MM排队系统仿真maab实验报告

MM排队系统仿真maab实验报告
MM排队系统仿真maab实验报告

M/M/1排队系统实验报告

一、实验目的

本次实验要求实现M/M/1单窗口无限排队系统的系统仿真,利用事件调度法实现离散事件系统仿真,并统计平均队列长度以及平均等待时间等值,以与理论分析结果进行对比。

二、实验原理

根据排队论的知识我们知道,排队系统的分类是根据该系统中的顾客到达模式、服务模式、服务员数量以及服务规则等因素决定的。

1、 顾客到达模式

设到达过程是一个参数为λ的Poisson 过程,则长度为t 的时间内到达k 个呼叫的

概率 服从Poisson 分布,即e t k

k k t t p λλ-=!)()(,?????????=,2,1,0k ,其中λ>0为一常数,表

示了平均到达率或Poisson 呼叫流的强度。

2、 服务模式

设每个呼叫的持续时间为i τ,服从参数为μ的负指数分布,即其分布函数为{}1,0t P X t e t μ-<=-≥

3、 服务规则

先进先服务的规则(FIFO )

4、 理论分析结果

在该M/M/1系统中,设

λρμ=,则稳态时的平均等待队长为1Q ρλρ=-,顾客的平均等待时间为T ρ

μλ=-。

三、实验内容

M/M/1排队系统:实现了当顾客到达分布服从负指数分布,系统服务时间也服从负指数分布,单服务台系统,单队排队,按FIFO (先入先出队列)方式服务。

四、采用的语言

MatLab 语言

源代码:

clear;

clc;

%M/M/1排队系统仿真

SimTotal=input('请输入仿真顾客总数SimTotal='); %仿真顾客总数;Lambda=0.4; %到达率Lambda;

Mu=0.9; %服务率Mu;

t_Arrive=zeros(1,SimTotal);

t_Leave=zeros(1,SimTotal);

ArriveNum=zeros(1,SimTotal);

LeaveNum=zeros(1,SimTotal);

Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间

t_Arrive(1)=Interval_Arrive(1);%顾客到达时间

ArriveNum(1)=1;

for i=2:SimTotal

t_Arrive(i)=t_Arrive(i-1)+Interval_Arrive(i);

ArriveNum(i)=i;

end

t_Leave(1)=t_Arrive(1)+Interval_Serve(1);%顾客离开时间LeaveNum(1)=1;

for i=2:SimTotal

if t_Leave(i-1)

t_Leave(i)=t_Arrive(i)+Interval_Serve(i);

else

t_Leave(i)=t_Leave(i-1)+Interval_Serve(i);

end

LeaveNum(i)=i;

end

t_Wait=t_Leave-t_Arrive; %各顾客在系统中的等待时间

t_Wait_avg=mean(t_Wait);

t_Queue=t_Wait-Interval_Serve;%各顾客在系统中的排队时间

t_Queue_avg=mean(t_Queue);

Timepoint=[t_Arrive,t_Leave];%系统中顾客数随时间的变化

Timepoint=sort(Timepoint);

ArriveFlag=zeros(size(Timepoint));%到达时间标志

CusNum=zeros(size(Timepoint));

temp=2;

CusNum(1)=1;

for i=2:length(Timepoint)

if (temp<=length(t_Arrive))&&(Timepoint(i)==t_Arrive(temp)) CusNum(i)=CusNum(i-1)+1;

temp=temp+1;

ArriveFlag(i)=1;

else

CusNum(i)=CusNum(i-1)-1;

end

end

%系统中平均顾客数计算

Time_interval=zeros(size(Timepoint));

Time_interval(1)=t_Arrive(1);

for i=2:length(Timepoint)

Time_interval(i)=Timepoint(i)-Timepoint(i-1);

end

CusNum_fromStart=[0 CusNum];

CusNum_avg=sum(CusNum_fromStart.*[Time_interval 0] )/Timepoint(end);

QueLength=zeros(size(CusNum));

for i=1:length(CusNum)

if CusNum(i)>=2

QueLength(i)=CusNum(i)-1;

else

QueLength(i)=0;

end

end

QueLength_avg=sum([0 QueLength].*[Time_interval 0] )/Timepoint(end);%系统平均等待队长%仿真图

figure(1);

set(1,'position',[0,0,1000,700]);

subplot(2,2,1);

title('各顾客到达时间和离去时间');

stairs([0 ArriveNum],[0 t_Arrive],'b');

hold on;

stairs([0 LeaveNum],[0 t_Leave],'y');

legend('到达时间','离去时间');

hold off;

subplot(2,2,2);

stairs(Timepoint,CusNum,'b')

title('系统等待队长分布');

xlabel('时间');

ylabel('队长');

subplot(2,2,3);

title('各顾客在系统中的排队时间和等待时间');

stairs([0 ArriveNum],[0 t_Queue],'b');

hold on;

stairs([0 LeaveNum],[0 t_Wait],'y');

hold off;

legend('排队时间','等待时间');

%仿真值与理论值比较

disp(['理论平均等待时间t_Wait_avg=',num2str(1/(Mu-Lambda))]);

disp(['理论平均排队时间t_Wait_avg=',num2str(Lambda/(Mu*(Mu-Lambda)))]);

disp(['理论系统中平均顾客数=',num2str(Lambda/(Mu-Lambda))]);

disp(['理论系统中平均等待队长=',num2str(Lambda*Lambda/(Mu*(Mu-Lambda)))]);

disp(['仿真平均等待时间t_Wait_avg=',num2str(t_Wait_avg)])

disp(['仿真平均排队时间t_Queue_avg=',num2str(t_Queue_avg)])

disp(['仿真系统中平均顾客数=',num2str(CusNum_avg)]);

disp(['仿真系统中平均等待队长=',num2str(QueLength_avg)]);

五、数据结构

1.仿真设计算法(主要函数)

利用负指数分布与泊松过程的关系,产生符合泊松过程的顾客流,产生符合负指数分布的随机变量作为每个顾客的服务时间:

Interval_Arrive=-log(rand(1,SimTotal))/Lambda;%到达时间间隔,结果与调用exprnd(1/Lambda,m)函数产生的结果相同

Interval_Serve=-log(rand(1,SimTotal))/Mu;%服务时间间隔

t_Arrive(1)=Interval_Arrive(1);%顾客到达时间

时间计算

t_Wait=t_Leave-t_Arrive;%各顾客在系统中的等待时间

t_Queue=t_Wait-Interval_Serve; %各顾客在系统中的排队时间

由事件来触发仿真时钟的不断推进。每发生一次事件,记录下两次事件间隔的时间以及在该时间段内排队的人数:

Timepoint=[t_Arrive,t_Leave]; %系统中顾客数变化

CusNum=zeros(size(Timepoint));

CusNum_avg=sum(CusNum_fromStart.*[Time_interval 0] )/Timepoint(end); %系统中平均顾客数计算

QueLength_avg=sum([0 QueLength].*[Time_interval 0] )/Timepoint(end); %系统平均等待队长

2.算法的流程图

开始

输入仿真人数

计算第1个顾客的

系统是否接

标志位置0:i=i+1

计算第i个顾客的等待时

仿真时间是

输出结果

结束

六、仿真结果分析

顾客的平均等待时间与顾客的平均等待队长,计算其方差如下:

从上表可以看出,通过这种模型和方法仿真的结果和理论值十分接近,增加仿真顾客数时,可以得到更理想的结果。但由于变量定义的限制,在仿真时顾客总数超过1,500,000时会溢出。证明使此静态仿真的思想对排队系统进行仿真是切实可行的。实验结果截图如下(SimTotal分别为100、1000、10000、100000):

(仿真顾客总数为100000和1000000时,其图像与10000的区别很小)

七、遇到的问题及解决方法

1.在算法设计阶段对计算平均队长时对应的时间段不够清楚,重新画出状态转移图后,引入变量Timepoint用来返回按时间排序的到达和离开的时间点,从而得到正确的时间间隔内的CusNum,并由此计算出平均队长。

2.在刚开始进行仿真时仿真顾客数设置较小,得到的仿真结果与理论值相差巨大,进行改进后,得到的结果与理论值相差不大。

3.刚开始使用exprnd(Mu,m)产生负指数分布,但运行时报错,上网查找资料后找到替代方法:改成Interval_Serve=-log(rand(1,SimTotal))/Mu;方法生成负指数分布,运行正常。

八、实验心得

通过本次实验我对M/M/1单窗口无限排队系统有了更深的认识,同时对MatLab编程语言更加熟悉,并了解到仿真在通信网中的重要作用。此次实验我受益匪浅。

乐龙仿真软件实验报告2

计信学院上机报告 课程名称:配送与配送中心姓名:夏冰山学号:0892110220 指导教师:陈达强班级:物流08乙日期:2010-04-17 一、上机内容及要求: 根据实验三仓储型物流中心模型,在乐龙软件种完成模型的建立; 1.根据模型仿真的结果分析瓶颈的所在; 2.改进模型,再次进行模拟; 二、完成报告(预备知识、步骤、程序框图、程序、思考等): 建立模型:根据实验三的要求建立模型,如图1所示。 模拟条件:时间模式为1:1,其他设备的速度为默认状态。 模型瓶颈: 在模拟运行6分钟后产生瓶颈。由于装货平台出的机械手臂速度过慢,导致货物在传送带上堵塞,影响入库速度。为此我们依次加快了机械手臂的速度,AS/RS水平和垂直方向的速度,瓶颈随着相应设备速度的调整随之转移。但是由于AS/RS堆垛机的最大速度受限,所以加快速度只能够缓解情况,而不能从根本上解除瓶颈。 为此提出解决方案如下: ①如果AS/RS的装货平台和卸货平台在同一侧,将入库申请和出库申请分别排序,第一个出 库作业和第一个入库作业组合为一个联合作业任务,从而缩短存取周期、提高存取效率; ②将AS/RS的装货平台和出货平台分设在仓库的两端,合理考虑入库货位和出货货位的位置, 使得堆垛机在巷道中的运行路径不重复或者重复线路最短; ③增加AS/RS的入库/出库平台数量。 实验感想: 模拟后根据直接观察或者通过日志文件的分析得到瓶颈,眼睛直接看到的瓶颈有时未必是真正的问题所在。例如本次实验,瓶颈直接产生在机械手臂,但是进过分析我们知道真正的瓶颈是AS/RS的堆垛机的速度。所以在寻找瓶颈时不要被假象所误导,随之做出无效的改进方案。

信号与系统仿真实验报告

信号与系统仿真实验报告1.实验目的 了解MATLAB的基本使用方法和编程技术,以及Simulink平台的建模与动态仿真方法,进一步加深对课程内容的理解。 2.实验项目 信号的分解与合成,观察Gibbs现象。 信号与系统的时域分析,即卷积分、卷积和的运算与仿真。 信号的频谱分析,观察信号的频谱波形。 系统函数的形式转换。 用Simulink平台对系统进行建模和动态仿真。 3.实验内容及结果 3.1以周期为T,脉冲宽度为2T1的周期性矩形脉冲为例研究Gibbs现象。 已知周期方波信号的相关参数为:x(t)=∑ak*exp(jkω),ω=2*π/T,a0=2*T1/T,ak=sin(kωT1)/kπ。画出x(t)的波形图(分别取m=1,3,7,19,79,T=4T1),观察Gibbs现象。 m=1; T1=4; T=4*T1;k=-m:m; w0=2*pi/T; a0=2*T1/T; ak=sin(k*w0*T1)./(k*pi); ak(m+1)=a0; t=0:0.1:40; x=ak*exp(j*k'*w0*t); plot(t,real(x)); 3.2求卷积并画图 (1)已知:x1(t)=u(t-1)-u(t-2), x2(t)=u(t-2)-u(t-3)求:y(t)=x1(t)*x2(t)并画出其波形。 t1=1:0.01:2; f1=ones(size(t1)); f1(1)=0; f1(101)=0; t2=2:0.01:3; f2=ones(size(t2)); f2(1)=0; f2(101)=0; c=conv(f1,f2)/100;

t3=3:0.01:5; subplot(311); plot(t1,f1);axis([0 6 0 2]); subplot(312); plot(t2,f2);axis([0 6 0 2]); subplot(313); plot(t3,c);axis([0 6 0 2]); (2)已知某离散系统的输入和冲击响应分别为:x[n]=[1,4,3,5,1,2,3,5], h[n]=[4,2,4,0,4,2].求系 统的零状态响应,并绘制系统的响应图。 x=[1 4 3 5 1 2 3 5]; nx=-4:3; h=[4 2 4 0 4 2]; nh=-3:2; y=conv(x,h); ny1=nx(1)+nh(1); ny2=nx(length(nx))+nh(length(nh)); ny=[ny1:ny2]; subplot(311); stem(nx,x); axis([-5 4 0 6]); ylabel('输入') subplot(312); stem(nh,h); axis([-4 3 0 5]); ylabel('冲击效应') subplot(313); stem(ny,y); axis([-9 7 0 70]); ylabel('输出'); xlabel('n'); 3.3 求频谱并画图 (1) 门函数脉冲信号x1(t)=u(t+0.5)-u(t-0.5) N=128;T=1; t=linspace(-T,T,N); x=(t>=-0.5)-(t>=0.5); dt=t(2)-t(1); f=1/dt; X=fft(x); F=X(1:N/2+1); f=f*(0:N/2)/N; plot(f,F)

安工大系统工程实验报告

《系统工程》实验报告 姓名:**** 班级:**** 学号:**** 指导老师:**** 2014年12 月4 日

实验三 简单库存模型 一、 实验目的 1、 熟悉STELLA 软件的基本操作 2、 加深对系统动力学主要要素和基本思想的理解 3、 学会利用STELLA 软件建立一阶反馈系统模型、仿真运行及结果分析 二、 实验要求 1、简单库存模型各变量及其因果关系图如下图: 2、各变量之间的关系可用如下方程表示: LI?K=I ?J+DT*R1?JK NI=1000 RR1?KL=DK/Z AD?K=Y-I ?K CZ=5 CY=6000 3、要求利用STELLA 建立上述库存模型的流图,仿真计算并分析结果 三、实验步骤 1、确定水准变量、速率变量、辅助变量、常量及水准变量初值; 2、熟悉STELLA 软件操作指导,建立模型的四个基本构造块为:栈(stock )、流(flow )、转换器(converter)、连接器(connector ),设置仿真参数(采用默认值); 2、根据因果关系图连接流; 3、确定水准方程、速率方程、辅助方程、赋初值方程和常量方程; 库存量 库存 差额 订货量 + (—) R1 D I — + 期望库存Y

4、建立模型仿真结果分析所需的数据模块; 5、仿真及结果分析 实验内容: 1.确定水准变量、速率变量、辅助变量、常量及水准变量初值; 2.建立四个基本块,根据关系图连接,如下图 3.确定水准方程、速率方程、辅助方程、赋初值方程和常量方程,并且运行仿真得输出特性示意图,如下图.

4.仿真得出数据随时间变化的精确流程,如下图

计算机仿真实训实验报告实验1-4

实验一 熟悉MATLAB 工作环境 16电气5班 周树楠 20160500529 一、实验目的 1.熟悉启动和退出MATLAB 软件的方法。 2.熟悉MATLAB 软件的运行环境。 3.熟悉MATLAB 的基本操作。 二、实验设备及条件 计算机一台(带有MATLAB6.0以上的软件境)。 三、实验内容 1.练习下面指令: cd,clear,dir,path,help,who,whos,save,load 。 2.建立自己的工作目录MYBIN 和MYDATA ,并将它们分别加到搜索路径的前面或者后面。 3.求23)]47(*212[÷-+的算术运算结果。 4.M 文件的建立,建立M 文件,求出下列表达式的值: ?? ????-+=++=+= 545.0212),1ln(21 185sin 2222 1i x x x z e z o 其中

5.利用MATLAB的帮助功能分别查询inv、plot、max、round函数的功能和用法。 四、运行环境介绍及注意事项 1.运行环境介绍 打开Matlab软件运行环境有图1-1所示的界面

图1-1 MATLAB的用户界面 操作界面主要的介绍如下: 指令窗( Command Window ),在该窗可键入各种送给 MATLAB 运作的指令、函数、表达式,并显示除图形外的所以运算结果。 历史指令窗( Command History ),该窗记录已经运行过的指令、函数、表达式;允许用户对它们进行选择复制、重运行,以及产生 M 文件。 工作空间浏览器( Workspace Browser ),该窗口罗列出 MATLAB 工作空间中所有的变量名、大小、字节数;并且在该窗中,可对变量进行观察、编辑、提取和保存。 其它还有当前目录浏览器( Current Directory Browser )、 M 文件编辑 / 调试器(Editor/Debugger )以及帮助导航/ 浏览器(Help Navigator/Browser )等,但通常不随操作界面的出现而启动。 利用 File 菜单可方便对文件或窗口进行管理。其中 File | New 的各子菜单, M-file ( M 文件)、 Figure (图形窗口)、或 Model ( Simulink 编辑界面)分别可创建对应文件或模块。 Edit 菜单允许用户和 Windows 的剪切板交互信息。 2.在指令窗操作时应特别注意以下几点 1)所有输入的指令、公式或数值必须按下回车键以后才能执行。例如: >>(10*19+2/4-34)/2*3 (回车) ans= 234.7500 2)所有的指令、变量名称都要区分字母的大小写。 3)%作为MATLAB注释的开始标志,以后的文字不影响计算的过程。 4)应该指定输出变量名称,否则MATLAB会将运算结果直接存入默认的输出变量名ans。 5)MATLAB可以将计算结果以不同的精确度的数字格式显示,可以直接在指令视窗键入不同的数字显示格式指令。例如:>>format short (这是默认的) 6)MATLAB利用了↑↓二个游标键可以将所输过的指令叫回来重复使用。按下↑则前一次输入的指令重新出现,之后再按Enter键,即再执行前一次的指令。

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

通信工程系统仿真实验报告

通信原理课程设计 实验报告 专业:通信工程 届别:07 B班 学号:0715232022 姓名:吴林桂 指导老师:陈东华

数字通信系统设计 一、 实验要求: 信源书记先经过平方根升余弦基带成型滤波,成型滤波器参数自选,再经BPSK ,QPSK 或QAM 调制(调制方式任选),发射信号经AWGN 信道后解调匹配滤波后接收,信道编码可选(不做硬性要求),要求给出基带成型前后的时域波形和眼图,画出接收端匹配滤波后时域型号的波形,并在时间轴标出最佳采样点时刻。对传输系统进行误码率分析。 二、系统框图 三、实验原理: QAM 调制原理:在通信传渝领域中,为了使有限的带宽有更高的信息传输速率,负载更多的用户必须采用先进的调制技术,提高频谱利用率。QAM 就是一种频率利用率很高的调制技术。 t B t A t Y m m 00sin cos )(ωω+= 0≤t ≤Tb 式中 Tb 为码元宽度t 0cos ω为 同相信号或者I 信号; t 0s i n ω 为正交信号或者Q 信号; m m B A ,为分别为载波t 0cos ω,t 0sin ω的离散振幅; m 为 m A 和m B 的电平数,取值1 , 2 , . . . , M 。 m A = Dm*A ;m B = Em*A ; 式中A 是固定的振幅,与信号的平均功率有关,(dm ,em )表示调制信号矢量点在信号空

间上的坐标,有输入数据决定。 m A 和m B 确定QAM 信号在信号空间的坐标点。称这种抑制载波的双边带调制方式为 正交幅度调制。 图3.3.2 正交调幅法原理图 Pav=(A*A/M )*∑(dm*dm+em*em) m=(1,M) QAM 信号的解调可以采用相干解调,其原理图如图3.3.5所示。 图3.3.5 QAM 相干解调原理图 四、设计方案: (1)、生成一个随机二进制信号 (2)、二进制信号经过卷积编码后再产生格雷码映射的星座图 (3)、二进制转换成十进制后的信号 (4)、对该信号进行16-QAM 调制 (5)、通过升余弦脉冲成形滤波器滤波,同时产生传输信号 (6)、增加加性高斯白噪声,通过匹配滤波器对接受的信号滤波 (7)、对该信号进行16-QAM 解调 五、实验内容跟实验结果:

物流仿真实验报告

物流系统建模与仿真课程实验报告 实验名称:物流系统建模与仿真Flexsim实验 学院:吉林大学机械与航空航天工程学院 专业班: 141803 姓名:龙振坤 学号: 14180325 2019年5月19日

一、实验目的 用flexsim模拟仓库分拣系统。 二、仿真实验内容(简要阐述仿真模型) 将五种不同货物通过分拣传送带分拣到五条传送带上,再由叉车将这五种货物分别运送到不同的货架之上。 三、仿真模型建模步骤 1、打开软件flexsim,并新建文件。 2、拉出所需要的离散实体: 发生器、暂存区、分拣传送带、传送带(5个)、叉车(3个)、货架(5个)。(如图) 3、设置分拣传送带、传送带、货架参数,并调整位置 分拣传送带布局:第一段平直,长度为5;第二段弯曲,角度为90°,半径为5;第三段平直,长度为20。传送带布局:长度为10。 货架布局:10层10列。

4、连接各个离散实体 将发生器与暂存区用“A”连接;暂存区与分拣传送带用“A”连接; 分拣传送带与传送带1、2、3、4、5分别用“A”连接; 传送带1、2、3、4、5与货架1、2、3、4、5分别用“A”连接; 传送带1、2与叉车1用“S”连接;传送带3、4与叉车2用“S”连接;传送带5与叉车3用“S”连接 5、设置各个离散实体的参数 发生器: 分拣传送带: 传送带:在临时实体流处勾选使用运输工具

6、运行文件 运行结果 四、课程体会及建议 课程体会: 作为flexsim软件的初学者,一开始在完成各种实例,熟悉各种操作的命令时确实遇到了不少的问题,但由于老师的耐心解答、同学的帮助、以及自己通过网络所寻求到的帮助,最终能够逐布掌握flexsim的一些基本使用方法。以目前的眼光看来,flexsim是一个功能非常强大的管理类模拟软件,这是我作为一名机械专业的学生在今后的学习中很少有机会能够接触到的。对于我来说,物流系统建模与仿真这门课不仅让我了解并掌握了一种从新的软件、一种没有见过的工具,更重要的是他对于我的一种工程思想的培养。在使用flexsim的过程中,深感整体性思想的重要性,操作过程中,每一个功能的实现都离不开各个离散实体的配合,选择何种实体型,使用何种函数命令,构成怎样的连接,这些都是功能可以最终实现的关键。 课程建议: ①没有使用麦克,声音过小,中后排听课效率低;②投影设备老化,颜色浅,清晰度低,部分操作难以看清,尤其是在输入一些代码的时候;③版本存在差异,属性界面略有区别,在一开始学习的时候很难跟上老师的脚步,强烈建议以后将该课程改为在机房上课。

系统仿真实验报告

中南大学系统仿真实验报告 指导老师胡杨 实验者 学号 专业班级 实验日期 2014.6.4 学院信息科学与工程学院

目录 实验一MATLAB中矩阵与多项式的基本运算 (3) 实验二MATLAB绘图命令 (7) 实验三MATLAB程序设计 (9) 实验四MATLAB的符号计算与SIMULINK的使用 (13) 实验五MATLAB在控制系统分析中的应用 (17) 实验六连续系统数字仿真的基本算法 (30)

实验一MATLAB中矩阵与多项式的基本运算 一、实验任务 1.了解MATLAB命令窗口和程序文件的调用。 2.熟悉如下MATLAB的基本运算: ①矩阵的产生、数据的输入、相关元素的显示; ②矩阵的加法、乘法、左除、右除; ③特殊矩阵:单位矩阵、“1”矩阵、“0”矩阵、对角阵、随机矩阵的产生和运算; ④多项式的运算:多项式求根、多项式之间的乘除。 二、基本命令训练 1.eye(m) m=3; eye(m) ans = 1 0 0 0 1 0 0 0 1 2.ones(n)、ones(m,n) n=1;m=2; ones(n) ones(m,n) ans = 1 ans = 1 1

3.zeros(m,n) m=1,n=2; zeros(m,n) m = 1 ans = 0 0 4.rand(m,n) m=1;n=2; rand(m,n) ans = 0.8147 0.9058 5.diag(v) v=[1 2 3]; diag(v) ans = 1 0 0 0 2 0 0 0 3 6.A\B 、A/B、inv(A)*B 、B*inv(A) A=[1 2;3 4];B=[5 6;7 8]; a=A\B b=A/B c=inv(A)*B d=B*inv(A) a = -3 -4 4 5 b = 3.0000 -2.0000 2.0000 -1.0000

系统工程实验报告

系统工程实验报告 学院:管工学院 班级:工业工程102班 姓名:管华同 学号:109094042

实验一:解释结构模型 一、实验目的: 熟悉EXCEL,掌握解释结构模型规范方法。 二、实验内容: 1.已知可达矩阵如下表1 12345678 111010000 201000000 311110000 401010000 501011000 601011111 701011011 800000001 2. EXCEL中对错误!未找到引用源。中的可达矩阵用实用方法建立其递阶结构模型。(1)对可达矩阵进行缩减,得到缩减矩阵 12345678 111010000 201000000 311110000 401010000 501011000 601011111 701011011 800000001 (2)按小到大给每行排序 1 2 3 4 5 6 7 8 每行的和 2 0 1 0 0 0 0 0 0 1 8 0 0 0 0 0 0 0 1 1 4 0 1 0 1 0 0 0 0 2 1 1 1 0 1 0 0 0 0 3 5 0 1 0 1 1 0 0 0 3 3 1 1 1 1 0 0 0 0 4 7 0 1 0 1 1 0 1 1 5 6 0 1 0 1 1 1 1 1 6

(3)调整行列构成对角单位矩阵 2 8 4 1 5 3 7 6 每行的和 2 1 0 0 0 0 0 0 0 1 8 0 1 0 0 0 0 0 0 1 4 1 0 1 0 0 0 0 0 2 1 1 0 1 1 0 0 0 0 3 5 1 0 1 0 1 0 0 0 3 3 1 0 1 1 0 1 0 0 4 7 1 1 1 0 1 0 1 0 5 6 1 1 1 0 1 0 1 1 6 (4)画出递阶结构有向图 28 4 15 37 6(4)递阶结构模型完成。第一级第五级第二级 第三级第四级

物流系统flexsim仿真实验报告

广东外语外贸大学 物流系统仿真实验 通达企业立体仓库实验报告 指导教师:翟晓燕教授专业:物流管理1101 姓名:李春立 20110402088 吴可为 201104020117 陈诗涵 201104020119 丘汇峰 201104020115

目录 一、企业简介 (2) 二、通达企业立体仓库模型仿真 (2) 1................................ 模型描述:2 2................................ 模型数据:3 3.............................. 模型实体设计4 4.................................. 概念模型4 三、仿真模型内容——Flexsim模型 (4) 1.................................. 建模步骤4 2.............................. 定义对象参数5 四、模型运行状态及结果分析 (7) 1.................................. 模型运行7 2................................ 结果分析:7 五、报告收获 (9) 一、企业简介 二、通达企业立体仓库模型仿真 1. 模型描述: 仓储的整个模型分为入库和出库两部分,按作业性质将整个模型划分为暂存区、分拣区、

储存区以及发货区。 入库部分的操作流程是: ①.(1)四种产品A,B,C,D首先到达暂存区,然后被运输到分类输 送机上,根据设定的分拣系统将A,B,C,D分拣到1,2,3,4,端口; ②.在1,2,3,4,端口都有各自的分拣道到达处理器,处理器检验合格 的产品被放在暂存区,不合格的产品则直接吸收掉;每个操作工则将暂存 区的那些合格产品搬运到货架上;其中,A,C产品将被送到同一货架上, 而B,D则被送往另一货架; ③.再由两辆叉车从这两个货架上将A/B,C/D运输到两个暂存区上; 此时,在另一传送带上送来包装材料,当产品和包装材料都到达时,就可 以在合成器上进行对产品进行包装。 出库部分的操作流程是:包装完成后的产品将等待被发货。 2. 模型数据: ①.四种货物A,B,C,D各自独立到达高层的传送带入口端: A: normal(400,50) B: normal(400,50) C: uniform(500,100) D: uniform(500,100) ②.四种不同的货物沿一条传送带,根据品种的不同由分拣装置将其推 入到四个不同的分拣道口,经各自的分拣道到达操作台。 ③.每检验一件货物占用时间为60,20s。 ④.每种货物都可能有不合格产品。检验合格的产品放入检验器旁的暂 存区;不合格的吸收器直接吸收;A的合格率为95%,B为96%,C的合格 率为97%,D的合格率为98%。 ⑤.每个检验操作台需操作工一名,货物经检验合格后,将货物送至货 架。 ⑥.传送带叉车的传送速度采用默认速度(包装物生成时间为返回60 的常值),储存货物的容器容积各为1000单位,暂存区17,18,21容量为 10;

模电仿真实验报告。

模拟电路仿真实验报告 张斌杰生物医学工程141班学号6103414032 Multisim软件使用 一、实验目的 1、掌握Multisim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、Multisim软件介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 一、实验名称: 仪器放大器设计与仿真 二、实验目的 1、掌握仪器放大器的设计方法 2、理解仪器放大器对共模信号的抑制能力 3、熟悉仪器放大器的调试功能 4、掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏表信 号发生器等虚拟仪器的使用 三、设计实验电路图:

四、测量实验结果: 差模分别输入信号1mv第二条线与第三条线:第一条线输出为差模放大为399mv。 共模输入2mv的的电压,输出为2mv的电压。 五、实验心得: 应用Multisim首先要准备好器件的pspice模型,这是最重要的,没有这个东西免谈,当然Spice高手除外。下面就可以利用Multisim的元件向导功能制作自己的仿真元件模型了。将刚刚做好的元件保存,你可能注意到了,保存的路径里面没有出现Master Database,即主数据库,这就是Multisim做的较好的其中一方面,你无论是新建元件还是修改主数据库里面的元件,都不会影响主数据库里面的元件,选好路径以后点击Finish即可,一个新元件就被创建了。在应用电子仿真软件 Multisim进行虚拟仿真时,有许多传感器或新器件,只要知道了它们的电特性或在电路中的作用,完全可以灵活采用变通的办法代替进行仿真,本来软件就是进行虚拟实验的,并不一定非要用真实元件不可,这样可以大大地拓宽电子仿真软件 Multisim的应用范围。再说用软件仿真时不存在损坏和烧毁元件、仪器的问题,只要设计好了电路都可以试一试,仿真成功了就可以进行实际电路的组装和调试,不

交通运输系统仿真实验报告

一、系统描述 1.1.系统背景 本系统将基于下面的卫星屏幕快照创建一个模型。当前道路网区域的两条道路均为双向,每个运动方向包含一条车道。Tapiolavagen路边有一个巴士站,Menninkaisentie路边有一个带五个停车位的小型停车场。 1.2.系统描述 (1)仿真十字路口以及三个方向的道路,巴士站,停车点;添加小汽车、公交车的三维动画,添加红绿灯以及道路网络描述符; (2)创建仿真模型的汽车流程图,三个方向产生小汽车,仿真十字路口交通运行情况。添加滑条对仿真系统中的红绿灯时间进行实时调节。添加分析函数,统计系统内汽车滞留时间,用直方图进行实时展示。 二、仿真目标 1、timeInSystem值:在流程图的结尾模块用函数统计每辆汽车从产生到丢弃的,在系统中留存的时间。 2、p_SN为十字路口SN方向道路的绿灯时间,p_EW为十字路口EW方向道路的绿灯时间。 3、Arrival rate:各方向道路出现车辆的速率(peer hour)。

三、系统仿真概念分析 此交通仿真系统为低抽象层级的物理层模型,采用离散事件建模方法进行建模,利用过程流图构建离散事件模型。 此十字路口交通仿真系统中,实体为小汽车和公交车,可以源源不断地产生;资源为道路网络、红绿灯时间、停车点停车位和巴士站,需要实施分配。系统中小汽车(car)与公共汽车(bus)均为智能体,可设置其产生频率参数,行驶速度,停车点停留时间等。 四、建立系统流程 4.1.绘制道路 使用Road Traffic Library中的Road模块在卫星云图上勾画出所有的道路,绘制交叉口,并在交叉口处确保道路连通。 4.2.建立智能体对象 使用Road Traffic Library中的Car type模快建立小汽车(car)以及公共汽车(bus)的智能体对象。 4.3.建立逻辑 使用Road Traffic Library中的Car source、Car Move To、Car Dispose、

控制系统仿真实验报告

哈尔滨理工大学实验报告 控制系统仿真 专业:自动化12-1 学号:1230130101 姓名:

一.分析系统性能 课程名称控制系统仿真实验名称分析系统性能时间8.29 地点3# 姓名蔡庆刚学号1230130101 班级自动化12-1 一.实验目的及内容: 1. 熟悉MATLAB软件的操作过程; 2. 熟悉闭环系统稳定性的判断方法; 3. 熟悉闭环系统阶跃响应性能指标的求取。 二.实验用设备仪器及材料: PC, Matlab 软件平台 三、实验步骤 1. 编写MATLAB程序代码; 2. 在MATLAT中输入程序代码,运行程序; 3.分析结果。 四.实验结果分析: 1.程序截图

得到阶跃响应曲线 得到响应指标截图如下

2.求取零极点程序截图 得到零极点分布图 3.分析系统稳定性 根据稳定的充分必要条件判别线性系统的稳定性最简单的方法是求出系统所有极点,并观察是否含有实部大于0的极点,如果有系统不稳定。有零极点分布图可知系统稳定。

二.单容过程的阶跃响应 一、实验目的 1. 熟悉MATLAB软件的操作过程 2. 了解自衡单容过程的阶跃响应过程 3. 得出自衡单容过程的单位阶跃响应曲线 二、实验内容 已知两个单容过程的模型分别为 1 () 0.5 G s s =和5 1 () 51 s G s e s - = + ,试在 Simulink中建立模型,并求单位阶跃响应曲线。 三、实验步骤 1. 在Simulink中建立模型,得出实验原理图。 2. 运行模型后,双击Scope,得到的单位阶跃响应曲线。 四、实验结果 1.建立系统Simulink仿真模型图,其仿真模型为

系统工程仿真计算实验报告

系统工程实验报告 开课实验室: 1、实验目的 通过vensim仿真软件使用介绍,结合理论课内容,根据系统工程课后案例构建系统动力学模型,使学生得到仿真软件的基本技能训练。 2、实验内容 本部分实验分两个环节,第一环节主要熟悉vensim软件各功能模块的情况并能够完成课本例题的仿真;第二个环节主要是运用vensim软件解决课后习题第9、10、11、12题的流程图绘制以及仿真,并结合部分试题撰写实验报告(把过程截图放到报告中)。 9、绘制因果关系图和流程图 9.1因果关系图 9.2流程图 10 画出因果关系图和流程图,写出相应的DYNAMO方程,对该校未来3~5年的在校本科生和教师人数进行仿真计算,分析系统动力学方法的优点,以及缺点,能否用其他模型

方法来分?又如何分析? 10.1因果关系图 10.2流程图 10.3DYNAMO方程 L S.K=S.J+DT*SR.JK L T.K=T.J+DT*TR.JK N S=10000 N T=1500 R SR.KL=X*T.K R TR.KL=W*S.K C X=1 C Y=0.05 10.4仿真计算(以年为单位)

系统动力学方法的优点: (1)系统动力学是自然科学的理论体系(系统论,控制论,信息论)与经济学的综合,可以用来分析复杂的社会经济系统,帮助做出决策。 (2)系统动力学的方法是一种面向实际结构模型的建模方法,可以方便的处理非线性和时变现象,能做长期、动态、战略的仿真分析与研究。 (3)系统动力学定义复杂系统为高阶次、多回路和非线性的反馈结构,绘制因果关系图和流图,可以知道各个因素之间的因果关系。 (4)系统动力学以仿真实验为基本手段,以计算机为主要工具,进行计算时较为方便,数据较为精确。 系统动力学的缺点: (1)系统动力学是在对一些系统的研究之后,进行主观抽象和和概括的结果,存在一定的主观性。(2)进行系统动力学仿真计算时,必须有数据的支撑才能进行仿真。 (3)DYNAMO方程的建立需要一定的数学基础,需要也一定的计算机软件操作基础。 (4)系统动力学能做长期、动态的战略分析,相对于短期,中期,较为有限。 可以使用数学模型进行分析,采用状态空间模型法,构建差分方程。 11、 绘制相应的流程图以及因果关系图,在因果关系图当中找出因果反馈回路,并判断回路的性质,根据给出的方程,进一步仿真,提供仿真结果,并对结果进行分析。 11.1因果关系图 一阶正反馈回路:城市人口数、年增长人口数 一阶负反馈回路:年新增个体网点服务数、个体网点服务数、实际拥有服务网点数、千人均网点数、实际人均服务网点与期望差。

物流系统仿真——实验报告

《物流系统仿真》 实验报告书 实验报告题目: 物流系统仿真学院名称: 专业: 班级: 姓名: 学号: 成绩: 2015年5月

实验报告 一、实验名称 物流系统仿真 二、实验要求 ⑴根据模型描述与模型数据对配送中心进行建模; ⑵分析仿真实验结果,找出配送中心运作瓶颈,提出改进措施。 三、实验目得 1、掌握仿真软件Flexsim得操作与应用,熟悉通过软件进行物流仿真建模。 2、记录Flexsim软件仿真模拟得过程,得出仿真得结果。 3、总结Flexsim仿真软件学习过程中得感受与收获。 三、实验设备 PC机,Windows XP,Flexsim教学版 四、实验步骤 1 货物得入库检验过程模型描述 三种货物以特定得批量在特定得时间送达仓库得暂存区,由两名操作员将它们搬运到相对应得检验台上去,检验时需要操作员对检验设备进行预置,并在完成检验时自动贴上相应得标签。货物经过检验后,通过不同得三个传输带传送到同一个位置。 构建模型布局 为验证Flexsim软件已被正确安装,双击桌面上得Flexsim图标打开应用程序。一旦软件安装好您应该瞧到Flexsim菜单与工具条、实体库,与正投影模型视窗.

第1步:在模型中生成所需实体 从左边得实体库中拖动一个发生器到模型(建模)视窗中。具体操作就是,点击并按住实体库中得实体,然后将它拖动到模型中想要放置得位置,放开鼠标键。这将在模型中建立一个发生器实体,把其余实体按照同样得方法生成。如下图所示。一旦创建了实体,将会给它赋一个默认得名称,在以后定义得编辑过程中,可以对模型中得实体进行重新命名。 完成后,将瞧到上面这样得一个模型.模型中有1个发生器、1个暂存区、3个处理器、3个输送机、1个分配器、2名操作员与1个吸收器。 第2步:定义物流流程 (1)连接端口

单片机实验报告含仿真设计

单片机原理及应用课程 实验报告 专业: 班级: : 学号:

实验一、keilC51及proteus软件的使用 一、实验目的: 1、掌握keil和proteus软件的基本操作 2、通过具体实例掌握keil和proteus软件的使用。 二、实验原理: keil使用步骤,proteus使用步骤 三、程序: 四、实验结果分析: 五、总结:学会了使用keil和proteus软件,掌握了利用keil和proteus 软件进行仿真的步骤。

实验二、并行输入/输出接口实验 一、实验目的: 1、进一步熟悉keil仿真软件、proteus仿真软件的使用。 2、了解并熟悉单片机I/O口和LED灯的电路结构,学会构建简单的流水灯电路。 3、掌握C51中单片机I/O口的编程方法和使用I/O口进行输入输出的注意事项。 二、实验原理: MCS 51单片机的串行口在实际使用中通常用于三种情况:利用方式 0 扩展并行 i/0 接口:利用方式 1 实现点对点的双机通信;利用方式 2 或方式 3 实现多机通信。利用方式 0 扩展并行 i/0 接口 MCS 5 1 单片机的串行口在方式 0 时,若外接一个串入并出的移位寄存器,就可以扩展并行输出口;若外接一个并入串出的移位寄存器,就可以扩展并行输入口。 三、程序: #include sbit P1_0=P1^0; void main() { unsigned char i; unsigned int j; SCON=0x00; i=0x01; for(;;) {

P1_0=0; SBUF=I; while(!TI) {i} P1_0=1;TI=0; for(j=0;j<=254;j++){;} i=i*2; if(i==0x00) i=0x01; } } 四、实验结果分析: 五、总结:进一步熟悉了keil仿真软件、proteus仿真软件的使用。了解并熟悉单片机I/O口和LED灯的电路结构,学会了构建简单的流水灯电路。掌握了C51中单片机I/O口的编程方法和使用I/O口进行输入输出的注意事项。

物流仿真实验报告

《物流仿真实验》 实验报告书 实验报告题目:物流仿真实验 学院名称:管理学院 专业:物流管理 班级:物流1303 姓名:孟颖颖 学号:0325

成绩: 2016年7月 实验报告 一、实验名称 物流仿真实验 二、实验要求 ⑴根据模型描述和模型数据对配送中心进行建模; ⑵分析仿真实验结果,进行利润分析,找出利润最大化的策略。 三、实验目的 1、掌握仿真软件Flexsim的操作和应用,熟悉通过软件进行物流仿真建模。 2、记录Flexsim软件仿真模拟的过程,得出仿真的结果。 3、总结Flexsim仿真软件学习过程中的感受和收获。

三、实验设备 (1)硬件及其网络环境 服务器一台:PII400/128M以上配置、客户机100台、局域网或广域网。 (2)软件及其运行环境 Flexsim,Windows 2000 Server、SQL Server 以上版本、IIS 、SQL Server 数据库自动配置、IIS 虚拟目录自动配置 四、实验步骤 1 概念模型 2 建立Flexsim 模型 第一步:在模型中加入实体 从模型中拖入3个source、6个processor、3个Rack、3个Queue和1个Sink 到操作区,如图:

第二步:连接端口 根据配送流程,对模型进行适宜的连接,所有端口连接均用A连接,如图: 第三步:Source的参数设置 为使Source产生实体不影响后面Processor的生产,尽可能的将时间间隔设置尽可能的小,并对三个Source做出同样的设定。 打开Source参数设置窗口,将时间到达间隔设置为常数1,同时为对三个实体进行区别,进行设置产品颜色,点击触发器,打开离开触发的下拉菜单,点击设置临时实体类型,设置不同实体类型,颜色自然发生变化。并对另外两个Source 进行同样的设置,如图:

通信系统仿真实验报告(DOC)

通信系统实验报告——基于SystemView的仿真实验 班级: 学号: 姓名: 时间:

目录 实验一、模拟调制系统设计分析 -------------------------3 一、实验内容-------------------------------------------3 二、实验要求-------------------------------------------3 三、实验原理-------------------------------------------3 四、实验步骤与结果-------------------------------------4 五、实验心得------------------------------------------10 实验二、模拟信号的数字传输系统设计分析------------11 一、实验内容------------------------------------------11 二、实验要求------------------------------------------11 三、实验原理------------------------------------------11 四、实验步骤与结果------------------------------------12 五、实验心得------------------------------------------16 实验三、数字载波通信系统设计分析------------------17 一、实验内容------------------------------------------17 二、实验要求------------------------------------------17 三、实验原理------------------------------------------17 四、实验步骤与结果------------------------------------18 五、实验心得------------------------------------------27

系统工程仿真实验报告

系统工程仿真实验报告 姓名:_蒋智颖_ 学号:_110061047_ 成绩:___________ 实验一:基于VENSIM的系统动力学仿真 一、实验目的 VENSIM是一个建模工具,可以建立动态系统的概念化的,文档化的仿真、分析和优化模型。PLE(个人学习版)是VENSIM的缩减版,主要用来简单化学习动态系统,提供了一种简单富有弹性的方法从常规的循环或储存过程和流程图建立模型。本实验就是运用VENSIM进行系统动力学仿真,进一步加深对系统动力学仿真的理解。 二、实验软件 VENSIM PLE 三、原理 1、在VENSIM中建立系统动力学流图; 2、写出相应的DYNAMO方程; 3、仿真出系统中水准变量随时间的响应趋势; 四、实验内容及要求 某城市国营和集体服务网点的规模可用SD来研究。现给出描述该问题的DYNAMO方程及其变量说明。 L S·K=S·J+DT*NS·JK N S=90 R NS·KL=SD·K*P·K/(LENGTH-TIME·K) A SD·K=SE-SP·K C SE=2 A SP·K=SR·K/P·K A SR·K=SX+S·K C SX=60 L P·K=P·J+DT*NP·JK N P=100 R NP·KL=I*P·K C I=0.02 其中:LENGTH为仿真终止时间、TIME为当前仿真时刻,均为仿真控制变量;S为个体服务网点数(个)、NS为年新增个体服务网点数(个/年)、SD为实际千人均服务网点与期望差(个/千人)、SE为期望的千人均网点数、SP为的千人均网点数(个/千人)、SX为非个体服务网点数(个)、SR为该城市实际拥有的服务网点数(个)、P为城市人口数(千人)、NP为年新

仿真实验报告

仿真软件实验 实验名称:基于电渗流得微通道门进样得数值模拟 实验日期:2013、9、4 一、实验目得 1、对建模及仿真技术初步了解 2、学习并掌握sol Multiphysics得使用方法 3、了解电渗进样原理并进行数值模拟 4、运用sol Multiphysics建立多场耦合模型,加深对多耦合场得认识二、实验设备 实验室计算机,solMultiphysics 3、5a软件。 三、实验步骤 1、建立多物理场操作平台 打开软件,模型导航窗口,“新增”菜单栏,点击“多物理场”,依次新增: “微机电系统模块/微流/斯托克斯流(mmglf)” “ACDC模块/静态,电/传导介质DC(emdc)” “微机电系统模块/微流/电动流(chekf)” 2、建立求解域 工作界面绘制矩形,参数设置:宽度6e-5,高度3e-6,中心(0,0)。复制该矩形,旋转90°。两矩形取联集,消除内部边界。5与9两端点取圆角,半径1e-6。求解域建立完毕。 3、网格划分 菜单栏,网格,自由网格参数,通常网格尺寸,最大单元尺寸:4e-7。 4、设置求解域参数 求解域模式中,斯托克斯流与传导介质物理场下参数无需改动,电动流物理场下,D各向同性,扩散系数1e-8,迁移率2e-11,x速度u,y速度v,势能V。 5、设置边界条件 mmglf—入口1与7边界“进口/层流流进/0、00005” 出口5与12边界“出口/压力,粘滞应力/0”; emdc—入口1与7边界“电位能/10V”

出口5与12边界“接地” 其余边界“电绝缘”; chekf—入口1“浓度/1”,7“浓度/0” 出口5与12“通量/向内通量-nmflux_c_chekf” 其余边界“绝缘/对称”。 6、样品预置 (1)求解器参数默认为稳态求解器,不用修改。 (2)求解器管理器设置求解模式:初始值/初始值表达式,点变量值不可解与线性化/从初始值使用设定。 (3)首先求解流体,对斯托克斯流求解,观察求解结果,用速度场表示。 (4)再求解电场,改变求解模式,点变量值不可解与线性化/当前解,对传导介质 DC求解,观察求解结果,用电位能表示。

相关文档
最新文档