方程和不等式的练习题

方程和不等式的练习题
方程和不等式的练习题

方程和不等式的练习题

一、选择题

1、计算3

2)2(x -的结果是( )

A.52x - B.62x - C.58x - D. 6

8x - 2、计算23x x ?,正确结果是( )

A .6x

B .5x

C .9x

D .8x 3、计算()()

3

2

22a

a ÷的结果是( )

A. a

B. 2

a C. 3

a D. 4

a 4、已知x 2

+16x +k 是完全平方式,则常数k 等于( ) A .16 B .48 C .32 D .64 5、若x y 3=4,9=7 ,则x 2y 3-的值为( ) A .

47 B .74 C .3- D .27

6、如果2x 2

y 3与x 2y n+1是同类项,那么n 的值是(

A .1

B .3

C .2

D .4

7、点(412)A m m --,在第三象限,那么m 值是( )。 A.1

2

m >

B.4m <

C.

1

42

m << D.4m >

8、不等式组??

?>>a

x x 3

的解集是x>a ,则a 的取值范围是( )。

A .a ≥3

B .a =3

C .a >3

D .a <3

9、已知()0332

=++++m y x x 中,y 为负数,则m 的取值范围是( a)

A. m >9

B. m <9

C. m >-9

D. m <-9

10、若不等式组0,

122x a x x +??->-?

≥有解,则a 的取值范围是( )

A .a >-1

B .a ≥-1

C .a ≤1

D .a <1 11、函数4

2-+

-=

x x

x y 中自变量x 的取值范围是( ) A 、2≤x B 、42≠≤x x 且 C 、4≠x D 、42≠

-2x -1=0有两个不相等的实数根,则k 的取值范围是( )

A.k >-1

B. k >-1且k ≠0

C. k <1

D. k <1且k ≠0 13、定义:如果一元二次方程2

0(0)ax bx c a ++=≠满足0a b c ++=,那么我们称这个方程为“凤凰”方程. 已知20(0)ax bx c a ++=≠ 是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是() A .a=b=c

B .a b =

C .b c =

D . a=c

14、一列长150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需时间是( )秒 A 、 60 B 、 50 C 、 40 D 、 30

15、要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为( )

A .

x (x +1)=28 B .

x (x ﹣1)=28 C . x (x +1)=28

D . x (x ﹣1)=28

16已知1x ,2x 是方程2

310x x -+=的两个实数根,则12

11

x x +的值是( ) A.1 B.3- C.1

3

D.3

17、已知关于x 的一元二次方程x 2+ax +b =0有一个非零根﹣b ,则a ﹣b 的值为( ) A . -2 B . ﹣1 C . 0 D . 1

二、填空题

1、已知x=y+4,则代数式22x 2xy+y 25--的值为

2、若实数a 、b 满足|3a ﹣1|+b 2

=0,则a b

的值为

3、不等式

2

1

31-<+x x 的解集是____________. 4、已知m 132x y --和n m+n 1x y 2

是同类项,则()2012

n m =-

5、已知a ,b 为实数,若不等式组22

23

x a x b -

->?的解集为—1<x <1,那么(a —1)(b —1)的值

等于

6、民张大伯因病住院,手术费为a 元,其它费用为b 元.由于参加农村合作医疗,手术费报销85%,其它费用报销60%,则张大伯此次住院可报销 元。(用代数式表示)

7、阅读材料:设一元二次方程a x 2

+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c

a

.根据该材料填空:已知x 1、x 2是方程x 2

+6x +3=0的两实数根,则

21x x +1

2

x x 的值为 8、若正数a 是一元二次方程x 2

﹣5x+m=0的一个根,﹣a 是一元二次方程x 2

+5x ﹣m=0的一个根,则a 的值是

9、若关于x 的方程x 2

+(k ﹣2)x+k 2

=0的两根互为倒数,则k= ﹣1

10若关于x 的一元二次方程2

20x x k +-=没有实数根,则k 的取值范围是

三、计算题

1、先化简,再求值.(2x+3)(2x ﹣3)﹣4x (x ﹣1)+(x ﹣2)2

,其中x=﹣3。

2、

()已知关于的方程x x k x k 2

220-++= (1)求证:无论k 取任何实数值,方程总有实数根。

(2)若等腰三角形的一边长为1,另两边长恰是这个方程的两个根,求三角形的周长。

2015.4.8测试题

一、选择题

1D 2B 3B 4D 5A 6C 7C 8A 9A 10A 11A 12C 13D 14B 15B 16D 17D 二、填空题

1 -9 2. 1 3. x>5 4. 1 5. 3 6. 85%a+60%b

7. 1 0 8. 5 9. -1 10. k>1

三 1.-2 2.

()[]()证明:12422

?=-+-?k k =++-k k k 2

448

=-+k k 2

44

()

=-k 22

() k -≥202

∴无论k 取任何实数值,方程总有实数根

(2)∵等腰三角形的一边长为1 ∴要分类讨论

()①当腰为时,则另一腰长和底边是方程的两个根11x k x k 2

220-++= 则把代入方程,得:x k ==11 则方程化为x x 2

320-+= x x 1212==,

则底边为2

三边为1,1,2,不符合三角形两边之和大于第三边,舍去。

②当底边为1时,则两个腰为方程的两个根,即方程有两个相等的根

()[]()∴=-+-=-=?k k k 28202

2

∴=-+=k x x 24402

,则方程化为 x x 122==

三边为2,2,1,符合三角形三边关系定理。 ∴三角形的周长为5

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

均值不等式习题大全

均值不等式题型汇总 杨社锋 均值不等式是每年高考必考内容,它以形式灵活多变而备受出题人的青睐,下面我们来细数近几年来均值不等式在高考试题中的应用。 类型一:证明题 1. 设*,,1,a b R a b ∈+=求证:1 125()()4 a b a b ++≥ 2. 设,,(0,),a b c ∈+∞)a b c ≥++ 3. 设,,(0,),a b c ∈+∞求证:222 b c a a b c a b c ++≥++ 4. 设,,(0,),a b c ∈+∞求证:222 a b c ab bc ac ++≥++ 5. 已知实数,,x y z 满足:222 1x y z ++=,求xy yz +得最大值。 6. 已知正实数,,a b c ,且1abc =9≥ 7. (2010辽宁)已知,,a b c 均为正实数,证明:22221 11()a b c a b c +++++≥,并确定,,a b c 为何值时,等号成立。 类型二:求最值: 利用均值不等式求最值是近几年高考中考查频率最高的题型之一。使用均值不等式的核心在于配凑,配凑的精髓在于使得均值不等式取等号的条件成立。 1. 设11,(0,)1x y x y ∈+∞+=且,求x y +的最小值。 2. 设,(0,)1x y x y ∈+∞+=且,求 112x y +的最小值。 3. 已知,a b 为正实数,且1a b +=求1ab ab +的最小值。 4. 求函数11(01)1y x x x =+<<-的最小值。

变式:求函数291(0)122 y x x x =+<<-的最小值。 5. 设,(0,)x y ∈+∞,35x y xy +=,求34x y +的最小值。 6. 设,(0,)x y ∈+∞,6x y xy ++=求x y +的最小值。 7. 设,(0,)x y ∈+∞,6x y xy ++=求xy 的最大值。 8. (2010浙江高考)设,x y 为实数,若22 41x y xy ++=,求2x y +的最大值。 9. 求函数y = 的最大值。 变式:y = 10. 设0x >求函数21x x y x ++=的最小值。 11. 设设1x >-求函数211 x x y x ++=+的最小值。 12. (2010山东高考)若任意0x >,231 x a x x ≤++恒成立,求a 的取值范围. 13. 求函数22233(1)22 x x y x x x -+=>-+的最大值。 类型三、应用题 1.(2009湖北)围建一个面积为2 360m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需要维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m 的进出口,如图所示,已知旧墙的维修费用为45/m 元,新墙的造价为180/m 元,设利用旧墙的长度为x (单位:m )。 (1)将y 表示为x 的函数(y 表示总费用)。 (2)试确定x ,使修建此矩形场地围墙的总费用最少。并求出最小总费用。 2.(2008广东)某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房。经测算,如果将楼房建为x 层(10x ≥),则每平方米的平均建筑费用为56048x +(单位:元)。为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层? (注:平均综合费用=平均建筑费用+平均购地费用,

专题方程与不等式应用题2答案

一、应用题 1. (1)购进C 种玩具套数为:50x y --(或41147510 x y - -) (2)由题意得 405550(50)2350x y x y ++--= 整理得230y x =-. (3)①利润=销售收入-进价-其它费用 508065(50)2350200P x y x y ∴=++---- 整理得15250P x =+. ②购进C 种电动玩具的套数为:50803x y x --=-. 根据题意列不等式组,得 10 2301080310 x x x ?? -? ?-? ≥≥≥,解得70203x ≤≤. ∴x 的范围为2023x ≤≤,且x 为整数. ∵P 是x 的一次函数,150k =>, ∴P 随x 的增大而增大. ∴当x 取最大值23时,P 有最大值,最大值为595元.此时购进A 、B 、C 种玩具分别为23套、16套、11套. 2. 解:(1)设原计划购买彩电x 台,冰箱y 台,根据题意,得 2000180025000x y +=,化简得:109125x y +=. 由于x y 、均为正整数,解得85x y ==,. (2)该批家电可获财政补贴为2500013%3250()?=元.由于多买的冰箱也可获得13%的财政补贴,实际负担为总价的87%. 3250(113%)3735.621800÷-?≈≥, ∴可多买两台冰箱. 答:(1)原计划购买彩电8台和冰箱5台; (2)能多购买两台冰箱.我的想法:可以拿财政补贴款3250元,再借350元,先购买两台冰箱回来,再从总价3600元冰箱的财政补贴468元中拿出350元用于归还借款,这样不会增加实际负担. 3. 解: (1)依题意得:1(2100800200)1100y x x =--=,

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

高考均值不等式经典例题

高考均值不等式经典例题 1.已知正数,,a b c 满足2 15b ab bc ca +++=,则58310a b c +++的最小值为 。 2.设M 是ABC V 内一点,且30AB AC A =∠=?u u u r u u u r g ,定义()(,,)f M m n p =,其中,,m n p 分别是 ,,MBC MCA MAB V V V 的面积,若1()(,,)2 f M x y =,则14x y +的最小值为 . 3.已知实数1,12 m n >>,则224211n m m n +--的最小值为 。 4.设22110,21025() a b c a ac c ab a a b >>>++-+-的最小值为 。 5.设,,a b c R ∈,且222 ,2222a b a b a b c a b c ++++=++=,则c 的最大值为 。 6.已知ABC V 中,142, 10sin sin a b A B +=+=,则ABC V 的外接圆半径R 的最大值为 。 7.已知112,,339 a b ab ≥≥=,则a b +的最大值为 。 8. ,,a b c 均为正数,且222412a ab ac bc +++=,则a b c ++的最小值为 。 9. ,,,()4a b c R a a b c bc +∈+++=-2a b c ++的最小值为 。 10. 函数()f x =的最小值为 。 11.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 。 12.若*3()k k N ≥∈,则(1)log k k +与(1)log k k -的大小: 。 13.设正数,,x y z 满足22340x xy y z -+-=,则当xy z 取最大值时,212x y z +-的最大值为 。 14.若平面向量,a b r r 满足23a b -≤r r ,则a b ?r r 的最小值为 。 15. 的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 。 16.设{}n a 是等比数列, 公比q =n S 为{}n a 的前n 项和,记*21 17()n n n n S S T n N a +-=∈,设0n T 为数列{}n T 的最大项,则0n = 。

八年级数学上册 综合训练 方程与不等式应用题习题 鲁教版

方程与不等式应用题(习题)例题示范 例1:现要把228 吨物资从某地运往甲、乙两地,用大、小两种货车共18 辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16 吨/辆和10 吨/辆,运往甲、乙两地的运费如下表: 运往地 车型 甲地(元/辆)乙地(元/辆) 大货车720800 小货车500650 (1)求这两种货车各用多少辆. (2)如果安排 9 辆货车前往甲地,其余货车前往乙地.设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与 a 之间的函数关系式,并写出自变量的取值范围. (3)在(2)的条件下,若运往甲地的物资不少于 120 吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费. 【思路分析】 1.理解题意,梳理信息. 运往地车型 9 甲地(元/辆) 9 乙地(元/辆) 载重量 大货车8720 a800 8-a16 小货车10500 9-a650 a+110 2.建立数学模型 (1)结合题中信息“用大、小两种货车共18 辆,恰好能一次性运完这批物资”,考虑方程模型; (2)结合题中信息“自变量的取值范围”,考虑建立不等式模型,寻找题目中的不等关系(显性和隐性); (3)结合题中信息“运费最少的货车调配方案”,考虑建立函数模型.3.求解验证,回归实际.

? ? 【过程书写】 解:(1)设大货车用 x 辆,则小货车用(18-x )辆,根据题 意得,16x +10(18-x )=228 解得,x =8 即大货车用 8 辆,小货车用 10 辆. (2)由题意得, w 720 a 800(8 a ) 500(9 a ) 650[10 (9 a )] 70 a 11550 a ≥ 0 8 a ≥ 0 ∵ 9 a ≥ 0 10 (9 a ) ≥ 0 ∴ 0 ≤ a ≤ 8 ,且 a 为整数 ∴ w 70 a 11550( 0 ≤ a ≤ 8 ,且a 为整数) (3)由题意得,16 a 10(9 a ) ≥120 解得, a ≥ 5 ∵ 0 ≤ a ≤ 8 ,且 a 为整数 ∴ 5 ≤ a ≤ 8 ,且 a 为整数在 w 70 a 11550 中 ∵ 70 0 ∴w 随 a 的增大而增大 ∴当 a =5 时, w min 11900(元) 即 最优方案为: 甲地 乙地 大货车 5 3 小货车 4 6

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

方程与不等式应用题综合测试(三)(通用版)(含答案)

方程与不等式应用题综合测试(三)(通用版) 试卷简介:训练目标:检测学生在不同背景下辨识使用方程或不等式,挖掘关键词,关注隐含条件,梳理信息,理解题意,求解验证。 一、单选题(共10道,每道10分) 1.某班组织20名同学去春游,计划同时租用A,B两种型号的车辆,已知A车每辆有8个座位,B 车每辆有4个座位.若要求租用的车辆不留空座,也不能超载,则下列方案可行的是( ) A.A车0辆,B车5辆 B.A车1辆,B车3辆 C.A车3辆,B车0辆 D.A车2辆,B车2辆 答案:B 解题思路:设租用A车x辆,B车y辆, 根据题意得,8x+4y=20, 整理得,2x+y=5. ∵x,y都是正整数, ∴只有x=1,y=3;x=2,y=1两种情况成立. 结合选项只能选B. 注意:由于是同时租用两种型号的车辆,所以两种车都需要租用,辆数为正整数. 试题难度:三颗星知识点:不定方程 2.自6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,则他们选购的3只环保购物袋至少应付给超市( )元. A.7 B.8 C.9 D.10 答案:B 解题思路:设售价分别为1元、2元、3元的环保购物袋分别有x,y,只, 那么,解得. ∵x,y是非负整数, ∴x只能取0,y只能取0,1. 当时,,,应付3×3=9元; 当时,,,应付1×2+2×3=8元. 所以至少应付给超市8元.

试题难度:三颗星知识点:不等式应用题 3.整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题: (1)降价前,甲、乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?( ) A.3,3.6 B.15.8,18 C.18,15.8 D.3.6,3 答案:B 解题思路:题目中的等量关系为, 甲出厂价+乙出厂价=6.6;甲零售价+乙零售价=33.8. 设甲种药品每盒的出厂价格为x元,乙种药品每盒的出厂价格为y元. 根据题意可列方程组, 解得, ∴5×3.6-2.2=18-2.2=15.8(元),6×3=18(元), 即降价前甲、乙两种药品每盒的零售价格分别是15.8元,18元. 试题难度:三颗星知识点:二元一次方程组的应用 4.(上接第3题)(2)降价后,某药品经销商将上述甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%,对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?若设购进甲种药品a箱,根据题意,下列不等式组正确的是( ) A. B. C.

精选--一元一次不等式组计算题专项练习.doc

1 2x 3 x 3x 1 4, x 5 1 2x, 5x 4x 1 2 x x 2. 3 x 2 4x. 2x 1 x, 2x 3 0 x 2 4x 1. 3x 2 0 2x 3 x 1 8 2x 2 5 1 x, x 3 x 2 4, 2 x 5 3(x 2) x 3 3 x 1 . 1 2x x 1. x 1 x x 1 3 2 3 4 8 1 ( x 2) 2 x 1 3 x 1 1 2 x 2 . 3 0≤ 3 2x ≤ 1 -1< 3x 1 ≤ 4 5 2 3( x 1) 5x 4 ①3x 1 5(x 1) 3x 1 2( x 1) 4 6 5x x 1 ≤ 2x 1 2( x 1) 4x ②x 6 3 2 3 3 3( x 2) 4 5 x x 1 x 3x 1 2

(2008) (本题满分 6 分)解不等式组 2 x 5 x , 5 x 4≥ 3x 2. 3( x 2) < x 8, (2009) (满分 5 分)解不等式组 x ≤ x 1 . 23 (2010) ( 6 分)解不等式组 1 x 1 ≥0 3 3 4( x 1) 1 (2012).( 5分)解不等式组 2x - 1 > 5 ① (2014) ( 5 分)解不等式组: 3x+1 - 1≥x ② ,并在数轴上表示出不等式组的解集. 2 2x 3x 2 (2015).( 5 分)解不等式组: 2x 1 1 x 2 3 2 3 x 1 (2016). (满分 5 分)解不等式 2 ≥ 3(x-1)-4 (2017).解不等式组: 3x 5 2 x ① 3x 2 . ② 1 2

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

不等式与方程应用题讲义

不等式与方程应用题--讲义 不等式与方程应用题 主讲教师:傲德 重难点易错点辨析 列不等式解应用题 题一: 某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过90分,他至少要答对多少道题? 不等式与方程综合解应用题 题二:有红、白两种颜色的小球若干个,已知白球的个数比红球少,但白球的个数的2倍比红球多;若给每个白球都写上数字“2",给每个红球都写上数字“3”(每个小球只能写上一个数字),结果所有小球写的数字总和为60,那么白球和红球各是多少个? 金题精讲 题一:若干名学生合影留念,需交照像费20元(有两张照片),如果另外加洗一张照片,又需收费1.5元,要使每人平均出钱不超过4元钱,并都分到一张照片,至少应有几名同学参加照像? 题二:某单位要购买一批电脑,甲公司的标价是每台5800元,优惠条件是购10台以上,第11台起可按标价的七折付款;乙公司的标价是每台5800元,优惠条件是每台均按标价的八五折付款。若两个公司所售电脑的品牌、质量、售后服务等完全相同,该单位购买哪个公司的电脑合算?请说明理由. 题三:为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A 种树苗每棵80元,B种树苗每棵60元。 (1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵? (2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。 思维拓展 题一:某企业人事招聘工作中,共安排了五个测试项目,规定每通过一项测试得1分,未通过不得分,此次前来应聘的26人平均得分不低于4.8分,其中最低分3分,而且至少有3人得4分,则得5分的共有多少人? 不等式与方程应用题 讲义参考答案 重难点易错点辨析 题一:13。题二:9个白球,14个红球. 金题精讲 题一:7.题二:当购买电脑小于20台时,乙合算;当购买电脑等于20台时,甲、乙一样;当购买电脑大于20台时,甲合算。题三:(1)A:10棵,B:7棵;(2) A:9棵,B:8棵,所需费用:1200元。 思维拓展 题一:22。

解不等式组计算专项练习60题有答案

解不等式组专项练习60题(有谜底) 1. 2.. 3.. 4., 5..6.. 7. 8.. 9. 10. 11. 12., 13..14.,15. 16. 17.. 18. 19. 20..21..22..23. 24. 25.,. 26. 27., 28.

29.. 30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值规模. 31..32.. 33.已知:a=,b=,并且2b ≤<a.请求出x的取值规模. 34. 35., 36.,并将其解集在数轴上暗示出来. 37.. 38.,并把解集在数 轴上暗示出来. 39.已知关于x、y 的方程组的解满足x>y>0,化简|a|+|3﹣a|. 40.,并把它的解集在数轴上暗示出来. 41.42. 43.. 44.. 45.. 46.. 47.关于x、y 的二元一次方程组 ,当m为何值时,x>0,y ≤0. 48.并将解集暗示在 数轴上. 49.已知关于x、y 的方程组 的解是一对正数,求m的取值规模. 50.已知方程组的解满足 ,化简.51.. 52. 53..

54..55..56. 57.58.59.60. 解不等式组60题参考谜底: 1、 解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1 ≤x<3. 2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤5 3.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2. 4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为: 1<x<3, 5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2,6. 解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此 不等式组的解集为:﹣3<x≤1, 8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不 等式的解集为﹣1≤x<3. 9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4,

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

方程与不等式应用题(讲义及答案)

方程与不等式应用题(讲义) 知识点睛 1.理解题意:分层次,找结构 借助表格等梳理信息 2.建立数学模型:方程模型、不等式(组)模型、函数模型等 ①共需、同时、刚好、恰好、相同等,考虑方程; ②显性、隐性不等关系等,考虑不等式(组); ③最大利润、最省钱、运费最少、尽可能少、最小值等,考虑 函数. 3.求解验证,回归实际 ①数据是否异常; ②结果是否符合题目要求及取值范围; ③结果是否符合实际意义.

精讲精练 1.为支持某地区抗震救灾,A,B,C 三地现在分别有赈灾物资 100 吨,100 吨,80吨,需要全部运往重灾地区的 D,E两县.根据灾区的情况,这批赈灾物资运往 D 县的数量比运往 E 县的数量的 2 倍少 20 吨.要求 C 地运往 D 县的赈灾物资为 60 吨, A地运往D县的赈灾物资为x 吨(x 为整数),B 地运往D县的赈灾物资数量小于A 地运往D 县的赈灾物资数量的 2 倍.其余的赈灾物资全部运往 E 县,且 B 地运往 E 县的赈灾物资数量不超过 23 吨.已知 A,B,C 三地的赈灾物资运往 D,E 两县的费用如下表: (1)这批赈灾物资运往 D,E 两县的数量各是多少? (2)A,B 两地的赈灾物资运往 D,E 两县的方案有几种?请 你写出具体的运送方案. (3)为及时将这批赈灾物资运往 D,E 两县,某公司主动承担 运送这批赈灾物资的总费用,在(2)的条件下,该公司承担 运送这批赈灾物资的总费用最多是多少?

2.为了保护环境,某生物化工厂一期工程完成后购买了 3 台甲型和 2 台乙型污水处理设备,共花费资金 46 万元,且每台乙型设备 的价格是每台甲型设备价格的 80%.实际运行中发现,每台甲型设备每月能处理污水 180 吨,每台乙型设备每月能处理污水 150 吨,且每年用于每台甲型设备的各种维护费和电费为 1 万元,每年用于每台乙型设备的各种维护费和电费为1.5 万 元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共 8 台用于二期工程的污水处理,预算本次购买资金不超过 74 万元,预计二期工程完成 后每月将产生 1 250 吨的污水. (1)每台甲型设备和每台乙型设备的价格各是多少元? (2)请求出用于二期工程的污水处理设备的所有购买方案.(3)若两种设备的使用年限都为10 年,则在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+ 各种维护费和电费)

专题:解不等式组计算专项练习题(有答案)

解不等式组专项练习题(有答案) 1. 2.. 3.. 4., 5..6.. 7. 8.. 9. 10. 11.12., 13..14., 15. 16. 17.. 18. 19. 20..21.. 22..

23. 24. 25.,. 26. 27., 28. 29.. 30.已知:2a﹣3x+1=0,3b﹣2x﹣16=0,且a≤4<b,求x的取值范围. 31.. 32.. 33.已知:a=,b=,并且2b≤<a.请求出x的取值范围.34. 35., 36.,并将其解集在数轴上表示出来. 37.. 38.,并把解集在数轴上表示出来. 39.已知关于x、y 的方程组的解满足x>y >0,化简|a|+|3﹣a|. 40.,并把它的解集在数轴上表示出来. 41. 42.

43..

解不等式组60题参考答案: 1、解:,由①得2x≥2,即x≥1;由②得x<3;故不等式组的解集为:1≤x<3.2.解:,由①得:x≤5,由②得:x>﹣2,不等式组的解集为﹣2<x≤5 3.解:解不等式①,得x>1.解不等式②,得x<2.故不等式组的解集为:1<x<2.4.解:,解不等式①得,x>1,解不等式②得,x<3,故不等式的解集为:1<x<3, 5.解不等式①,得x≤﹣2,解不等式②,得x>﹣3,故原不等式组的解集为﹣3<x≤﹣2, 6. 解:,解不等式①得:x>﹣1,解不等式②得:x≤2,不等式组的解集为:﹣1<x≤2,7.解:,由①得x>﹣3;由②得x≤1故此不等式组的解集为:﹣3<x≤1, 8.解:解不等式①,得x<3,解不等式②,得x≥﹣1.所以原不等式的解集为﹣1≤x<3.9.解:∵由①得,x>﹣1;由②得,x≤4,∴此不等式组的解集为:﹣1<x≤4, 10.解:,解不等式①得:x<3,解不等式②得:x≥1,不等式组的解集是1≤x<3 11.解:,由①得,x≥﹣;由②得,x<1,故此不等式组的解集为:﹣<x<1, 12.解:∵由①得,x≤3,由②得x>0,∴此不等式组的解集为:0<x≤3, 13.解:解不等式①,得x≥1;解不等式②,得x<4.∴1≤x<4. 14.解:原不等式组可化为,解不等式①得x>﹣3;解不等式②得x≤3.所以-3

最新基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式专题 知识点: 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若* ,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(222b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

均值不等式高考题

应用一、求最值 直接求 例1、若x ,y 是正数,则22)21 ()21(x y y x +++的最小值是【 】 A .3 B .27 C .4 D .2 9 例2、设y x b a b a b a R y x y x 11,32,3,1,1,,+=+==>>∈则若的最大值为【 】 A. 2 B. 23 C. 1 D. 21 练习1.若0x >,则2 x x +的最小值为 . 练习2.设,x y 为正数, 则14 ()()x y x y ++的最小值为【 】 A.6 B. 9 C. 12 D. 15 练习3.若0,0>>b a ,且函数224)(2 3+--=bx ax x x f 在1=x 处有极值,则ab 的最大值等于【 】 A.2 B .3 C .6 D .9 练习4.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨. 练习5.求下列函数的值域: (1)22 213x x y + = (2)x x y 1+= 练习6.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则 2 ()a b cd +的最小值是【 】 A.0 B.4 C.2 D.1 例3、已知0,0,01,a b c a b c >>>++=且则111 (1)(1)(1)a b c ---最小值为【 】 A. 5 B. 6 C. 7 D. 8 凑系数 例4、若x y ∈+R ,,且14=+y x ,则x y ?的最大值是 . 练习1.已知,x y R +∈,且满足 134 x y +=,则xy 的最大值为 . 练习2. 当40<-+ =x x x x f 在x a =处取最小值,则a =【 】 A.21+ B .31+ C .3 D .4 练习1.已知5 4x <,求函数14245y x x =-+-的最大值. 练习2.函数1 (3)3 x x x +>-的最小值为【 】 A. 2 B. 3 C. 4 D. 5 练习3.函数2 32(0)x x x +>的最小值为【 】 A.3932 B. 39423952392

相关文档
最新文档