铝合金应力腐蚀理论研究现状

铝合金应力腐蚀理论研究现状
铝合金应力腐蚀理论研究现状

铝合金应力腐蚀理论研究现状

经过一个多世纪的研究,对于引起SCC的机理学术界仍然存在分歧。目前被普遍接受的机理是氢致开裂和阳极溶解机理。

1、氢致开裂

七十年代中期以来,较多实验表明,7×××系高强铝合金的SCC属于氢致开裂机理。该理论认为:(1)氢通过位错迁移到晶界,积聚在析出相附近,使晶界的结合强度大大降低,弱化晶界,造成沿晶断裂;(2)由于氢积聚在裂纹内,形成的氢气压促使合金断裂;(3)氢促进合金形变而致使断裂;(4)形成的氢化物促使合金断裂.目前提出的氢致开裂机理主要有如下理论:

(a)氢压理论:当金属中存在过饱和H时,将在各种显微缺陷处结合成H2,室温是不可逆反应,即H2不会再分解成H.随着缺陷处H2浓度增加,氢压也增大.当氢压大于屈服强度时就会产生局部塑性变形,使表层鼓起,形成氢气泡.

(b)弱键理论:金属中的氢降低原子键结合力,当局部应力集中等于原子键结合力时原子键破裂,微裂纹形核.

(c)氢降低表面能理论:氢降低键合力的同时必然降低表面能,反之亦然.氢吸附在金属裂纹内表面,使表面能降低,导致裂纹失稳扩展所需的临界应力下降.由于没有考虑塑性变形功,故对金属材料不适用.

(d)氢致开裂综合机理:此机理综合考虑了氢促进局部塑性变形、氢降低原子键合力以及氢压作用.

2、阳极溶解

阳极溶解理论[7~9]认为阳极金属的不断溶解导致SCC裂纹的形核和扩展,造成合金结构的断裂.铝合金SCC的阳极溶解理论的主要观点如下:

(1)阳极通道理论:腐蚀沿局部通道发生并产生裂纹,拉应力垂直于通道,在局部裂纹尖端上产生应力集中.铝合金中预先存在的阳极通道由晶界析出相与基体电位差引起,而应力则使裂纹张开暴露出新鲜表面.在此情形下,腐蚀沿晶界加速进行.

(2)滑移溶解理论:发生SCC的铝合金表面氧化膜存在局部薄弱点,在应力作用下合金基体内部位错会沿滑移而产生移动,形成滑移阶梯.当滑移阶梯大、表面膜又不能随滑移阶梯的形成而发生相应变形时,膜就会破裂并裸露出新鲜表面,与腐蚀介质接触,发生快速阳极溶解.

(3)膜破裂理论:腐蚀介质中金属表面存在保护膜,由于遭受应力或活性离子的作用而引起破裂,裸露的新鲜表面与其余表面膜构成小阳极大阴极的腐蚀电池,导致新鲜表面发生阳极溶解.

3、阳极溶解与氢致开裂共同作用

阳极溶解与氢致开裂是两个不同的概念,单纯的阳极溶解可通过阴极保护进行预防,而对于氢致开裂,阴极极化往往会促进开裂.有些体系以阳极溶解为主,有些则以氢致开裂为主.铝合金的SCC往往同时包括这两个过程,要截然区分这两种现象实际上是困难的.

Najjar等[10]研究发现7050铝合金在3%NaCl溶液中的SCC是由于阳极溶解与氢致开裂共同作用的结果.开始时,由于合金晶界处的粒子存在电位差,发生局部阳极溶解,造成钝化膜破裂,形成临界缺陷,微裂纹萌生.随着晶界局部阳极溶解的增加,还原性的H原子扩散到过程区,与微观特征结构、裂纹尖端应力和塑性应变相互作用,造成损害.

除上述SCC机理外,研究者还从其它角度研究了SCC机理,主要包括SCC表面的迁移理论、SCC的无位错区理论和裂纹生长的半经验模型.

铝和铝合金的大气腐蚀机理优选稿

铝和铝合金的大气腐蚀 机理

1铝和铝合金的大气腐蚀机理 铝和铝合金的表面氧化膜是铝合金具有耐大气腐蚀性的主要原因.铝的氧化膜(γ- Al 2O 3)在室温的大气中就可以生成,而且非常迅速和致密,厚度为25~30.也就是说,氧化膜在 大气环境中具有自修复功能.若有水存在或者暴露在大气中几个月以后,最初形成的γ-Al 2O 3的外层转变为一薄层γ-AlOOH.然后,在γ-AlOOH 上又会覆盖上一层Al(OH)3(也可写 成Al 2O 3·3H 2O).从铝-水体系的电位-pH 图可知,Al(OH)3在较大的pH 范围内都会保持稳 定.Al(OH)3从pH=4开始溶解;当pH=2.4时,认为Al(OH)3会完全溶解(事实上,即使pH=2.0 时,铝表面的腐蚀类型仍然是孔蚀.).大部分的降雨、差不多所有的雾、表面蒸发浓缩的液层和铝表面小孔内的电解质都会使铝处于腐蚀状态.环境因素对铝的大气腐蚀的影响和其它金属相似,与环境大气的相对湿度、温度、大气中SO 2的浓度、Cl -的含量以及降水的数 量、酸度相关性较大,同时也受到O 3,NO x 及CO 2等污染组分的轻微影响.大气污染物通过干 湿沉降,使得金属表面存在着和大气中同样丰富的化学组分.暴露在大气中的铝合金表面可分为三层:铝合金及其氧化膜、腐蚀产物层和大气污染物形成的污染层或薄液膜.根据大气化学组分对铝和铝合金化学、电化学反应的不同及形成的腐蚀产物的性质不同,存在着不同的腐蚀机制. 1.氯离子的存在是引起铝和铝合金大气腐蚀的重要原因.由于铝的氯化物具有可溶性,在户外暴露的铝表面上并没有大量的氯化物层存在,只有少量的氯离子进入到腐蚀产物层.Cl -通过竟争吸附,逐渐取代Al(OH)3表面上的OH -生成AlCl 3,如方程式(1)~(3)所示: Al(OH)3+Cl -→Al(OH)2Cl+OH -(1) Al(OH)2Cl+Cl -→Al(OH)Cl 2+OH -(2) Al(OH)Cl 2+Cl -→AlCl 3+OH -(3)

铝合金应力腐蚀理论研究现状

经过一个多世纪的研究,对于引起SCC的机理学术界仍然存在分歧。目前被普遍接受的机理是氢致开裂和阳极溶解机理。 1、氢致开裂 七十年代中期以来,较多实验表明,7×××系高强铝合金的SCC属于氢致开裂机理。该理论认为:(1)氢通过位错迁移到晶界,积聚在析出相附近,使晶界的结合强度大大降低,弱化晶界,造成沿晶断裂;(2)由于氢积聚在裂纹内,形成的氢气压促使合金断裂;(3)氢促进合金形变而致使断裂;(4)形成的氢化物促使合金断裂.目前提出的氢致开裂机理主要有如下理论: (a)氢压理论:当金属中存在过饱和H时,将在各种显微缺陷处结合成H2,室温是不可逆反应,即H2不会再分解成H.随着缺陷处H2浓度增加,氢压也增大.当氢压大于屈服强度时就会产生局部塑性变形,使表层鼓起,形成氢气泡. (b)弱键理论:金属中的氢降低原子键结合力,当局部应力集中等于原子键结合力时原子键破裂,微裂纹形核. (c)氢降低表面能理论:氢降低键合力的同时必然降低表面能,反之亦然.氢吸附在金属裂纹内表面,使表面能降低,导致裂纹失稳扩展所需的临界应力下降.由于没有考虑塑性变形功,故对金属材料不适用. (d)氢致开裂综合机理:此机理综合考虑了氢促进局部塑性变形、氢降低原子键合力以及氢压作用. 2、阳极溶解 阳极溶解理论[7~9]认为阳极金属的不断溶解导致SCC裂纹的形核和扩展,造成合金结构的断裂.铝合金SCC的阳极溶解理论的主要观点如下: (1)阳极通道理论:腐蚀沿局部通道发生并产生裂纹,拉应力垂直于通道,在局部裂纹尖端上产生应力集中.铝合金中预先存在的阳极通道由晶界析出相与基体电位差引起,而应力则使裂纹张开暴露出新鲜表面.在此情形下,腐蚀沿晶界加速进行. (2)滑移溶解理论:发生SCC的铝合金表面氧化膜存在局部薄弱点,在应力作用下合金基体内部位错会沿滑移而产生移动,形成滑移阶梯.当滑移阶梯大、表面膜又不能随滑移阶梯的形成而发生相应变形时,膜就会破裂并裸露出新鲜表面,与腐蚀介质接触,发生快速阳极溶解. (3)膜破裂理论:腐蚀介质中金属表面存在保护膜,由于遭受应力或活性离子的作用而引起破裂,裸露的新鲜表面与其余表面膜构成小阳极大阴极的腐蚀电池,导致新鲜表面发生阳极溶解. 3、阳极溶解与氢致开裂共同作用 阳极溶解与氢致开裂是两个不同的概念,单纯的阳极溶解可通过阴极保护进行预防,而对

电化学腐蚀与防护

电化学腐蚀与防护 姓名:吴三(09化学) 学号:0909401069金属腐蚀现象在日常生活中是司空见惯的,在腐蚀时,在金属的界面上发生了化学或电化学多相反应,使金属转入氧化(离子)状态.这会显著降低金属材料的强度、塑性、韧性等力学性能,破坏金属构件的几何形状,增加零件间的磨损,恶化电学和光学等物理性能,缩短设备的使用寿命,甚至造成火灾、爆炸等灾难性事故.美国1975年因金属腐蚀造成的经济损失为700亿美元,占当年国民经济生产总值的 4.2%.据统计,每年由于金属腐蚀造成的钢铁损失约占当年钢产量的10~20%.金属腐蚀事故引起的停产、停电等间接损失就更无法计算.所以金属的防腐蚀意义重大。 1.金属腐蚀的分类 金属表面由于外界介质的化学或电化学作用而造成的变质及损坏的现象或过程称为腐蚀。介质中被还原物质的粒子在与金属表面碰撞时取得金属原子的价电子而被还原,与失去价电子的被氧化的金属“就地”形成腐蚀产物覆盖在金属表面上,这样一种腐蚀过程称为化学腐蚀;不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化,这种腐蚀叫做电化学腐蚀。钢铁在潮湿的空气中所发生的腐蚀是电化学腐蚀最突出的例子。在金属腐蚀中最为严重的就是电化学腐蚀。 金属电化学腐蚀一般分为两种:(1)析氢腐蚀;(2)吸氧腐蚀。 (1)析氢腐蚀(钢铁表面吸附水膜酸性较强时) 负极(Fe):Fe-2eˉ=Fe2+ Fe2++2H2O= Fe(OH)2+2H+ 正极(杂质):2H++2eˉ=H2 电池反应:Fe+2H2O=Fe(OH)2+H2↑ 由于有氢气放出,所以称之为析氢腐蚀。

(2)吸氧腐蚀(钢铁表面吸附水膜酸性较弱时) 负极(Fe):Fe-2eˉ=Fe2+ 正极:O2+2H2O+4eˉ=4OHˉ 总反应:2Fe+O2+2H2O=2Fe(OH)2 由于吸收氧气,所以也叫吸氧腐蚀。 析氢腐蚀与吸氧腐蚀生成的Fe(OH)2被氧所氧化,生成的4Fe(OH)3脱水生成Fe2O3铁锈。 反应式:4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3 钢铁制品在大气中的腐蚀主要是吸氧腐蚀。 Fe+2H2O=Fe(OH)2+H2↑ O2+2H2O+4eˉ→4OHˉ 2Fe+O2+2H2O=2Fe(OH)2 2H++2eˉ→H2 析氢腐蚀主要发生在强酸性环境中,而吸氧腐蚀发生在弱酸性或中性环境中。 2.金属腐蚀的防护 从腐蚀角度保护金属材料最简单易行的方法是将材料与腐蚀环境隔离。 例如有机涂料、无机物的搪瓷等涂覆金属表面以使材料与环境隔绝。当这些保护层完整时是能起到保护作用的。这里主要介绍已经广为人们采用的电化学防腐蚀的方法。 (1).金属镀层 在钢铁底层上常用电镀一薄层更耐腐蚀的金属(如Cr、Ni、Pb等)的方法来保护钢铁制品。如果用金属Zn、Cd等作镀层,构成腐蚀电池的极性则与上述相反,镀层微孔内裸露的钢为阴极,Zn或Cd的镀层为阳极,通过牺牲阳极,使钢得到阴极保护。镀Sn的Fe(马口铁)广泛用于食品罐头,虽然Sn的标准电极电位高于Fe,但在食品有机酸中却低于Fe,也可起牺牲阳极的作用。镀层如为贵金属(Au、Ag等)、易钝化金属(Cr、Ti)

铝金属腐蚀报告

研究报告 教学院:化工与材料工程学院 班级: 姓名: 学号:

铝合金研究报告 摘要 铝合金的现今生活中有很大的用途,给我们带来了很多方便,此文通过对铝合金的基本性质(化学性质和物理性质)、铝合金的分类、铝合金的用途以及铝合金的防护等方面知识的介绍,系统的概括了铝合金的在我国工业产业中的重要地位。 关键字:铝合金、铝合金分类、铝合金用途、铝合金防护

铝合金定义 铝合金艺术栏杆 以铝为基的合金总称。主要合金元素有铜、硅、镁、锌、锰,次要合金元素有镍、铁、钛、铬、锂等。 铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。随着近年来科学技术以及工业经济的飞速发展,对铝合金焊接结构件的需求日益增多,使铝合金的焊接性研究也随之深入。铝合金的广泛应用促进了铝合金焊接技术的发展,同时焊接技术的发展又拓展了铝合金的应用领域,因此铝合金的焊接技术正成为研究的热点之一。 纯铝的密度小(ρ=2.7g/cm3),大约是铁的 1/3,熔点低(660℃),铝是面心立方结构,故具有很高的塑性(δ:32~40%,ψ:70~90%),易于加工,可制成各种型材、板材。抗腐蚀性能好;但是纯铝的强度很低,退火状态σb 值约为8kgf/mm2,故不宜作结构材料。通过长期的生产实践和科学实验,人们逐渐以加入合金元素及运用热处理等方法来强化铝,这就得到了一系列的铝合金。添加一定元素形成的合金在保持纯铝质轻等优点的同时还能具有较高的强度,σb 值分别可达 24~60kgf/mm2。这样使得其“比强度”(强度与比重的比值σb/ρ)胜过很多合金钢,成为理想的结构材料,广泛用于机械制造、运输机械、动力机械及航空工业等方面,飞机的机身、蒙皮、压气机等常以铝合金制造,以减轻自重。采用铝合金代替钢板材料的焊接,结构重量可减轻50%以上。 铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。铝

探究金属的电化学腐蚀

探究金属的电化学腐蚀 一、设计理念 “金属的腐蚀与防护”始终是一个世界性异常棘手的科技难题。本节课着重讨论金属的电化学腐蚀机理,阐述吸氧腐蚀和析氢腐蚀的反应原理,指出金属电化学腐蚀的本质是金属表面形成了微型原电池,使金属失去电子而被氧化。通过模型建构促进学生对金属电化学腐蚀原理的理解;通过实验探究,帮助学生主动建构,促进认知发展。设计过程体现“从具体性知识传授到核心观念建构、从知识为本到基于学生认识发展”的理念,让学生体验科学探究的过程,转变学习方式。同时借助手持技术,控制变量、数据采集、绘制成图,师生通过“观察-讨论-解释”曲线变化趋势来分析判断金属腐蚀类型,更准确的得出不同环境条件下金属的电化学腐蚀类型不同。全课从“宏观-微观-符号-曲线”四重表征引导学生学习金属电化学腐蚀的工作原理,实现教学既定目标。 二、教学背景 (一)教材分析 金属的电化学腐蚀是人教版选修4《化学反应原理》第4章第四节内容。人教版教材必修1已经重点介绍了氧化还原反应原理,必修2学习了简单原电池的工作原理和形成条件。选修4第四章前3节重点学习原电池、化学电源、电解池知识。本节知识是对前面所学知识的重组、加工、细化的过程,也是将前面学习过的理论知识,在具体社会生活环境中进行实践应用的过程。 学生对金属腐蚀的现象和危害,对金属防腐措施,有着较为丰富的生活经验,但存在的主要问题是对知识的学习只注重表面现象,缺乏一定的综合思维能力。通过本节内容的学习,有助于学生将所学知识整合、应用,指导生产、生活和社会实践,达到学以致用的目的,体会化学学习的价值,更有利于培养学生发现问题、分析问题、联系实际解决问题的能力。 (二)学情分析 本节内容紧密联系实际,学生学习兴趣浓厚,具备了主动探究的原动力。高二学生具备了一定的实验设计能力、实验操作能力,具备了一定的分析问题、解决问题能力和比较归纳能力。根据教材所呈现的内容和学生学习的思维规律及特点,学生虽然有一定的生活经验,但要将感性认识与相关理论联系起来,清晰区分钢铁发生吸氧腐蚀和析氢腐蚀的原理及发生条件,并用化学用语准确表达出来,仍存有一定困难。针对学生实际,制定了以下教学目标。 三、教学目标 1.认识钢铁吸氧腐蚀和析氢腐蚀发生的条件,掌握其原理,学会书写电极反应式和总反应式。 2.设计实验定性探究钢铁在不同条件下发生电化学腐蚀的类型,提升对实验现象的观察能力和分析解决问题能力。

铝合金应力腐蚀开裂ASTM G139(中文翻译版)

用断裂负荷法测定热处理铝合金制品抗应力腐蚀开裂性的标准试验方法(等同采用ASTM G139-05(R2011))(中文翻译版) 编制: 日期: 审核: 日期: 批准: 日期: 修订历史 修订序号对应的条号修订内容修改人批准人日期

1. 目的Purpose 本标准试验方法涵盖了通过断裂荷载试验方法评估抗应力腐蚀开裂(SCC)性的程序,该方法使用剩余强度作为损伤演化(在这种情况下为环境辅助开裂)的测量方法。包括试样类型和复制、试验环境、应力水平、暴露时间、最终强度测定和原始残余强度数据的统计分析。 2. 范围Scope 本标准试验方法适用于热处理铝合金,即2XXX合金和7XXX,含1.2%至3.0%铜,且试样的取向与晶粒结构相关,横向较短。然而,用于分析数据的残余强度测量和统计数据并非针对可热处理铝合金,可用于其他试样取向和不同类型的材料。 3. 职责Responsibility 程序执行:实验室授权制样人员 程序监督:实验室技术负责人及相关责任人 4. 原理Principle 4.1本试验方法描述了使用暴露于腐蚀环境后的残余强度评估热处理铝合金产品形式(如板材、板材、挤压件、锻件和棒材)的应力腐蚀开裂敏感性的程序。这些产品通常在板材的长横方向、板材、挤压件和锻件的短横方向以及棒材和棒材的横方向上最易发生应力腐蚀开裂。在本试验中,根据规程G49制备的拉伸钢筋或直接拉伸板试样暴露于3.5重量%的氯化钠水溶液(规程G44)中,在其失效前移除,并进行拉伸试验,以确定已发生的腐蚀损伤量。然后计算平均剩余强度,并使用Box-Cox变换对结果进行统计分析。 4.2该程序要求暴露无应力试样,用于排除点蚀、晶间腐蚀和一般腐蚀的影响。这些现象会降低残余强度,但不

电化学腐蚀

2)电化学腐蚀速率的测定 金属的腐蚀速度可用腐蚀失重或腐蚀深度表示,也可用腐蚀电流密度表示。在电化学腐蚀过程中,一般以自腐蚀电流密度i corr的大小来衡量金属的腐蚀速度。测定腐蚀电流密度的方法很多,本实验用塔费尔直线外推法来测定金属电化学腐蚀过程中的腐蚀电流密度,来衡量金属的腐蚀速度。如图2-1为塔费尔直线。 图2-1极化曲线外延法测得金属腐蚀速度 极化曲线的这一区段称为塔费尔区,也叫强极化区。在极化曲线中,塔费尔直线延长线的交点处,金属阳极溶解的速度和阴极的去极化反应的速度相等。金属的腐蚀达到相对稳定,这时的电位即是自腐蚀电位,自腐蚀电位的高低反应了材料发生腐蚀的难易程度,自腐蚀电位越高,材料越不容易发生腐蚀,自腐蚀电位越低,材料就越容易发生腐蚀;所对应的电流就是金属腐蚀电流,腐蚀电流反应了金属发生腐蚀的快慢程度,腐蚀电流越大,金属发生腐蚀的速度就越大,腐蚀电流越小,金属发生腐蚀的速度就越小。根据这一原理,测定金属的极化曲线。将阳极或者阴极的塔费尔直线外推到与过电位为零的直线相交,交点对应的电流为腐蚀速度。 3)实验设备及条件 ①实验设备 实验采用电化学测量系统对各试样进行电化学腐蚀性能测试实验。其装置如图2-2所示:

图2-2 电化学极化曲线测量装置示意图 实验装置中三电极体系中以饱和甘汞(SCE)电极作为参比电极(reference electrode);Pt 电极作为辅助电极(auxiliary electrode);代测试样为研究电极(research electrode)。参比电极和研究电极间用盐桥连接,鲁金毛细管(capiliary)距研究电极1~2毫米。 电化学工作站部分参数如下: 初始电位(V):-2;终止电位(V):2.2;扫描段数:1;终止电位处保持时间:0;静置时间:2s;电流灵敏度(A/V):1.e-0.04。 ②实验条件 a.腐蚀试样:对1#到12#试样进行蜡封,即:在试样上用油性笔取1cm×1cm 的面积,并在其上放置橡皮,而后将烧化的蜡汁快速滴于试样表面,即蜡封处理。 b.腐蚀溶液:3.5%的NaCl水溶液(与浸泡实验相对应)

材料失效分析课程思考题

材料失效分析课程 思考题 第一章材料失效分析概论 1. 概述失效分析学科有哪些特点。 2. 失效是什么?它与事故、事件、故障有什么区别? 3. 失效分析的作用和意义是什么? 4. 简述失效模式、失效机理、失效缺陷和失效起因的的物理含义;举例说明它 们之间的相互关系。 5. 简要说明材料失效分析涉及的“六品”、“五件”和“四化”的物理含义。 6. 一个结构件的失效分析,一般需考虑哪几个主要因素? 7. 简述失效分析过程中的主要步骤及其任务。 8. 一辆自行车是由许多零部件组装而成,你认为哪些最容易发生失效,它们的 失效模式是什么? 9. 设想一下有没有永远不会失效的材料。如有,请举例并从失效模式和失效机 理出发叙述其理由。 第二章材料的断裂失效形式与机理 1. 工程结构件的强度设计,一般选取σs或σb二者中的最小值,许用应力的安 全系数是如何选取的? 2. 材料的强度设计准则、刚度设计准则和变形设计准则有什么区别?试用生活' 中的实例来说明它们各自的重要意义。 3. 韧性断裂和脆性断裂有什么区别?它们的断口形貌有什么不同? 4. 概述强度设计和断裂设计的区别,并谈谈如何防止脆性断裂。 5. 什么叫断裂力学? KI和KIC两者有什么关系? 6. 疲劳断口有什么特征?如何确定疲劳裂纹的起裂点? 7. 材料的抗断裂设计,有哪几个断裂参量可以选用? 8. 哪些参数可以用来表征材料的韧性? 9. 硬度测定有哪些方法?金属、陶瓷和聚合物的硬度测定方法为什么大多数不 能互用? 10.简述金属材料在不同失效模式下有哪些不同的失效机理。 第三章材料的腐蚀失效形式与机理 1. 什么叫腐蚀?化学腐蚀和电化学腐蚀有什么不同?请各举一例说明。 2. 在电化学腐蚀中,金属的损失伴随的是还原反应还是氧化反应?腐蚀发生在

铝合金防护

一.引言 1.1 金属防腐蚀的重要意义 金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。 但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的 发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。使得腐蚀科学在国民经济中所处的地位越来越重要。据统计,人们每年冶炼出来的金属约有1/10 被腐蚀破坏, 相当于每年约有1/10 的冶炼厂因腐蚀的存在而做了无用功;而1/10 被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。据美国国家标准局(NBS)调查, 1975 年美国因腐蚀造成的损失高达700 亿美元,即当年国民经济总产值(GNP)的4.2%;《光明日报》1999 年 1 月20 日报道,1997 年因腐蚀给我国国民经济带来的损失高达2800 亿人民币。 以上所说仅就经济损失而言,在有些领域,尤其在化学工业、石油化工、原子能等工业中,由于金属材料腐蚀造成的跑、冒、滴、漏,不仅造成大量的、宝贵而有限的资源与能源的严重浪费, 还能使许多有害物质甚至放射性物质泄漏而污染环境,危害人民的健康,有的甚至会长期造成严重的后果;而由于金属腐蚀所造成的灾难性事故严重地威胁着人们的生命安全;

许多局部腐蚀引起的事故,如氧脆和应力腐蚀断裂这一类的失效事故,往往会引起爆炸、火灾等灾难性恶果,在一定程度上威胁着人类的生存与发展,所以对于金属腐蚀问题的研究显得尤为 重要。 1.2 铝合金及其腐蚀机理 铝合金是近代发展起来的一类重要的金属材料。铝合金具有强度高、密度小、导电导热性强、力学性能优异、可加工性好等优点而广泛应用于化学工业、航空 航天工业、汽车制造业、食品工业、电子、仪器仪表业以及海洋船舶工业等领域。但是铝合金与其他金属一样,也面临着严重的腐蚀问题。虽然在自然条件下,铝合金表面容易形成一层厚约 4 nm 的自然氧化膜,但是这层膜多孔、不均匀且抗蚀性差,难以抵抗恶劣环境的腐蚀的。为了解决上述问题,有必要对铝合金的腐蚀机理有所了解。一般而言,金属在满足以下 5 个基本条件下 就会受到腐蚀:(1)阳极;(2)阴极;(3)阴一阳之间存在着连续接触;(4)电解质溶液;(5)阴极反应物(如氧气、水或氢气)。铝合金的腐蚀电化学反应为:Al A l3++ 3e( 1) O2 + 2H20 + 4 e 4 0H (中性/碱性) (2) + 2H + 2 e H 2(g)(酸性) (3) 由于原电池作用加速了铝腐蚀,有机或无机阻隔层和钝化剂可避免合金与电解质接触而发生阴极反应,与此同时也抑制腐蚀电子向金属界面的 传导;另外钝化剂(如铬酸盐)形成的不溶性氧化物沉积在受腐点,使活性腐蚀点(如晶界、晶族、凹坑、沉淀析出处)减少,从而阻挡水、

ZL101铝合金应力腐蚀特性研究_李晨

第32卷第3期 2011年9月  力 学 季 刊 CHINESE QUART E RLY OF MECHANIC S Vol.32No.3  Sep.2011 ZL101铝合金应力腐蚀特性研究 李 晨,孟祥琦,刘 畅,许金泉 (上海交通大学船舶海洋与建筑工程学院工程力学系,上海200240) 摘要:研究了初始应力对于ZL101铝合金应力腐蚀的影响。采用自制载荷传感器确定试样加载线上的载荷从而确定其应力强度因子。通过ZL101铝合金在腐蚀溶液中的应力腐蚀实验,测定了不同应力状态下的起裂时间,分析了初始应力与起裂时间的关系。结果表明:ZL101铝合金在拉伸状态下的腐蚀裂纹扩展比较剧烈,而压缩状态下的裂纹扩展比较缓慢平稳。压缩应力状态下的起裂时间比拉伸应力状态下的要长,拉伸状态下材料对于应力腐蚀更为敏感。 收稿日期:2011-01-11 作者简介:李晨(1986-),男,上海人,硕士研究生.研究方向:金属应力腐蚀与腐蚀疲劳. 关键词:铸造铝合金;ZL101;应力腐蚀 中图分类号:O346.4 文献标识码:A 文章编号:0254-0053(2011)03-338-05 Research on Stress Corrosion Cracking of ZL101Alumin um Alloy LI Chen,MENG Xiang-qi,LIU Chang,XU Jin-quan (School of Naval Architecture,Ocean and Civil Engineering,S hanghai Jiaoto ng University,Shanghai200240,China) Abstract:The influence of initial stress on stress corrosion cracking of ZL101aluminum alloy was re-searched.The force of specimen loading line was measured by self-made loading sensors which could re-present the stress intensity factor.The stress corrosion cracking time at different stress state was tested and the relation between initial stress and cracking time was analyzed through stress corrosion cracking tests of ZL101.The results indicate that the crack growth is severe under tension stress and it is slow and gentle under pressure stress.The cracking time under pressure stress is later than which under tension stress and it is more sensitive to stress corrosion under tension stress. Key words:cast aluminum alloy;ZL101;stress corrosion ZL101铝合金具有良好的铸造性能、可热处理强化性能、流动性好、热裂倾向低等优点,成为汽车、航空领域广泛应用的Al-Si系铸造铝合金。近年来,关于铝合金成分、组织与性能之间的关系做了大量研究,以提高铝合金的力学性能[1~4],但对于ZL101铝合金抗腐蚀性能研究较少。 有研究表明,ZL101铝合金腐蚀的主要原因是共晶硅沿晶界分布,共晶硅和基体之间存在电位差,形成大阳极小阴极的腐蚀电池,基体作为阳极被腐蚀。晶界腐蚀敏感性低,但是内应力或杂质偏聚会增加晶间腐蚀敏感性,增大晶间腐蚀级别。另外,ZL101铝合金在3.5%NaCl水溶液中应力腐蚀敏感性较高,其应力腐蚀强度因子K1SC C=8.45MPa·m1/2。应力腐蚀开裂时阳极溶解和机械损伤共同作用的结果,以阳极溶解为主,其断口为穿晶脆断形貌[5,6]。 本文为了研究初始应力对ZL101铝合金应力腐蚀的影响,对不同初始应力状态下的试样进行应力腐蚀试验。在GB/T15970的基础上使用自制的螺栓传感器测量试样所受载荷。确定腐蚀溶液对ZL101铝合金破坏行为的影响,包括缺口处的起裂时间和开裂过程。试验结束后用扫描电镜观察断口形貌。 D OI:10.15959/https://www.360docs.net/doc/fc8676085.html, ki.0254-0053.2011.03.003

铝合金的腐蚀与防护

一.引言 1.1金属防腐蚀的重要意义 金属材料是现代最重要的工程材料,人类社会的文明和发展与金属材料的使用、发展与进步有着极为密切的联系。但是金属材料及其制品会受到各种不同形式的损坏,其中最重要、最常见的损坏形式腐蚀。 金属腐蚀问题存在于国民经济的各个领域,而且随着经济建设和科学技术的发展,腐蚀的危害越来越严重,对于国民经济的发展的制约作用越来越突出。使得腐蚀科学在国民经济中所处的地位越来越重要。据统计,人们每年冶炼出来的金属约有1/10被腐蚀破坏,相当于每年约有1/10 的冶炼厂因腐蚀的存在而做了无用功;而1/10 被腐蚀破坏的金属所殃及的金属制品的破坏,其损失要远远大于金属本身的价值。据美国国家标准局(NBS)调查,1975年美国因腐蚀造成的损失高达700亿美元,即当年国民经济总产值(GNP)的4.2%;《光明日报》1999年1月20日报道,1997年因腐蚀给我国国民经济带来的损失高达2800亿人民币。 以上所说仅就经济损失而言,在有些领域,尤其在化学工业、石油化工、原子能等工业中,由于金属材料腐蚀造成的跑、冒、滴、漏,不仅造成大量的、宝贵而有限的资源与能源的严重浪费,还能使许多有害物质甚至放射性物质泄漏而污染环境,危害人民的健康,有的甚至会长期造成严重的后果;而由于金属腐蚀所造成的灾难性事故严重地威胁着人们的生命安全;许多局部腐蚀引起的事故,如氧脆和应力腐蚀断裂这一类的失效事故,往往会引起爆炸、火灾等灾难性恶果,在一定程度上威胁着人类的生存与发展,所以对于金属腐蚀问题的研究显得尤为重要。 1.2铝合金及其腐蚀机理 铝合金是近代发展起来的一类重要的金属材料。铝合金具有强度高、密度小、导电导热性强、力学性能优异、可加工性好等优点而广泛应用于化学工业、航空航天工业、汽车制造业、食品工业、电子、仪器仪表业以及海洋船舶工业等领域。但是铝合金与其他金属一样,也面临着严重的腐蚀问题。虽然在自然条件下,铝合金表面容易形成一层厚约4 nm 的自然氧化膜,但是这层膜多孔、不均匀且抗蚀性差,难以抵抗恶劣环境的腐蚀的。 为了解决上述问题,有必要对铝合金的腐蚀机理有所了解。一般而言,金属在满足以下5个基本条件下就会受到腐蚀:(1)阳极;(2)阴极;(3)阴一阳之间存在着连续接触;(4)电解质溶液;(5)阴极反应物(如氧气、水或氢气)。 铝合金的腐蚀电化学反应为: Al 3++ 3e-( 1) O2 + 2H20 + 4 e - -(中性/碱性) (2) 2H ++ 2 e-H 2(g)(酸性) (3) 由于原电池作用加速了铝腐蚀,有机或无机阻隔层和钝化剂可避免合金与电解质接触而发生阴极反应,与此同时也抑制腐蚀电子向金属界面的传导;另外钝化剂(如铬酸盐)形成的不溶性氧化物沉积在受腐点,使活性腐蚀点(如晶界、晶族、凹坑、沉淀析出处)减少,从而阻挡水、氧或电解质的进一步渗透,降低腐蚀速率。

铝合金具体腐蚀

序号腐蚀环境腐蚀方法结果(腐 蚀电位 /V) 文献 LF6M 海水腐蚀(平均 温度13.6℃,溶 解氧浓度5.6ml, 盐度32‰,, pH8.2,海水平流 速度0.1m/s 三个样品的平行试验。以三 个平行样品的腐蚀电位平均 值作为材料的腐蚀电位,以 腐蚀一天的腐蚀电位值作为 初始电位,电流趋于稳定的 时间作为稳定时间,稳定后 平行样品的腐蚀电位平均值 作为材料稳定腐蚀电位,趋 于稳定后腐蚀电位变化范围 称为稳定电位范围 -0.80~-0.85 黄桂祥,铝合 金在海水中的 耐蚀性, LF21M -0.69~-0.76 LF2Y2 -0.67~-0.72 180YS -0.84~-0.94 L4M -0.68~-0.71 LD2CS -0.68~-0.70 LC4CS -0.66~-0.69 L Y12CZ -0.61~-0.63 Cu-Zn-Al -Ni-As-B NaCl(3.5%)溶液制样,测量抛光后的样品的 表面积,然后依次用蒸馏水、 丙酮、酒精清洗后干燥称量。 将样品全浸入腐蚀液并静置 腐蚀30d。 采用是SI1287电化学工作站 测量实验黄铜在NaCl(3.5%) 溶液中的极化曲线 -0.2638 含稀土HAl77-2 铝黄铜的腐蚀行 为 中国有色金属学 报2007年第8期 程建奕李周唐 宁汪明朴曹建 国赵学龙杨天 足 Cu-Zn-Al -Ni-B-Ce -0.3456 Cu-Zn-Al -Ni-As-B- Ce -0.2964 Ti2448 PBS溶液(NaCl 8.0g,KCl0.2g,Na 2HPO4?12H2O 2.9g,KH2PO4 0.2g,蒸馏水1L, 用HCl和NaOH 溶液将pH调节 为7.4),电解质 自然充气,保持 实验温度为 37℃采用2273型恒电位仪 (EG&G PAR)测定试样电化 学腐蚀性能,极化曲线测量 以0.667mV/s的扫描速率从 -1.0V(vs OCP)到3.0V(vs OCP) -0.452 磷酸盐缓冲溶 液中 Ti-24Nb-4Zr-8 Sn合金的电化 学腐蚀行为 白芸李述军 郝玉琳杨锐 郭正晓 中国有色金属 学报2010年第 z1期(下册) CP Ti -0.533 TC4 -0.597

影响铝合金应力腐蚀的主要因素

影响铝合金应力腐蚀的主要因素 核心提示:金属材料产生SCC需具备三个条件:(1)材料对SCC敏感;(2)在特定的腐蚀环境中服役(对铝合金而言,在盐水介质或腐蚀气氛中);(3)受到拉应 金属材料产生SCC需具备三个条件:(1)材料对SCC敏感;(2)在特定的腐蚀环境中服役(对铝合金而言,在盐水介质或腐蚀气氛中);(3)受到拉应力.影响铝合金应力腐蚀的因素主要有环境因素、冶金因素和应力因素.三者之间相互联系和相互影响。 1、环境因素 影响铝合金应力腐蚀的环境因素主要有:离子种类、离子浓度、溶液pH值、氧气及其它气体、缓蚀剂、环境温度、环境压力等。 在研究了在不同大气环境中2A12和7A04两种铝合金的应力腐蚀情况,发现铝合金在不同环境中应力腐蚀敏感性不同,在海洋环境中较为敏感.海洋环境中含有大量盐分,Cl-会穿过铝合金表面的保护膜进入内部,对其产生腐蚀。 实验表明,当HNO3溶液的质量浓度在20%~40%之间时,铝合金的腐蚀加剧,在浓度为35%左右时铝合金腐蚀速率达到最高点。而在浓HNO3溶液中,铝合金的应力腐蚀并不明显,出现这种现象的原因是由于在铝合金表面形成了一层致密的氧化膜,阻止了HNO3的进一步腐蚀。 2、冶金因素 冶金因素主要包括铸造方式、加工方式和热处金应力腐蚀的影响,发现阴极极化使铝合金应力腐蚀敏感性增大,摩擦搅拌焊接的应力腐蚀敏感性比熔焊的低。 一般认为经适当处理的6061-T6和3004铝合金不会出现SCC。冶金因素的不同改变了铝合金表面膜的类型,并造成铝合金内部组织的不同和晶体结构的变化,从而影响了铝合金的电化学行为和力学行为,导致铝合金应力腐蚀敏感性不同。 3、应力因素 应力因素主要包括载荷类型、载荷大小、加载方向、加载速度等.就SCC而言,应力方向必须与晶界相垂直,以便能够使其分离.产生应力腐蚀的关键因素之一就是要有应力作用。而不同的应力作用会产生不同的效果,交变应力和环境共同作用产生腐蚀疲劳,它和固定应力产生的应力腐蚀破裂通常有明显区别.通常腐蚀疲劳比应力腐蚀产生的后果更严重.此外,加载速度的不同也会影响铝合金应力腐蚀的敏感性。

铝合金的腐蚀

铝合金的腐蚀 W.Forture Smitn M.Sc王奎民 【摘要】:1.铝有良好的耐腐蚀性是由于在它的表面上形成铝氧化物的保护层。某些合金元素不能影响铝的腐蚀性能。然而,大多数合金元素由于引起腐蚀电流和破坏氧化物薄膜,从而降低了铝的耐腐蚀性能。2.金属腐蚀浸蚀的主要原因是: (a)金属本身的腐蚀电流。(b)腐蚀环境。(c)浸蚀(机械作用)。3.合金元素对铝的耐腐蚀性能的影响是不同的,形成固溶体的铝合金通常比形成化合物的更耐腐蚀。铝和锰或铝和镁(小于3%)的固溶体有良好的耐蚀性。铝—镁—硅合金是可热处理铝合金中最耐腐蚀的。铜和锌相当大地降低铝的耐腐蚀性能,所以,含有大量这些元素的可热处理铝合金,比纯铝的耐腐蚀性能低。4.均匀浸蚀、点腐蚀、晶间腐蚀和应力腐蚀裂纹是铝合金中出现的最重要的普通腐蚀类型。均匀浸蚀和点腐蚀可以在铝表面上任何地方出现,但是晶间腐蚀只发生在晶粒边界或晶界上。对晶间腐蚀敏感的铝合金施加应力,会引起应力腐蚀裂纹。5.铝—铜、铝—镁(大于3%镁)和铝—锌—镁合金,在一定条件下对晶间和应力腐蚀是敏感的。6.铝合金的防腐蚀方法有: (a)包铝。以高强合金作芯板,用对它呈阳极性的铝合金包复。这样,包铝层将会首先腐蚀。(b)表面处理。阳极化、电镀,涂层,化学转换涂层或涂搪瓷。7.铝耐很多弱酸,但却能被强碱和强酸溶液侵蚀。但例外的是,铝能耐浓度82%以上,温度大约为49℃的硝酸。 【关键词】:铝合金耐腐蚀性能镁合金晶间腐蚀应力腐蚀敏感性包铝层合金元素固溶体铜合金固溶热处理 【正文快照】: 铝的一个最好的性质,是在自然环境里有良好的耐腐蚀性。铝本来是一种根活·泼的金属,在空气中容易氧化,形成一种透明的铝氧化物薄膜。因此,铝有高的耐腐蚀性不是由于铝本身固有的本性,而是由于在铝的表面上形成铝的氧化物保护层。某些合金元素不会降低铝的耐腐蚀性,而其它一

失效分析的程序和步骤

失效分析概要失效分析培训班用 2007年11月

前言 江苏省机械研究所于2007年12月举办一个三天半的失效分析培训班,本教材即为该培训班而准备的,本教材由东南大学材料科学与工程学院孔宪中编写,部分文字内容参考金属所的金属断裂失效分析一书。 我们知道,进行失效分析,是 1,找出事故原因,分清责任所属,依法进行索赔,挽回经济损失。 2,找出经验教训,避免同类事故,改进制造水平,定立新的工艺。 3,提供有关资料,促进法治建设,减少资金浪费,加快建设速度。 4,产生新型学科,提升科技水平,增强国家实力,节约资源成本这四方面所必需的,这次失效分析培训班主要介绍如何进行失效分析,大致内容有1.失效分析的几种分析思路: 按:根据失效分类的分析思路 根据设备或部件工作状况的分析思路 根据制造工艺和部件类别的分析思路 2.失效分析的分析程序 1),现场调查 2),观察,检测和检验 3),分析及验证,作分析结论, 4),提出报告,建议,及回访 3.失效分析程序的实施 1)设计分析程序和实施步骤 2)失效部件的直观检验过程 3)断裂源的确定 4)断裂机制的确定, 5)取样及编号 6)检测和检验 7)信息的纵综合,归纳,分析,得出初步结论 8)结论的验证,写出报告,提出建议, 4,常用的失效分析技术 1)金属的显微断口分析 2)金属及部件的疲劳失效分析 3)腐蚀疲劳失效分析及应力腐蚀失效分析 4)氢脆失效分析 5)高温失效分析 6)焊接失效分析 5.常见部件的失效分析案例 1)轮类用齿轮,叶轮,螺杆,轮箍各选一例 2)轴类用曲轴,摇杆轴,前轴,连杆各选一例 3)管道类用管道,导管方面选二例 4)基础件类用轴承,弹簧,模具方面选三例 通过培训班学习,使参加者获得一定的失效分析素养,能具备一定的失效分析能力,有一定程度的失效分析技术,接触一定数量的失效分析案例,便于开展失效分析工作。

失效分析案例举例

失效分析案例举例

案例1 油井套管腐蚀 0、背景介绍: 1、套管腐蚀形貌 2、腐蚀产物XRD分析 3、油套管材质的金相和非金属夹杂分析 4、管壁SRB分析检测 5、腐蚀试验 6、结论

背景介绍:中原油田全油田有100多口井套管 腐蚀穿孔,30多口井报废,200多口井套管待修。油井套管的最大穿孔速度为0.48mm年。 1套管腐蚀形貌 对现场取出损坏的套管进行解剖分析。套管内壁分布腐蚀坑,管内壁腐蚀面平稳,腐蚀沿管轴纵向延伸呈马蹄形,其横断面为上宽下窄的梯形深谷状,管壁穿孔处周边锐利,界面清晰。从总体上看,套管内壁都附着黑色粘性油污,无明显腐蚀产物堆积,主要表现为坑蚀穿孔,并有一定的流体冲刷作用。

2腐蚀产物XRD分析 取套管内壁物质,洗去油污,再用丙酮清洗吹干,进行X—射线 衍射分析。套管内壁腐蚀产物中主要有FeCO 3和CaCO 夹杂有NaCl和硫酸亚铁等。腐蚀产物的主要成份为碳酸盐,显示出套管、油管腐蚀与CO 2 腐蚀有关。 3油套管材质的金相和非金属夹杂分析 采用电子探针分析仪进行钢基、夹杂物定性、定量和元素面分析。套管钢的纵截面夹杂物形貌及面分析发现, 大量细小球形 暗灰色颗粒为Al 2O 3 , 短条状为MnS。材质中夹杂物以Al 2O 3 和MnS为主, 少量Al 2 O 3 、TiO2存在。整个材料裂口 面上夹杂物多且分散较均匀,夹杂物以Al 2O 3 、MnS为主 散均匀,加速了钢材的腐蚀。同时经电子探针元素定量分析表明随着向腐蚀坑底的深入,表层元素中氧、硫、氯、钙、镁含量在逐步增大。说明生成的腐蚀产物有铁氧化物、硫化铁、碳酸钙、碳酸镁等,并随腐蚀深入呈增加趋势。

近代电化学研究方法论文

9存档日期:存档编号: 课程名称:近代电化学研究方法 课程代号: 任课教师: 完成日期:2010 年6 月18日 专业:材料科学与工程 学号: 姓名: 成绩:_____________

电化学腐蚀与防护 金属的腐蚀原理有多种,其中电化学腐蚀是最为广泛的一种,一般是金属在介质中组成微观原电池,其中金属作为阳极遭到腐蚀破坏的过程[1]。当不纯的金属跟电解质溶液接触时,会发生原电池反应,比较活泼的金属失去电子而被氧化。电化学腐蚀反应是一种氧化还原反应[2],在反应中,金属失去电子而被氧化,其反应过程称为阳极反应过程,反应产物是进入介质中的金属离子或覆盖在金属表面上的金属氧化物;介质中的物质从金属表面获得电子而被还原,其反应过程称为阴极反应过程。 当金属被放置在水溶液中或潮湿的大气电化学腐蚀中[3],金属表面会形成一种微电池,也称腐蚀电池。阳极上发生氧化反应,使阳极发生溶解,阴极上发生还原反应,腐蚀电池的形成原因主要是由于金属表面吸附了空气中的水分,形成一层水膜,因而使空气中的CO2,SO2,NO2等溶解在这层水膜中,形成电解质溶液,而浸泡在这层溶液中的金属又总是不纯的,如工业用的钢铁,实际上是合金,即除铁之外,还含有石墨、渗碳体(Fe3C)以及其它金属和杂质,它们大多数没有铁活泼。这样形成的腐蚀电池的阳极为铁,而阴极为杂质,又由于铁与杂质紧密接触,使得腐蚀不断进行。 腐蚀介质中的氧[4]是造成金属腐蚀的一个主要原因,氧和金属形成两个电极,金属的电极电位比氧的电极电位低,所以金属作为阳极,遭到腐蚀。钢铁在潮湿的空气中所发生的腐蚀是电化学腐蚀最突出的例子。钢铁在干燥的空气里长时间不易腐蚀,但潮湿的空气中却很快就会腐蚀。这是因为在潮湿的空气里,钢铁的表面吸附了一层薄薄的水膜,这层水膜里含有少量的氢离子与氢氧根离子,还溶解了氧气等气体,结果在钢铁表面形成了一层电解质溶液,它跟钢铁里的铁和少量的碳恰好形成无数微小的原电池。在这些原电池里,铁是负极,碳是正极。铁失去电子而被氧化,所以电化学腐蚀是造成钢铁腐蚀的主要原因。在均匀腐蚀时,金属表面上各处进行阳极反应和阴极反应的概率没有显著差别,进行两种反应的表面位置不断地随机变动。 如果金属表面有某些区域主要进行阳极反应,其余表面区域主要进行阴极反应,则称前者为阳极区,后者为阴极区,阳极区和阴极区组成了腐蚀电池,直接造成金属材料破坏的是阳极反应。故常采用外接电源

浅析电化学腐蚀和电化学分析问题

浅析电化学腐蚀和电化学分析问题 【摘要】电化学领域研究一直是化学领域中难度系数等级最高的一个分支,电化学有别于简单的化学腐蚀。化学腐蚀一般是指物质与另一种具有某种具有腐蚀性质的物质发生特定的化学反应的过程,简单的化学腐蚀存在于带有腐蚀性的物质之间,一般的化学反应是物质内部成分的互相交替或者相互交叉结合的具体过程。而电化学腐蚀却与之不同,电化学腐蚀的过程虽然也是腐蚀性质的化学反应过程,但其反应的过程中伴有电子形式物质的存在和产生过程。电化学和化学简单的分析和现象观察总结规律不同,其主要研究分析电子形式反应。 【关键词】电化学腐蚀;电化学分析;防腐蚀 1.电化学腐蚀简述 电化学腐蚀,相对于化学腐蚀现象的区别是:电化学腐蚀过程是金属与带电物质之间发生的化学反应,使得金属在电离子的反应破坏下,金属表面遭到严重的损害,甚至使金属的属性发生不同程度改变的化学腐蚀过程。在电化学反应过程中有电流的产生,电流的产生主要原因是金属与带电介质发生的反应,带电介质是整个电化学腐蚀过程中极其重要的催化剂,没有带电介质的参与,即不会发生电化学腐蚀现象。当电化学腐蚀发生时电流在金属的表面存在,电流分为阴极和阳极,和电流的正负极类似。其中,与带电介质发生反应的金属如果在反应发生过程中本身所拥有的某种金属原子丧失,原子在反应之后以离子的形式脱离金属物质而存在,那么这样的电化学腐蚀反应过程也可以称为阳极反应。而类似地,当电化学腐蚀反应发生过程中,带电介质在于金属原子的交互作用过程中,带电介质中以电子形式存在的物质与金属原子发生反应,结果导致带电的介质中电子形式的丧失,而变为原子等金属原子等类型的物质存在的化学腐蚀反应,又叫阴极反应。阴极反应实质上就是电子形式变为原子形式的通过电化学腐蚀过程以非电子形式存在的反应。阴极反应和阳极反应是相互独立而又同时进行的,又叫做共轭反应。 电化学腐蚀的表现有原电池反应。即:不纯的金属与电解质溶液融合,发生原电池反应,电解质溶液可以使活泼的金属失去电子而被氧化,金属被氧化的腐蚀是电化学腐蚀的一个常见现象。其中发生电化学腐蚀的电解质溶液的主要功能就是造成金属的氧化效应,使得金属在电解质溶液中获得氧,而被腐蚀,发生质变。电化学腐蚀的这种金属被氧化的腐蚀例子有很多,例如:铁在潮湿的空气中所发生的腐蚀现象。这其中的腐蚀现象包含几个要素,一是被腐蚀的金属是铁;二金属发生腐蚀的条件是空气的潮湿性。在化学学科中的元素周期表和其他元素的稳定性的比较中,很容易发现:铁是稳定性质比较好的金属物质,一般属于不活泼的金属物质,在一般情况下,铁不易和其他介质发生反应,在地壳中常以固体的形态存在。 由于铁的稳定性能极高,铁在干燥的空气里长时间不容易被腐蚀或者和其他物质发生化学反应,然而,铁在潮湿的空气中发生腐蚀反应的情况是极容易的。

相关文档
最新文档