 有源修调 additive plating 加成电镀 additive process 加成工艺 advanced statistical analysis program(ASTAP)高级统计分析程序alloy 合金 alpha particle α粒子 analog circuit 模拟电路 analog-to-digital(A/D)模拟到数字 anisotropic adhesive 各向异性导电胶 application specific integrated circuit(ASIC)专用集成电路 area array TAB 面阵载带自动焊 array 阵列 aspect ratio 深宽比 assembly 组装 assembly/rework 组装/返修 B backbonding 背面焊接 back-end-of-the-line(BEOL)后道工序 backplane 背板 backside metallurgy(BSM)背面合金化 ball grid array(BGA)球栅阵列 ball limiting metallurgy(BLM)球限金属化层 bandwidth 宽带 bare die 裸芯片 BiCMOS 双极互补金属—氧化物—半导体 BIFET 双极场效应晶体管 binder 粘合剂 BiNMOS 双极NMOS bipolar junction transistor(BJT)双极结晶体管 bipolar transistor 双极晶体管 block copolymer 块状异分子聚合物 built-in self-test(BIST)内建自测试 blind via 盲孔 board 电路板 boiling 沸腾 bondability 可键和性 brazing 钎焊接 BTAB 凸点载带自动焊

全面的微系统技术

全面的微系统技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一、微系统技术 在微系统技术微系统技术的发展历史上,集成电路(IC)是技术的起点。电子器件小型化和多功能信成是微加工技术的推动力。如果没有微加工和小型化技术的迅猛发展,许多今天看来理所当然的科学和工程成就都不可能实现。 微系统技术是由集成电路技术发展而来的,经过了大约20年的萌芽阶段,即由20世纪60年代中期到20世纪80年代。在这段萌芽时期,主要是开展一些微系统技术的零散研究。例如,开发了硅各向异性腐蚀技术用于在平面硅衬底上加工三维结构;一些研究机构和工业实验室里的研究者开始利用集成电路的加工技术制造微系统技术器件,例如悬臂梁、薄膜和喷嘴;微传感器的关键部件,如单晶硅和多晶硅中的压阻被发现、研究和优化。 在微系统技术的研发时期,涌现出了一些具有重要意义的研究成果。1967年,Westinghouse公司发明了一种谐振栅晶体管(RGT)。它与传统的晶体管不同,RGT的电栅极不是固定在栅氧化层上,而是相对硅衬底可动。由静电力控制栅电极和衬底之间的间距。RGT是静电微执行器的最早实例。 佳能公司最早开发了基于热气泡技术的喷墨打印技术,而惠普公司在1978年首先发明了基于硅微机械加工技术的喷墨打印机喷嘴。喷嘴阵列喷射出热气泡膨胀所需液体体积大小的墨滴,如图1-1所示。气泡破裂又将墨汁吸入到存放墨汁的空腔中,为下一次喷墨做准备。通过滴入红、蓝、黄三种基本色实现彩色打印。 图1-1 在20世纪80年代后期,在微机械技术这个新领域的研究者主要是研究硅的应用——单晶硅衬底或者多晶硅薄膜。多晶硅薄膜技术的应用产生了一些表面微机械加工的机械结构,如弹簧、传动机械和曲柄等。 20世纪90年代,全世界的微系统技术研究进入一个突飞猛进、日新月异的发展阶段。非常成功的例子有美国Analog Devices(模拟器件)公司生产的用于汽车安全气囊系统的集成惯性传感器,以及美国Texas Instruments(德州仪器)公司用于投影显示的数字光处理芯片。 相对于宏观的机电传感器,微系统技术技术带来了两个重要的优点,即高灵敏度和低噪声。同时,由于微系统技术技术采用批量生产,而不是采用手工组装的方式,有效地降低了传感器的使用成本。

芯片封装分类

芯片封装分类大全 【1】双列直插封装(DIP)20世纪60年代,由于IC集成度的提高,电路引脚数不断增加,有了数十个I/O引脚的中、小规模集成电路(MSI、SSI),相应的封装形式为双列直插(DIP)型,并成为那个时期的主导产品形式。70年代,芯片封装流行的是双列直插封装(DIP)、单列直插封装(SIP)、针栅阵列封装(PGA)等都属于通孔插装式安装器件。通孔插装式安装器件的代表当属双列直插封装,简称DIP(Dualln-LinePackage)。这类DIP从封装结构形式上可以分为两种:其一,军品或要求气密封装的采用陶瓷双例直插DIP;其二,由于塑料封装具有低成本、性价比优越等特点,因此,封装形式大多数采用塑料直插式PDIP。塑料双便直插封装(PDIP)是上世纪80年代普遍使用的封装形式,它有一个矩形的塑封体,在矩形塑封体比较长的两侧面有双列管脚,两相邻管脚之间的节距是2.54mm,引线数为6-84,厚度约为2.0~3.6,如表2所示。两边平等排列管脚的跨距较大,它的直插式管脚结构使塑封电路可以装在塑料管内运输,不用接触管脚,管脚从塑封体两面弯曲一个小角度用于插孔式安装,也便于测试或器件的升级和更换。这种封装形式,比较适合印制电路板(PCB)的穿孔安装,具有比50年代的TO型圆形金属封装,更易于对PCB布线以及操作较为方便等特点。这种封装适合于大批量低成本生产,便于自动化的线路板安装及提供高的可靠性焊接。同时,塑料封装器件在尺寸、重量、性能、成本、可靠性及实用性方面也优于气密性封装。大部分塑封器件重量大约只是陶瓷封装的一半。例如:14脚双列直插封装(DIP)重量大约为1g,而14脚陶瓷封装重2g。但是双列直插封装(DIP)效率较低,大约只有2%,并占去了大量有效安装面积。我们知道,衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。 【2】四边引线扁平封装(QFP)20世纪80年代,随着计算机、通讯设备、家用电器向便携式、高性能方向的发展;随着集成电路技术的进步,大规模集成电路(LSI)I/O引脚数已达数百个,与之相适应的,为了缩小PCB板的体积进而缩小各种系统及电器的体积,解决高密度封装技术及所需高密度引线框架的开发,满足电子整机小型化,要求集成电路封装在更小的单位面积里引出更多的器件引脚和信号,向轻、薄、短、小方向发展。那些通孔插装式安装器件已无法满足对集成电路封装严格要求的需要。代之而起的是表面贴装技术(SMT)。表面贴装技术(SMT)的封装形式主要有小外型封装(SOP),引线间距为1.27mm、塑料片式载体(PLCC),引线间距为1.27mm、四边引线扁平封装(QFP)等。其后相继出现了各

了解一下LED屏的种类、优缺点和封装技术

了解一下LED屏的种类、优缺点和封装技术 LED受到广泛重视并得到迅速发展,与它本身所具有的优点密不可分。这些优点概括起来是:亮度高、工作电压低、功耗小、小型化、寿命长、耐冲击和性能稳定。LED的发展前景极为广阔,目前正朝着更高亮度、更高耐气候性、更高的发光密度、更高的发光均匀性,可靠性、全色化方向发展。 一、LED显示屏的种类1、根据颜色分类单基色显示屏:单红或单绿;双色显示屏:红和绿双基色,256级灰度、可以显示65536种颜色;全彩显示屏:红、绿、蓝三基色,256级灰度的全彩色显示屏可以显示1600多万种色。 2、根据组成像素单元分类数码显示屏:显示像素为7段数码管,适于制作时钟屏、利率屏等; 图文显示屏:显示像素为点阵模块,适于播放文字、图像信息; 视频显示屏:显示像素由许多发光二极管组成,可以显示视频、动画等各种视频文件。3、根据使用位置分类户内显示屏:发光点小,像素间距密集,适合近距离观看; 半户外显示屏:介于户内和户外之间,不防雨水,适合在门楣作信息引导等用; 户外显示屏:发光点大,像素间距大,亮度高,可在阳光下工作,具有防风、防雨、防水功能,适合远距离观看。 4、按驱动方式有静态、横向滚动、垂直滚动和翻页显示等。二、显示屏用LED种类及优缺点根据显示屏的分类,所使用的像素LED也可以分为以下几种: 1、点阵模块优点:成本低、加工工艺成熟、品质稳定;缺点:亮度、颜色一致性不好控制,容易出现马赛格现象; 2、直插灯优点:色彩一致性比较好控制,像素间距大小可以根据需要自由调整组合;缺点:红绿蓝混色效果不佳,角度不大,不好控制角度的一致性,加工上容易出现高低不平、上下左右容易错位; 3、贴片优点:显示色彩、混色效果、角度一致性等都是最好的;缺点:包装、加工等成本高;

芯片封装种类

1、BGA(ball grid array) 球形触点陈列,表面贴装型封装之一。在印刷基板的背面按陈列方式制作出球形凸点用以代替引脚,在印刷基板的正面装配LSI 芯片,然后用模压树脂或灌封方法进行密封。也称为凸点陈列载体(PAC)。引脚可超过200,是多引脚LSI 用的一种封装。封装本体也可做得比QFP(四侧引脚扁平封装)小。例如,引脚中心距为1.5mm 的360 引脚BGA 仅为 31mm 见方;而引脚中心距为0.5mm 的304 引脚QFP 为40mm 见方。而且BGA 不用担心QFP 那样的引脚变形问题。该封装是美国Motorola 公司开发的,首先在便携式电话等设备中被采用,今后在美国有可能在个人计算机中普及。最初,BGA 的引脚(凸点)中心距为1.5mm,引脚数为225。现在也有一些LSI 厂家正在开发500 引脚的BGA。BGA 的问题是回流焊后的外观检查。现在尚不清楚是否有效的外观检查方法。有的认为,由于焊接的中心距较大,连接可以看作是稳定的,只能通过功能检查来处理。美国Motorola 公司把用模压树脂密封的封装称为OMPAC,而把灌封方法密封的封装称为GPAC(见OMPAC 和GPAC)。 2、BQFP(quad flat package with bumper) 带缓冲垫的四侧引脚扁平封装。QFP 封装之一,在封装本体的四个角设置突起(缓冲垫) 以防止在运送过程中引脚发生弯曲变形。美国半导体厂家主要在微处理器和ASIC 等电路中采用此封装。引脚中心距0.635mm,引脚数从84 到196 左右(见QFP)。 3、碰焊PGA(butt joint pin grid array) 表面贴装型PGA 的别称(见表面贴装型PGA)。 4、C-(ceramic) 表示陶瓷封装的记号。例如,CDIP 表示的是陶瓷DIP。是在实际中经常使用的记号。 5、Cerdip 用玻璃密封的陶瓷双列直插式封装,用于ECL RAM,DSP(数字信号处理器)等电路。带有玻璃窗口的Cerdip 用于紫外线擦除型EPROM 以及内部带有EPROM 的微机电路等。引脚中心距2.54mm,引脚数从8 到42。在日本,此封装表示为DIP-G(G 即玻璃密封的意思)。 6、Cerquad 表面贴装型封装之一,即用下密封的陶瓷QFP,用于封装DSP 等的逻辑LSI 电路。带有窗口的Cerquad 用于封装EPROM 电路。散热性比塑料QFP 好,在自然空冷条件下可容许1. 5~2W 的功率。但封装成本比塑料QFP 高3~5 倍。引脚中心距有1.27mm、0.8mm、0.65mm、0.5mm、0.4mm 等多种规格。引脚数从32 到368。 7、CLCC(ceramic leaded chip carrier) 带引脚的陶瓷芯片载体,表面贴装型封装之一,引脚从封装的四个侧面引出,呈丁字形。带有窗口的用于封装紫外线擦除型EPROM 以及带有EPROM 的微机电路等。此封装也称为QFJ、QFJ-G(见QFJ)。 8、COB(chip on board) 板上芯片封装,是裸芯片贴装技术之一,半导体芯片交接贴装在印刷线路板上,芯片与基板的电气连接用引线缝合方法实现,芯片与基板的电气连接用引线缝合方法实现,并用树脂覆盖以确保可靠性。虽然COB 是最简单的裸芯片贴装技术,但它的封装密度远不如TAB 和倒片焊技术。 9、DFP(dual flat package) 双侧引脚扁平封装。是SOP 的别称(见SOP)。以前曾有此称法,现在已基本上不用。10、DIC(dual in-line ceramic package) 陶瓷DIP(含玻璃密封)的别称(见DIP). 11、DIL(dual in-line)

微电子封装工艺的发展

微电子封装技术的发展 一、封装技术的发展 从80年代中后期,开始电子产品正朝着便携式、小型化、网络化和多媒体化方向发展,这种市场需求对电路组装技术提出了相应的要求,单位体积信息的提高(高密度)和单位时间处理速度的提高(高速化)成为促进微电子封装技术发展的重要因素。 1.1 片式元件:小型化、高性能 片式元件是应用最早、产量最大的表面组装元件。它主要有以厚薄膜工艺制造的片式电阻器和以多层厚膜共烧工艺制造的片式独石电容器,这是开发和应用最早和最广泛的片式元件。随着工业和消费类电子产品市场对电子设备小型化、高性能、高可靠性、安全性和电磁兼容性的需求,对电子电路性能不断地提出新的要求,片式元件进一步向小型化、多层化、大容量化、耐高压、集成化和高性能化方向发展。在铝电解电容和钽电解电容片式化后,现在高Q值、耐高温、低失真的高性能MLCC已投放市场;介质厚度为10um的电容器已商品化,层数高达100层之多;出现了片式多层压敏和热敏电阻,片式多层电感器,片式多层扼流线圈,片式多层变压器和各种片式多层复合元件;在小型化方面,规格尺寸从3216→2125→1608→1005发展,目前最新出现的是0603(长0.6mm,宽0.3mm),体积缩小为原来的0.88%。集成化是片式元件未来的另一个发展趋势,它能减少组装焊点数目和提高组装密度,集成化的元件可使Si效率(芯片面积/基板面积)达到80%以上,并能有效地提高电路性能。由于不在电路板上安装大量的分立元件,从而可极大地解决焊点失效引起的问题。 1.2 芯片封装技术:追随IC的发展而发展 数十年来,芯片封装技术一直追随着IC的发展而发展,一代IC就有相应一代的封装技术相配合,而SMT的发展,更加促进芯片封装技术不断达到新的水平。六七十年代的中、小规模IC,曾大量使用TO型封装,后来又开发出DIP、PDIP,并成为这个时期的主导产品形式。八十年代出现了SMT,相应的IC封装形式开发出适于表面贴装短引线或无引线的LCCC、PLCC、SOP等结构。在此基础上,经十多年研制开发的QFP不但解决了LSI的封装问题,而且适于使用SMT在PCB或其他基板上表面贴装,使QFP终于成为SMT主导电子产品并延续至今。为了适应电路组装密度的进一步提高,QFP的引脚间距目前已从1.27mm发展到了0.3mm 。由于引脚间距不断缩小,I/O数不断增加,封装体积也不断加大,给电路组装生产带来了许多困难,导致成品率下降和组装成本的提高。另一方面由于受器件引脚框架加工精度等制造技术的限制0.3mm已是QFP引脚间距的极限,这都限制了组装密度的提高。于是一种先进的芯片封装BGA(Ball Grid Array)应运而生,BGA是球栅阵列的英文缩写,它的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,引线间距大,引线长度短。BGA技术的优点是可增加I/O数和间距,消除QFP技术的高I/O数带来的生产成本和可靠性问题。 BGA的兴起和发展尽管解决了QFP面临的困难,但它仍然不能满足电子产品向更加小型、更多功能、更高可靠性对电路组件的要求,也不能满足硅集成技术发展对进一步提高封装效率和进一步接近芯片本征传输速率的要求,所以更新的封装CSP(Chip Size Package)又出现了,它的英文含义是封装尺寸与裸芯片相同或封装尺寸比裸芯片稍大。日本电子工业协会对CSP规定是芯片面积与封装尺寸面积之比大于80%。CSP与BGA结构基本一样,只是锡球直径和球中心距缩小了、更薄了,这样在相同封装尺寸时可有更多的I/O数,使组装密度进一步提高,可以说CSP是缩小了的BGA。 CSP之所以受到极大关注,是由于它提供了比BGA更高的组装密度,而比采用倒装片的板极组装密度低。但是它的组装工艺却不像倒装片那么复杂,没有倒装片的裸芯片处理问题,基本上与SMT的组装工艺相一致,并且可以像SMT那样进行预测和返工。正是由于这些无法比拟的优点,才使CSP得以迅速发展并进入实用化阶段。目前日本有多家公司生产CSP,而且正越来越多地应用于移动电话、数码录像机、笔记本电脑等产品

相关文档
最新文档