有机化学发展及其与生命科学的联系

有机化学发展及其与生命科学的联系
有机化学发展及其与生命科学的联系

有机化学发展及其与生命科学的联系

有机化学发展史:

有机化学又称为碳化合物的化学,是研究有机化合物的结构、性质、制备的学科,是化学中极重要的一个分支。含碳化合物被称为有机化合物是因为以往的化学家们认为含碳物质一定要由生物(有机体)才能制造;然而在1828年的时候,德国化学家弗里德里希·维勒,在实验室中首次成功合成尿素(一种生物分子),自此以后有机化学便脱离传统所定义的范围,扩大为含碳物质的化学。

“有机化学”(Organic Chemistry)这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。

1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,生命力学说才逐渐被人们抛弃。

因合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。

从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。

法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。

当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。

类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。

从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是经典有机化学时期。

1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。

1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。

他们认为:分子是个三维实体,碳的四个价键在空间是对称的,分别指向一个正四面体的四个顶点,碳原子则位于正四面体的中心。当碳原子与四个不同的原子或基团连接时,就产生一对异构体,它们互为实物和镜像,或左手和右手的手性关系,这一对化合物互为旋光异构体或对映异构体。这种现象称为对映异构现象。这两个互成实物与镜像,对映但不能完全重合的分子称为手性分子。勒贝尔和范托夫的学说,是有机化学中立体化学的基础。[1] 1900年第一个自由基,三苯甲基自由基被发现,这是个长寿命的自由基。而不稳定自由基的存在也于1929年得到了证实。

在这个时期,有机化合物在结构测定以及反应和分类方面都取得很大进展。但价键只是化学家从实践经验得出的一种概念,价键的本质尚未解决。

在物理学家发现电子,并阐明原子结构的基础上,美国物理化学家路易斯等人于1916年提出价键的电子理论。

他们认为:各原子外层电子的相互作用是使各原子结合在一起的原因。相互作用的外层电子如从—个原子转移到另一个原子,则形成离子键;两个原子如果共用外层电子,则形成共价键。通过电子的转移或共用,使相互作用的原子的外层电子都获得惰性气体的电子构型。这样,价键的图象表示法中用来表示价键的短划“—”,实际上是两个原子的一对共用电子对。

1927年以后,海特勒和伦敦等用量子力学,处理分子结构问题,建立了价键理论,为化学键提出了一个数学模型。后来马利肯用分子轨道理论来处理分子结构,其结果与价键的电子理论所得的大体一致,由于计算简便,解决了许多当时不能回答的问题。

(百度文库)有机化学与生物学的关系:

有机化学与生命科学关系极为密切。有机化学就其最初的意义而言, 是生物物质的化学。十九世纪初, 化学家把物质分为从矿物质获得的和从活细胞获得的两大类。1807 年, J. F. von

Berziliu s 首次把从活细胞中获得的化合物命名为有机化合物。那时人们对生命现象的本质没有认识, 因而便赋予有机化合物以一种神秘的色彩, 许多化学家认为有机物是不可能用人工的方法合成的, 它们是“生命力”所创造的。但是1828 年, F. Woh ler 从无机物氰酸铵制得了和尿液中分离得到的完全相同的尿素。Woh ler 的发现否定了关于“生命力”假说, 可以说是化学家第一次干预了生命科学。在后来的研究中, 化学家们的兴趣主要在有机物的结构研究和合成方法上, 较少关心它们的生物功能。尽管如此, 许多化学家卓有成效的研究成果还是成为了生命科学发展过程的里程碑。

十九世纪中叶, I. Pasteu r 关于左旋和右旋酒石酸经典式的研究, 导致70 年代V an thoff 和L e Bel 碳原子四面体构型学说的建立, 它是生命分子结构不对称性的基础。

E. F ischer 对碳水化合物立体化学和肽合成化学的贡献是这两大类重要的生命分子化学的奠基石(获1902 年诺贝尔化学奖)。一百年前在研究糖苷酶的作用时, 他提出了“锁钥学说”,该学说已成为当今生物分子之间相互识别、相互作用和有机分子自组装这些前沿领域的先驱。

L. Pau ling 在本世纪50 年代初建立了多肽的构象, 为当今蛋白质- 结构功能研究, 蛋白质全新设计奠定了基础。本世纪50 年代,A. Todd 建立的核糖核酸(RNA ) 和脱氧核糖核

酸(DNA ) 的化学结构, 为W at son- Crick DNA 双螺旋结构的提出铺平了道路。W at son- Crick DNA 双螺旋模型的创建, 被公认为本世纪生物学最伟大的成就。

本世纪60 年代,B. M errif ield 发明了多肽固相合成法, 此法使得长片段肽的化学合成及70 年代后期长片段寡核苷酸的化学合成成为现实。否则, 当今蓬勃发展的生物工程是不可

想象的。

从方法学的角度来看, 有人曾认为F. Sanger 成功地运用纸色谱的手段才阐明了胰岛素两个主链的化学结构(获1958 年诺贝尔化学奖)。这说明有机分析、有机分离方法在研究生命科学中的重要性。近年来, 荧光标记试剂、同位素试剂又大大地提高了各种方法的灵敏度和精确度。有机分析方法也进步到了离子交换色谱、气相色谱、高压液相色谱, 使蛋白质一级结构测定工作达到了高速、超微量和自动化的程度, 至今已有近300 个蛋白质的结构已经阐明。M erri2f ield 固相合成对于分子生物学的重要性则更为明显。核酸的合成, 首先是从Todd的二核苷酸开始, 随后又发展磷酸二脂法、磷酸三脂法、亚磷酸三脂法以及氢膦酸脂法等, 应该说都是立足于有机磷化学反应原理之上。Todd 本人(获1957 年诺贝尔化学奖) 是一位非常注重生物学问题的化学家。他认为天然产物领域中, 结构和功能总是息息相关的。过去有机化学家对结构更加关注, 而对功能的兴趣太少。近年来, 这种偏向已有所改变。如N akan ish i 及已故前苏联O v2ch in ikov 对视觉功能的兴趣, Co rey 对白三烯的兴趣, 以及近来许多化学家致力于Site- direte的mu tagenesis 的工作, 都是很好的说明。

总之, 有机化学理论上和实践上的成就, 为现代生物学的诞生和发展打下了坚实的基础。价键理论、构象学说、反应机理等成为解释生化反应的有力手段, 蛋白质和核酸的组成和结构研究, 顺序测定方法的建立, 合成方法和创建等重大成就为现代生物学及生物技术开辟了道路。有机化学与生物问题的密切结合是推动生命科学发展的有力支柱。

(周晓俊(云南广播电视大学医农系, 昆明650223) 吴晖(云南师范大学化学系, 昆明650092))

此外,从其他科研人员的角度来看:

1,有机化学与生命科学密切相关

有机化学是一门与生命科学密切相关的学科。生命科学中的许多重要发现和突破,都包含了大量与有机化学有关的研究工作。随着生命科学的迅速发展,对一些生命现象的研究已经进入分子水平。生物大分子的结构与功能,生物分子内和生物分子间的相互作用机制,生命过程中复杂的变化及其调控作用的分子机制和化学本质等许多根本性的问题,已经摆在化学家们的面前[1~3 ] 。这既是一种挑战,同时又是一个重要的机遇,使生命科学和有机化学能在更深的层次上密切结合,相互促进,共同发展。

2 应用有机化学理论解释生命现象

2. 1 生物分子和有机化学生命科学主要是研究生物分子的结构和功能,生物分子在生命过程中的变化及其生理意义。例如,为什么酶具有催化作用,而且具有特殊的选择性和高效性? 为了阐明酶的这一特性,就需要详细研究酶分子的化学组成,特殊的立体结构,酶分子中各种官能团的相互影响,酶分子与底物分子相互作用等等,并且最终能够建立起人工合成的模拟酶。因此,必然应用有机化学的理论和方法。一方面应用有机化学的结构理论、基因相互作用理论、有机化学反应机制和动力学理论,以及应用有机化学研究方法,在分子水平上研究生物分子的化学变化和反应规律。另一方面,通过模拟生物体系的化学变化,建立有机化学研究新体系。

2. 2 生物大分子的官能团和立体结构虽然自然界存在着千千万万不同的生物,但是组成这些生物体的生物分子类型并不多。生物大分子主要包括四类化合物:蛋白质、核酸、糖和脂。它们是构成生物体和维持生命现象最基本的物质基础和功能基础。所有的生物大分子都是特殊的有机化合物。

2. 2. 1 生物大分子的官能团生物大分子中常见的官能团,如甲基、乙基、苯基、二硫基、磷酸基、胍基、咪唑基、嘌呤基、嘧啶基等,在化学性质上都很活泼。它们的化学性质

决定了生物大分子的各种生理功能。例如,酶是最重要的一种功能蛋白,它能特异性催化某种底物分子发生化学反应,主要是由于酶分子中的某些官能团和底物分子之间相互作用的结果。

2. 2. 2 生物大分子的立体结构生物大分子中的相对分子量一般都很大,往往包含许

多不同类型的官能团。因此生物大分子具有非常复杂的几何立体结构和光学立体结构。形成和维系生物大分子复杂的几何立体结构的力主要有组成分子骨架原子的键角张力、分子中各种基团之间形成的氢键、配价键、离子键、疏水键和范德华力等。生物大分子中还存在着许多的手性中心,因此具有非常复杂的光学立体结构。例如,组成蛋白质的所有氨基酸都是L2型的,组成多糖的葡萄糖分子都是D2型的。这种特殊的光学结构特性对于生物大分子的生理功能具有重要意义。

2. 3 生物体内发生的基本有机化学反应类型生物体内各种复杂的反应和变化,是各

种生命现象的基础。在生物体内发生的有机化学反应主要有下面几个类型: ①水解反应:是

生物体内最普通的一类有机反应,例如蛋白质的水解。②缩合反应:是最基本的生物合成反应之一,如多肽和蛋白质的合成。③氧化反应:是动物体获取能量的唯一来源,,如葡萄糖在酶催化下,最终氧化成水和二氧化碳,并释放出大量能量。④还原反应:在生物合成和能量传递及转换过程中特别重要,最重要的还原反应是CO2 和H2O 在光和作用过程中被还原并生成葡萄糖。

⑤烷基化反应:是生物合成反应中碳链增长反应以及许多烷基转移反应的基本过程,例如脂肪酸碳链增长反应。⑥磷酰化反应:在生物能量的传递、转化,以及生物合成和分解代谢中都普遍存在,其中,ATP 起着极其重要的作用。⑦异构化和分子重排反应:普遍存在于生物体内发生的各种复杂的生物化学变化中,例如糖酵解过程中32磷酸甘油酸转变为丙酮酸的过程,就是

通过一系列酶催化的异构化反应。

(张建国2009014513 应化092)

有机化学的发展与应用

第一单元 有机化学的发展与应用 [学习目标定位] 1.知道有机化学的发展简史及发展现状,能说出有机化学发展史中做出突出贡献的几个科学家及其成就。2.知道有机化学在人类生活和社会经济发展中的作用。3.理解有机物的一般特点及与无机物的联系与区别。 1.有机化学是研究有机化合物的组成、结构、性质、制备方法与应用的科学。有机化学所研究范围包括有机化合物的来源、结构、性质、合成、应用及有关理论和方法等。 (1)下列三种有机物都是重要的化工原料,请说明它们的主要来源:①甲烷:天然气;②乙烯:石油裂解;③苯:煤的干馏。 (2)乙醇是酒类的主要成分。乙醇可由乙烯与水反应进行合成,反应的化学方程式是CH 2===CH 2+H 2O ――→催化剂 △ CH 3CH 2OH ,该反应类型是加成反应。 2.有下列有机物:①乙酸乙酯、②聚乙烯、③乙醇、④醋酸、⑤甲苯、⑥油脂、⑦淀粉、⑧蛋白质。回答下列问题: (1)属于高分子化合物的是②⑦⑧;

(2)人类食物的主要营养物质是⑥⑦⑧; (3)⑤的结构简式是,其有机物类别是芳香烃; (4)能够发生酯化反应的是③④; (5)能够发生水解反应的是①⑥⑦⑧; (6)既能与钠反应,又能与碳酸钠反应的是④。 探究点一有机化学的发展与应用 1.我国早期的化学实践活动 (1)3 000多年前已经用煤作为燃料。 (2)2 000多年前掌握了石油和天然气的开采技术。 (3)1 000多年前学会了从植物中提取染料、药物和香料等。 2.近代有机化学的形成 (1)19世纪初,瑞典化学家贝采利乌斯提出了有机化学概念,使有机化学逐渐发展成为化学的一个重要分支。 (2)1828年德国化学家维勒首次在实验室用无机盐氰酸铵(NH4CNO)合成了有机物尿素[CO(NH2)2],打破了早期科学家提出的“生命力论”。 (3)德国化学家李比希创立了有机化合物定量分析法和早期的“基团理论”。 (4)1848年~1874年间,关于碳的价键、碳原子的空间结构等理论逐渐趋于完善,之后建立了研究有机化合物的官能团体系,使有机化学成为一门较完整的学科。 3.现代有机化学的发展 (1)关于有机化学结构理论的建立和有机反应机理的研究,使人们对有机反应有了新的掌控能力。 (2)红外光谱(IR)、核磁共振谱(NMR)、质谱(MS)和X射线衍射(XRD)等物理方法的引入,使有

(完整版)生命科学导论课后习题

第一章 一、生命的基本特征是什么? 1.生长。生长是生物普遍具有的一种特征。 2.繁殖和遗传。生命靠繁殖得以延续,上代特征在下代的重现,通常称为遗传。 3.细胞。生物体都以细胞为其基本结构单位和基本功能单位。生长发育的基础就在于细胞 的分裂与分化。 4.新陈代谢。生物体内维持生命活动的各种化学变化的总称,包括同化和异化。 5.应激性。能对由环境变化引起的刺激做出相应的反应。 6.病毒是一类特殊的生命。 二、孟德尔在生物学研究方法上有什么创新? 孟德尔的豌豆杂交实验,为遗传学的发展奠定了科学基础。相较于前人有下面显著特点: 1.他把许多遗传性状分别开来独立研究。 2.他进行了连续多代的定量统计分析。 3.他应用了假设---推理---验证的科学研究方法。 三、有人说机械论和活力论是互补关系,你的看法如何? 个人观点觉得机械论和活力论是相对立的关系。“活力论”观点认识生命,认为生物体具有与物理化学过程不同的生命力,即活力。与活力论相对立的是“机械论”观点,认为生命问题说到底是物理和化学问题,一切生命现象都可以用物理和化学定律做出解释,生物体内没有什么与物理化学不同的生命力。其实个人觉得生物体是不同于物理化学系统,是高级的、非常复杂的生命系统,当把它还原为简单的物理化学系统以后,它所具有的一些特别的性质和功能就会失去。 四、你是否认为21世纪时生命科学的世纪? 20世纪下半叶,生物学进入分子生物学时代,研究生物大分子物质的结构、性质和功能,从分子水平上阐述生命现象。20世纪下半叶以来,生命科学文献在科学文献中所占的比例、从事生命科学研究的科学家在自然科学家中所占的比例都在迅速增长,这就是这种趋势的反应。生命系统是地球上最复杂的物质系统,是从非生命系统经过几十亿年进化的结果。现代科学技术的发展对生命科学发展起到重要的作用,生命科学的发展对整个科学技术的发展产生重要影响。生命科学与农业的可持续发展:解决粮食短缺,基因工程将在育种中发挥重要作用。应用基因工程可以改善粮食和畜牧产品品质。实现农业的可持续发展,克服农业化学化的恶果,必须生物防治,降低对农药的依赖等。 生命科学与能源问题的可持续发展:解决能源问题,对生物技术给予厚望。生命科学与人的健康长寿:研制更有效的药物、在基因组的基础上认识人体,理解疾病。生命科学与维持地球生态平衡。 五、举例说明生命科学技术引发了哪些伦理道德问题? 人类是高度社会化的生物,人类社会有特定的伦理道德,生命科学技术的在人类社会的应用时会引起伦理道德的问题。例如人工授精和试管婴儿技术,可能使子女“只知其母,不知其父”。若供卵者与怀孕的不是一个人,则生母也成了问题。例如克隆技术可以实现人的无性繁殖,那么,人类自身的生产也会批量化吗?例如应用基因工程技术改造人类本身,一些人成就了改造活动的客体,而另一些人是主体,一些认识按照另一些人的

有机化学的发展和前景

有机化学的发展和前景 在人类多姿多彩的生活中,化学可以说是无处不在的。据统计,在工业发达国家的全部生产中,化学过程的工业占高比例,以美国为例占到30%。有机化学是研究有机化合物的来源、制备、结构、性能、应用以及有关理论和方法的学科。自从1828年合成尿素以来,有机化学的发展是日新月异,其发展速度越来越快。近两个世纪来,有机化学学科的发展,揭示了构成物质世界的有机化合物分子中原子链合的本质以及有机分子转化的规律,并设计、合成了具有特定性能的有机分子;它又为相关学科(如材料科学、生命科学、环境科学等)的发展提供了理论、技术和材料。有机化学是一系列相关工业的基础,在能源、信息、材料、人口与健康、环境、国防计划的实施中,在为推动科技发展、社会进步,提高人类的生活质量,改善人类的生存环境的努力中,已经并将继续显示出它的高度开创性和解决重大问题的巨大能力。 此外有机化学还是一门极具创新性的学科。在有机化学的发展中,它的理论和方法也得到了长足的进步。建立在现代物理学(特别是量子力学)和物理化学基础上的物理有机化学,在定量的研究有机化合物的结构、反应性和反应机理等方面所取得的成果,不仅指导着有机合成化学,而且对生命科学的发展也有重大意义。有机合成化学在高选择性反应的研究,特别是不对称催化方法的发展,使得更多具有高生理活性、结构新颖分子的合成成为可能。金属有机化学和元素有机化学,为有机合成化学提供了高选择性的反应试剂和催化剂,以

及各种特殊材料及其加工方法。有机化学以它特有的分离、结构测定、合成等手段,已经成为人类认识自然、改造自然具有非凡能动性和创造力的武器。近年来,计算机技术的引入,使有机化学在结构测定、分子设计和合成设计上如虎添翼,发展得更为迅速。同时,组合化学的发展不仅为有机合成提出了一个新的研究内容,而且也使高通量的自动化合成有机化合物成为现实。 在21世纪,有机化学面临新的发展机遇。一方面,随着有机化学本身的发展及新的分析技术、物理方法以及生物学方法的不断涌现,人类在了解有机化合物的性能、反应以及合成方面将有更新的认识和研究手段;另一方面,材料科学和生命科学的发展,以及人类对于环境和能源的新的要求,都给有机化学提出新的课题和挑战。有机化学将在物理有机化学,有机合成化学,天然产物化学,金属有机化学,化学生物学,有机分析和计算化学,农药化学,药物化学,有机材料化学等各个方面得到发展。 一、物理有机化学 物理有机化学是用物理化学的方法研究有机化学问题的科学,是一门指导有机化学其他学科发展的学科。它研究有机化合物的结构和性能、有机化学反应如何发生和为什么发生,从中找出规律,指导设计、合成新的物种,预见和发现新的有机化学现象。如有机化合物的结构与性能的关系,现代光谱、波谱和显微技术的发展为表征分子结构提供了基础。它对原有的各种反应机理和活泼中间体(协同反应、自由基反应、离子型反应、卡宾反应、激发态反应、电子转移反应等)

有机化学发展简史

有机化学发展简史i “有机化学”这一名词于1806年首次由贝采利乌斯提出。当时是作为“无机化学”的对立物而命名的。19世纪初,许多化学家相信,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。 1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。 由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下台成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。 从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述。 法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。 当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。 类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。 有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。 从1858年价键学说的建立,到1916年价键的电子理论的引入,是经典有机化学时期。 1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“-”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只

有机化学与生命科学

第18卷第1期1998年 3月 云南师范大学学报 J ourna l of Yunna n No r m a l Unive rs ity V o l.18No.1 M a r. 1998有机化学与生命科学Ξ 周晓俊 吴 晖 (云南广播电视大学医农系,昆明650223) (云南师范大学化学系,昆明650092) 摘 要 本文对有机化学和生命科学的关系、生命科学中有机化学发展前沿和研究热点等各方面 进行较全面的讨论。阐述了有机化学与生物问题的密切结合推动了生命科学的蓬勃发展。随着科学 技术的发展,自然科学各学科之间互相渗透、互相融合,新兴边缘学科不断涌现,化学生物学就是最 富有生命力的一门新学科。在生命科学中有机化学显得尤其重要。 关键词 生命科学 有机化学 化学生物学 分子水平 当今生命科学发展到了分子水平,而且正方兴未艾。生命科学中的化学问题已成为当今化学科学的重大的前沿课题之一。这个课题关系到在分子基础上对生命现象和生命过程的深入认识,关系到对人类自身的认识,与医学和工农业的发展有直接的关系。发达国家如美国、欧洲和日本都提出相应报告并制订规划,将此课题列为今后最优先发展的研究课题。 一些著名科学家在论述今后发展趋势时,提出了“化学是中心科学”(the cen tral science)的论点。化学是在分子水平上研究物质世界的科学。说它是中心科学,是因为它联系着物理学和生物学,材料科学和环境科学,农业科学和医学,它是所有处理化学变化的科学的基础。因此,化学与这些科学的交叉就成为化学科学发展的必然趋势。在此,我们仅就化学,特别是有机化学和生命科学的关系,生命科学中有机化学发展前沿和研究热点作一综述讨论。 1 有机化学与生命科学的关系 有机化学与生命科学关系极为密切。有机化学就其最初的意义而言,是生物物质的化学。十九世纪初,化学家把物质分为从矿物质获得的和从活细胞获得的两大类。1807年,J.F.von B erziliu s首次把从活细胞中获得的化合物命名为有机化合物。那时人们对生命现象的本质没有认识,因而便赋予有机化合物以一种神秘的色彩,许多化学家认为有机物是不可能用人工的方法合成的,它们是“生命力”所创造的。但是1828年,F.W oh ler从无机物氰酸铵制得了和尿液中分离得到的完全相同的尿素。W oh ler的发现否定了关于“生命力”假说,可以说是化学家第一次干预了生命科学。 在后来的研究中,化学家们的兴趣主要在有机物的结构研究和合成方法上,较少关心它们的生物功能。尽管如此,许多化学家卓有成效的研究成果还是成为了生命科学发展过程的里程碑。 十九世纪中叶,I.Pasteu r关于左旋和右旋酒石酸经典式的研究,导致70年代V an thoff Ξ1997-11-19收稿

公元年公元年生命科学发展大事记

生命科学发展大事记 公元1600年~公元1839年 公元1609年 ●意大利物理学家、天文学家G.伽利略制造一台复合显微镜,并用于观察昆虫的复眼。公元1628年 ●英国医生、解剖学家W.哈维所著的《动物心血运动的研究》一书出版,建立血液循环 理论,奠定了近代医学和生理学的基础。 公元1660年 ●意大利解剖学家M.马尔皮基观察到蛙肺里连接动脉和静脉的毛细血管,证实了哈维的 血液循环理论。 公元1665年 ●英国物理学家R.Hooke(R.胡克)在显微镜下观察软木切片,发现蜂窝状小室,称之为 “Cell”,并发表著作《显微摄影》描述之。 公元1668年 ●意大利医生F.雷迪通过蝇卵生蛆的对比实验,为反对自然发生说提供了第一个证据。公元1675年 ●荷兰人A.van 列文虎克发明了显微镜。 公元1675年 ● A.van 列文虎克用自制的、当时分辨率最高的显微镜进行了广泛观察,发现了由种种 活着的“小动物”组成的微生物世界,同时也发现了人的精子。 公元1682年 ●英国植物学家N.格鲁编著的《植物解学》出版,其中也包括植物生理学的研究成果。公元1686年 ●英国博物学家J.雷所著《植物史》第一卷出版,以后继续出版第二、三卷,其中讨论了 种的定义。 公元1727年 ●中国医学家俞茂鲲在《痘科金镜赋集解》中记载,人痘接种术起于明朝隆庆年间(1567~

1572);《医宗金鉴》(1742)介绍了痘衣、痘浆、水苗、旱苗四种方法。据俞正燮(1775~1840)在《癸巳存稿》中记载,1688年(清康熙二十七年)俄国已派医生来学“人痘法”。公元1735年 ●瑞典植物学家Linne C.V.(C.von林奈)所著的巨著《自然系统》第一版出版,首创物 种二名法,把自然界的植物、动物、矿物、分成纲、目、属、种,实现了植物与动物分类范畴的统一,在全世界得到普遍承认与推广。 公元1761年 ●科尔鲁特以早熟的普通烟草和晚熟的心叶烟草杂交获得了品质优良的早熟杂种一代。公元1770年~公元1774年 ●氧气的发现,经历了一个较为漫长的曲折历程。造成这种曲折的原因尽管是多方面的, 但主要还是发现者本人的主观因素所造成的。因此,总结这一深刻教训,可给后人留下许多有益的历史启示。 人类关于氧气的研究,可以追溯到遥远的古代。据史书记载,公元8世纪,中国就曾经对大气进行过研究,并把大气分为阴阳两部分。到17世纪,罗伯特·波义耳(R. Boyle,1627-1691)在进行抽气机与燃烧实验时,发现了一些奇妙有趣的现象。在真空中,火药环只在受热的地方才燃烧,但一通入空气,立刻全部燃烧。这些燃烧现象,使波义耳得出结论:“空气中有一些活性物质不是被磷的烟雾消耗掉,就是被它驯化”。 这给人们以启发,那就是空气中含有两种截然不同的气体。此后,R. 虎克(R. Hooke,1635-1703)也做了类似的燃烧实验,并得出结论,认为空气中存在一种可以溶解可燃物体自身的东西。 罗伯特·波义耳和虎克的实验,对发现氧气都是极为有益的。只要沿着这个正确的思路去寻找空气中那种具有活性的物质是什么?氧气就会很顺利地被发现。但科学发现的道路是曲折的。在通往客观真理的征途上,遇到任何一点障碍,都可能使科学家犹豫不前,而大大推迟科学发现的时间。 在氧气发现的过程中,最大的障碍,就是“燃素说”的提出。它使一些科学家步入歧途,茫然而不能自拔。“燃素说”是英国人乔治.恩斯特.史塔尔继承了约翰.约阿希姆.帕克的《地下的自然哲学》中的学说,并综合了各家观点,于1703年较系统地阐述和发挥为完整理论的。史塔尔认为,空气中有一种可燃的油状土,即为燃素。史塔尔所说的燃素是“火质和火素而非火本身”,燃素存在于一切可燃物体中,在燃烧时,快速逸出。 燃素是金属性质、气味和颜色的根源。它是火微粒构成的火元素。按照“燃素说”的观点,

新沪科版高中生命科学第三册10.4《生物多样性保护与可持续发展》教学设计(精品).doc

第10章第4节生物多样性的保护与可持续发展 奉城高级中学陆沛恒 一、设计思路 本节内容是在了解了生物多样性的含义、价值和面临的威胁后,进一步了解人类是如何保护生物多样性及生物多样性与可持续发展的关系。教学过程中以《解放日报》对北大生态文明研究中心主任陈寿朋教授的专访中的一些独特的见解和经历为主线,学生在了解体会专家对生物多样性保护的感人行为和独特的爱国情怀中,不但了解了生物多样性保护重要性及与可持续发展的关系,而且在情感上激发了爱国的情怀,在行动上参与到生物多样性的保护。 二、教学目标 1.知识与技能 ○1知道保护生物多样性的公约。 ○2举例说出保护生物多样性的方法和措施。 ○3知道生物多样性与可持续发展的关系。 2.过程与方法 ○1通过对保护生物多样性等相关资料的搜集、分析和归纳,提高主动获取信息和处理信息的能力。 3.态度情感和价值观 ○1了解科学家对保护生物多样性的感人行为和爱国情怀,形成生态环境保护从我做起的意识和文明不奢侈的生活消费习惯。 三、重点和难点 1.重点: ○1生物多样性的公约。 ○2保护生物多样性的有效措施。 ○3生物多样性与可持续发展的关系。 2.难点: ○1感悟生物多样性保护与可持续发展的关系,感触保护生物多样性是每一个人的责任,并转化为自觉的行动。

四、教学准备 制作多媒体课件、 组织学生分工搜索生物多样性保护的措施及生态伦理道德的相关材料。 五、教学过程

练习: 1、生物多样性的减少,不仅使人类丧失一系列的生物资源,而且会造成生态系统的退化,国际上为保护各种生物物种和资源,形成了一个国际条约体系是() A、生物多样性条约 B、国际环境保护公约 C、国际野生动物保护公约 D、濒危野生动植物种国际贸易公约 2、保护和利用森林资源的最佳方案是() A、封山育林,禁止砍伐 B、计划性合理砍伐与种植 C、人工种植,营造单纯林种 D、依据经济发展需要砍伐 3、关于我国生物多样性特点,下列说法错误的是()

数学与生命科学

数学与生命科学 事例DNA是分子生物学的重要研究对象,是遗传信息的携带者,它具有一种特别的立 体结构——双螺旋结构,双螺旋结构在细胞核中呈扭曲、绞拧、打结和圈套等形状,这正好是数学中的纽结理论研究的对象。 X射线计算机层析摄影仪—即CT扫描仪,它的问世是二十世纪医学中的奇迹,其原理是基于不同的物质有不同的X射线衰减系数。如果能够确定人体的衰减系数的分布,就能重建其断层或三维图像。但通过X射线透视时,只能测量到人体的直线上的X射线衰减系数的平均值(是一积分)。当直线变化时,此平均值(依赖于某参数)也随之变化,能否通过此平均值以求出整个衰减系数的分布呢?人们利用数学中的拉东变换解决了此问题,拉东变换已成为CT理论的核心。首创CT理论的A.M.Cormark(美)及第一台CT制作者C.N.Hounsfield (英)因而荣获1979年诺贝尔医学和生理学奖。另一项高技术是H.Hauptman与J.Karle 合作,发明了测定分子结构的新方法,利用它可以直接显示被X射线透射的分子的立体结构。人们应用此方法,并结合利用计算机,已测出包括维生素、激素等数万种分子结构,推动了有机化学、药物学和生物学等的发展,由此可见在此两项技术中数学起了关键的作用(两发明人分享1985年的诺贝尔化学奖)。 综述在发现DNA化学结构和发明计算机模拟后50年的今天,一场由数学和计算科学 驱动的革命正在生物学的领域发生。一系列突破性的研究正在重新定义以下领域:数学生态学、流行病学、遗传学、免疫学、神经生物学和生理学等等。美国国家科学基金会(NSF)主任科勒威尔(R. Colwell)在2000年10月向国会提交的报告中,称数学是当前所有新兴学科和研究领域的基础,要求下一年度对数学的资助要增加3倍以上,达到1.21亿美元。在这些增加的预算中,有很大的一部分被用来支持数学与其他学科的交叉研究,尤其是数学与生物学的交叉研究项目。 尽管数学一直在现代生命科学中扮演着一定的角色,如数量遗传学、生物数学等,但生物学家真正体会到数学的重要性,还是最近十几年来的事情。基因组学是这种趋势的主要催化剂。随着DNA序列测定技术的快速发展,1990年代后期每年测定的DNA碱基序列以惊人的速度增长。以美国的基因数据库(GenBank)为例,1997年拥有的碱基序列数为1×109,次年就翻了一番,到2000年GenBank已拥有近8×109个碱基序列。同样,在蛋白质组研究和转录组研究等快速推进的过程中,各种数据也在迅猛增加。据估计,现在每年产生的生物数据量可以达到1015字节。如何管理这些“海量”数据,以及如何从中提取有用的知识,成为了对当前生物学家、数学家、计算机专家等的巨大挑战。一门新兴学科——生物信息学(bioinformatics),也应运而生。此外,对细胞和神经等复杂系统和网络的研究,导致了数学生物学(mathematical biology)的诞生。NSF为此专门启动了一项“定量的环境与整合生物学”项目,以鼓励生物学家把数学应用到生物学研究中去。几乎在同一时间,美国国立卫生研究院也设立了一项“计算生物学”的重大项目。 数学不仅能帮助人们从已有的生物学实验和数据中抽象出模型和进行解释,它还可以用于设计和建造生物学模型,也许这些生物学模型在自然的状态下是根本不存在的。在这种意义上说,基于数学模型和假设进行的生物学实验,将更接近人们熟知的物理学和化学实验,更多地依赖于抽象和理性,不再是一门经验科学。

浅谈超分子化学的应用及前景展望

浅谈超分子化学的应用及前景展望 超分子化学是基于冠醚与穴状配体等大环配体的发展以及分子自组装的研究和有机半导体、导体的研究进展而迅速发展起来的,它包括分子识别、分子自组装、超分子催化、超分子器件及超分子材料等方面。其中分子识别功能是其余超分子功能的基础。超分子学科的应用主要是围绕它的主要功能-识别、催化和传输来进行开发研究。 1987年,莱恩(Lehn J. M.)、克拉姆(Cram D. J.)和彼得森(Perterson C. J.)三位化学家以其对发展和应用具有特殊结构的高分子的巨大贡献而获得诺贝尔化学奖。莱恩在获奖演讲中,首次提出了“超分子化学”的概念。同时克拉姆创立和提出了主—客体化学理论,彼得森则发展和合成出大批具有分子识别能力的冠醚。至此,以“超分子化学”为名称的新的化学学科蓬勃地发展起来,并以其新奇的特性吸引了全世界化学家的关注和热衷。近年来Supramolecular Chemistry杂志的创立说明超分子化学作为化学学科的一个独立的分支,已经得到世界各国化学家的普遍认同。 目前超分子化学的理论和方法正发挥着越来越重要的作用,该学科的研究不仅与各化学分支相结合,又与物理学、信息学、材料科学和生命科学等紧密相关。在与其他学科的交叉融合中,超分子化学已发展成了超分子科学。超分子科学涉及的领域极其广泛,它不仅包括了传统的化学(如有机化学、分析化学等),而且还涉及材料科学、信息科学和生命科学等学科。由于超分子学科具有广阔的应用前景和重要的理论意义,超分子化学的研究近十多年来非常活跃。涉及的应用包括:在化学药物方面的研究与应用,在光化学上的应用,在压电化学传感器中的应用,识别作用(酶和受体选择性的根基)的应用,在有机半导体、导体和超导体以及富勒烯中的应用,作为分子器件方面的研究,在色谱和光谱上的应用,催化及模拟酶的分析应用,在分析化学上的应用等等。 超分子化学在药物开发中的应用研究是国际学术界和工业界共同关注的一个热点。药物分子和其它有机分子通过氢键作用结合在一起形成的药物超分子化合物,可有效改善药物的溶解度、生物利用度等性质,成为药物制剂的一个新选择。超分子药物化学是超分子化学在药学领域的新发展。该领域发展迅速,是一个新兴的交叉学科领域,正在逐渐变成一个相对独立的研究领域。迄今已有许多超分子化学药物应用于临床,其效果良好。更多的超分子体系正在作为候选药物进行临床研究开发。超分子化学药物因具有良好的稳定性、安全性、低毒性、不良反应少、高生物利用度、消除药物异味、克服多药耐药、药物靶向性强、多药耐

当前生命科学和未来10年之后的研究热点

当前生命科学和未来10年之后的研究热点 摘要:生命科学是研究生命现象、生命活动的本质、特征和发生、发展规律,以及各种生物之间和生物与环境之间相互关系的科学。用于有效地控制生命活动,能动地改造生物界,造福人类生命科学与人类生存、人民健康、经济建设和社会发展有着密切关系,是当今在全球范围内最受关注的基础自然科学。生命科学是系统地阐述与生命特性有关的重大课题的科学。支配着无生命世界的物理和化学定律同样也适用于生命世界,无须赋于生活物质一种神秘的活力。对于生命科学的深入了解,无疑也能促进物理、化学等人类其它知识领域的发展。正文:生物信息学作为当今生命科学研究最重要的平台技术,其两大主要任务,即发现致病基因、阐明生命发育进化规律和对海量数据的收集、整理已经逐渐逼近生命科学研究的纵深,并开始有所收获,正在成为后基因组时代生命前沿科学研究中解析海量数据的最佳工具。 蛋白质组学:蛋白质组学研究也是当代生命科学的前沿热点。随着被誉为解读人类生命“天书”的人类基因组计划的成功实施,人类已初步掌握了自身的遗传信息。为了真正破译、读懂这部“天书”,各国科学家随即将生命科学的战略重点转到以阐明人类基因组整体功能为目标的功能基因组学上。蛋白质作为生命活动的“执行者”,自然成为新的研究焦点。以研究一种细胞、组织或完整生物体所拥有的全套蛋白质为特征的蛋白质组学自然就成为功能基因组学中的“中流砥柱”,构成了功能基因组学研究的战略制高点。 功能基因组:随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的,其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA 蛋白质,存在三个层次的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水平调控(Post-translational control )。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则几乎无法从mRNA水平来判断。毋庸

生科有机化学习题

习题一 1. 写出只有伯氢原子,分子式为C8H18烷烃的结构式。 2. 写出分子式为C9H20,含有8个20氢原于和12个10氢原子的烷烃的结构式。 3. 命名下列化合物: 4. 写出符合下列条件的烷烃或环烷烃的结构式: (1)不具有亚甲基,并含4个碳原子的烷烃; (2)具有12个等性氢原子,分子式为C5H12的烷烃; (3)分子式为C7H14 ,只有1个伯碳原子的环烷烃,写出可能的结构式并 命名。 5. 画出2,3—二甲基丁烷以C2―C3键为轴旋转,所产生的最稳定构象的Newman 投影式。 6. 化合物A的分子式为C6H12,室温下能使溴水褪色,但不能使高锰酸钾溶液褪色,与HBr反应得化合物B(C6H13Br)。A氢化得2,3—二甲基丁烷。写出化合

物A、B的结构式。 7. 用Newman投影式表示下列化合物的优势构象: 8. 写出5—甲基—3,3—二乙基—6—异丙基壬烷的结构式.并指出各碳原子的类型。 习题二 1. 用系统命名法命名下列化合物: 3. 写出下列化合物的结构式:

(1) 2-甲基-2-丁烯(2) 1,4-己二炔(3) 异丁烯 (4) 2,5-二甲基-3-己炔(5) 1-丁烯-3-炔 4. 写出下列反应的主要产物: 5. 用简便易行的化学方法区别下列各组化合物: (1) 2-甲基丁烷,3-甲基-1-丁炔,3-甲基-1-丁烯 (2) 1-戊炔,2-戊炔,戊烷 6. 分子式为C4H8的两种链状化合物与溴化氢作用生成相同的溴代烷。试推测原来两种化合物是什么?写出它们的结构式。 7. 分子式为C4H6的化合物能使高锰酸钾溶液褪色,但不能与硝酸银的氨溶液发生反应,写出化合物一切可能的结构式。 8. 具有相同分子式的两个化合物A和B,氢化后都可以生成2-甲基丁烷,它们也都与两分子溴加成,但A可与AgNO3的氨溶液作用产生白色沉淀,B则不能。试推测A和B两个异构体的可能结构式。 9. 某一烯烃经酸性高锰酸钾溶液氧化后,获得CH3CH2COOH、CO2和H2O。另一烯烃经同样处理后则得C2H5COCH3和(CH3)2CHCOOH。请写出这两种烯烃的结

上海交大生命科学导论复习大纲

2009-2010学年第1学期<生命科学导论>复习大纲 第一讲序论及生命的元素 1.进入新世纪后,人类社会面临哪些重大问题?这些问题的解决与生命科学有何关系? 进入新世纪后人类面临的主要问题: 人口爆炸、粮食短缺、健康、资源枯竭、环境污染的可持续发展问题. (1) 生命科学与农业可持续发展; (2) 生命科学与能源问题; (3) 生命科学与人的健康长寿 (研究更有效的药物, 改造人的基因组成); (4) 生命科学与维持地球生态平衡; (5) 生命科学与伦理道德问题. 2.举例说明生命科学本质上是一门实验科学。 孟德尔实验发现两大遗传定律, 格里菲斯实验证明遗传物质是 DNA 而不是蛋白质 3.举例:生命科学与其它学科的交叉边缘领域或学科。 生物化学、生物数学、心理学、生物物理、生物工程学、人工智能等. 4.生物学经历了哪三个发展阶段?各发展阶段有何特征?有何代表性的人物?生物学经历了三个发展阶段: (1) 描述生物学阶段 (19 世纪中叶以前) 特征: 主要从外部形态特征观察、描述、记载各种类型生物, 寻找他们之间的异同和进化脉络. (2) 实验生物学阶段 (19 世纪中叶到 20 世纪中叶) 特征: 利用各种仪器工具, 通过实验过程, 探索生命活动的内在规律. (3) 创造生物学阶段 (20 世纪中叶以后) 特征: 分子生物学和基因工程的发展使人们有可能“创造”新的物种. 5.如何确定人体必需微量元素? 用饲喂法分三步来证明某种元素是否是人体必需微量元素: (1) 让实验动物摄入缺少某一种元素的膳食, 观察是否出现特有的病症; (2) 向膳食中添加该元素后, 实验动物的上述特有病症是否消失; (3) 进一步阐明该种元素在身体中起作用的代谢机理. 只有上述三条都弄清楚, 才能确定某种元素是否为必需元素. 6.举出三种人体大量元素和三种人体必需微量元素。 人体大量元素: C、H、O 人体微量元素: Fe、Zn、Mn、Co、Mg、Si、F、Se、V 第二讲生物大分子 7.比较多糖、蛋白质、核酸三类生物大分子。比较项目包括:单体的名称与结构特征,连接单体的关键化学键和大分子结构的方向性。 多糖 单体名称: 单糖 单体结构特征: 多羟基醛或多羟基酮 连接单体的关键化学键: 糖苷键 结构的方向性: 一端的糖基有游离的半缩醛羟基, 称还原端; 另一端的糖基没有游离的半缩醛羟基, 称非还原端.

有机化学的发展与应用教案

专题一认识有机化合物 第一单元有机化学的发展与应用 【学习任务】 1、了解有机化学的发展与应用,并能通过计算求得有机物的分子式。 2、了解利用基团理论、光谱分析等确定有机物结构的方法。 【学习准备】 在日常生活中,我们接触到各种各样的物质,你能说出哪些是有机化合物吗?它们在生活中有哪些应用呢? 【学习思考】 一、有机物的概述 1.概念:含有________的化合物。 2.组成元素:除碳外,通常还有氢、_____、_____,_____、_____及卤素等。 二、有机化学的发展 1.我国早期有机化学 (1)3 000多年前已经用煤作为燃料。 (2)2 000多年前就掌握了_____和_____的开采技术。 (3)从植物中提取_____ 等物质已经有上千年的历史。 2.有机化学的形成 (1)19世纪初,瑞典化学家_____ 提出了有机化学概念。 (2)19世纪中叶以前,科学家提出“_____ ”,认为有机物只能由动 物或植物产生,不可能通过人工的方法将无机物转变为有机物。 (3)1828年,德国化学家维勒利用无机物合成了第一种有机物尿素,冲破了“生命力 论”学说的束缚,打破了_____ 的界限。 3.现代有机化学 (1)_____ 得到广泛应用,成为人类赖以生存的重要物质基础。 (2)与其他学科融合形成了、以及等多个新型学科。 (3)1965年,我国科学家在世界上第一次用人工方法合成_____ ,标 志着人类合成蛋白质时代的开始。 三、有机化学的应用 糖类油脂蛋白质 石油天然气天然橡胶 2.具有特殊功能的有机物的合成和使用,改变了人们的生活习惯,提高了人类的生活质量。 3.有机物在维持生命活动的过程中发挥着重要作用。 4.利用药物(大多数是有机物)治疗疾病已经成为人类文明进步的重要标志。 思考讨论:含碳元素的化合物一定是有机物吗? 提示:含碳元素的化合物不一定是有机物,如碳的氧化物、碳酸、碳酸(氢)盐、KSCN、

生命科学的发展及其教育价值

生命科学的发展及其教育价值 姓名:熊维维班级:2014级生物教育专科班学号:2014133012 摘要:生命科学史生动地描绘了生命科学起源和发展的过程。它介绍了生物学的起源、古希腊的科学与哲学、文艺复兴时期的科学革命,以及解剖学、胚胎学、细胞学、微生学物、动物及人体生理学、进化论、遗传学和分子生物学的产生和发展,对西方医学史的内容也有所反映。书中以极为丰富的材料论述了许多生物科学家创造性的劳动,对生物学发展的逻辑和社会历史背景等等重要问题也进行了探讨。它揭示了人们思考和解决生物学问题的思想历程,展示了生命科学各个学科形成的历史以及各个学科之间的联系,揭示了自然科学的本质,揭示了每一个知识点的产生过程就是一个探究的过程,在探究性学习中将发挥重要的作用。 关键词:生命科学史;教育价值;生物学素养;探究性学习;发展历程、未来展望、生命科学解决的问题 一、生命科学,顾名思义是研究生命现象、生命活动的本质、特征 和发生、发展规律,以及各种生物之间和生物与环境之间相互关系的科学。生命科学研究的对象,是整个的生物界,及其与环境的关系,也就是研究生物体生长发育成熟、消亡、物质代谢、能量代谢、衰老的活动、遗传、进化、分布的规律,以及和外界环境相互作用的关系。也就是和气圈、水圈、原始圈的相互的关系。

生命科学要从有机体的不同层次,原子、分子、细胞、基因组、个体、群体、生态系统、生态圈结构乃生命现象的本质来揭示生命的奥秘并在揭开生命之谜的同时,探究新的原理、探索新的技术,进行多学科的交叉和渗透,并广泛用生命科学的理论和方法同时把它们广泛地应用到我们的生产生活中。对生命科学的研究的起步,有一种说法是把细胞的发现作为生命科学的起源,另外一种就是将奥巴林的生命起源假说作为生命科学的起源。1677年列文·虎克用自己制造的简单显微镜观察到了“细胞此后,罗伯特·虎克、贝尔、施莱登、施旺、亨金等一大批西方科学家和学者通过各自的研究不断地发现有关于细胞的作用、细胞的结构、细胞分裂、染色体等内容,为推动生命科学的发展做了巨大的贡献。此外,所谓奥巴林的生命起源假说是指前苏联化学家奥巴林在1922年把生命起源的历史分为三个阶段:第一步,从无机物生成有机小分子;第二步,从有机小分子形成氨基酸、蛋白质、核酸等高分子聚合物;第三步,形成具有新陈代谢、能够自我复制的原始生命体,最终产生细胞。笔者比较赞同前一种关于生命科学起步时间的观点。因为一方面,生命科学的初始研究对象本来就应该是生命本身的组织和结构,发现细胞、研究细胞不妨就看成这样的开始;另一方面,奥巴林提出生命科学起源假说时,是20世纪的第二个十年了,此前,很多生命科学领域的重要研究成果已经出来了,且不说对于生命结构基本单位——细胞的研究,就是在生命的组织、系统、单个生物体及生物生存的大环境

生命科学对农业发展的影响

2011级农村区域发展(一)班简林波学号:3115003020 生命科学对农业经济发展的影响 摘要:生命科学与经济发展密不可分,不断为经济发展提供多种技术成果,为人 类社会创造可观的经济效益。在农业生产方面,生命科学在常规育种提供大量优质动植物种源的基础上,进一步发挥分子育种的优势,为增进人类健康和提高人类生活质量供给种类繁多﹑营养安全的农源生活用品。在新型能源方面,生命科学将有利于发现和利用更多生物能源,如农副产品发酵生产酒精﹑高油含量植物生产燃料油﹑太阳能分解水生产氢燃料等,为人类创造用之不竭的可再生能源。 关键词:生命科学﹑农业生产﹑新型能源﹑应用﹑意义 生命科学的定义:生命科学是研究生命的科学,它是研究生物体的生命活动及其本质﹑生物体的发生与发展﹑生物体与环境相互作用规律等的科学。生命科学对经济建设和社会发展具有极其重要的作用。 1.生物技术在农业生产的应用 1.1生物技术应用于畜牧业 1.11基因工程 基因工程又称DNA重组技术,是指对不同生物的遗传基因,根据人们的意愿进行基因的切割、拼接和重新组合,然后再转人生物体内,产生人们所期望的产物或创造出具有新的遗传特征的生物类型。基因:口里使得人类可以克服物种问的遗传障碍。定向培养或仓造出自然界所没有的新的生命形态,以满足人类社会的需要。 基因工程在畜牧业上也得到广泛发展。例如利用鼠类有关促进角蛋白形成的基因获得了经遗传改良的绵羊,这种绵羊比普通棉羊产毛量提高6%左右[ 。 最近美国科学家通过转基因技术,将深海鱼中含有的一种不饱和脂肪酸基因转移到了猪的基因组中。食用这些转基因克隆猪的猪肉,可预防心血管疾病。 1.12细胞工程 细胞工程是指应用细胞生物学和分子生物学方法,借助工程的实验方法或技术,在细胞水平上研究改造生物遗传特性和生物学特性,以获得特定的细胞、细胞产品或新生物体的一门科学技术。 目前,人工受精、胚胎移植等技术已广泛应用于畜牧业生产,液氮超低温(一196%)保存精液和胚胎,使优良畜、禽的交配数量与交配范围大为扩展,突破了交配季节的限制。另外,在细胞水平上改造卵细胞,可创造出高产奶牛、瘦肉型猪等新品种。结合流式细胞仪可分离出良种奶牛带有x染色体的精子,与奶牛卵细胞融合后移植到普通黄牛子宫中可以起到“借腹生子”的效果。这种胚胎移植新技术

世界生物学发展史

世界生物学发展史 生物学的发展经历了萌芽期、古代生物学时期、近代生物学时期和现代生物学时期。 生物学发展的萌芽时期是指人类产生(约300万年前)到阶级社会出现(约4000年)之间的一段时期。这时人类处于石器时代,原始人开始了栽培植物、饲养动物并有了原始的医术,这一切为生物学发展奠定了基础。 到了奴隶社会(约4000年前开始)和封建社会后期,人类进入了铁器时代。随着生产的发展,出现了原始的农业、牧业和医药业,有了生物知识的积累,植物学、动物学和解剖学还停留在搜集事实的阶段。但在搜集的同时也进行了整理,并被后人叫做所谓的古代生物学。古代的生物学在欧洲以古希腊为中心,著名的学者有亚里士多德研究(形态学和分类学)和古罗马的盖仑(研究解11剖学和生理学),他们的学说在生物学领域内整整统治了1000年。中国的古代生物学,则侧重研究农学和医药学。 从15世纪下半叶到18世纪末是近代生物学的第一阶段,这一时期,在生物学研究中,主要的有维萨里等人的解剖学,哈维的生理学,林耐的分类学以及从18世纪末并继续到19世纪初的拉马克等人的进化学说。 19世纪的自然科学,进入了全面繁荣的时代。近代生物学的主要领域在19世纪都获得重大进展。如细胞的发现,达尔文生物进化论的创立,孟德尔遗传学的提出。巴斯德和科赫等人奠定了微生物学的科学基础,并在工农业和医学上产生了巨大影响。17世纪建立起来的动物(包括人体)生理学到19世纪有了明显的进展,著名学者有弥勒、杜布瓦·雷蒙、谢切诺夫和巴甫洛夫等人。由于萨克斯、普费弗和季米里亚捷夫的努力,使植物生理学在理论上达到了系统化。 20世纪的生物学即属于现代生物学的范畴,始于1900年孟德尔学说的重新

有机化学的发展简史

有机化学的发展简史 “有机化学”这一名词于1806年首次由贝采里乌斯提出。当时是作为“无机化学”的对立物而命名的。由于科学条件限制,有机化学研究的对象只能是从天然动植物有机体中提取的有机物。因而许多化学家都认为,在生物体内由于存在所谓“生命力”,才能产生有机化合物,而在实验室里是不能由无机化合物合成的。 1824年,德国化学家维勒从氰经水解制得草酸;1828年他无意中用加热的方法又使氰酸铵转化为尿素。氰和氰酸铵都是无机化合物,而草酸和尿素都是有机化合物。维勒的实验结果给予“生命力”学说第一次冲击。此后,乙酸等有机化合物相继由碳、氢等元素合成,“生命力”学说才逐渐被人们抛弃。 由于合成方法的改进和发展,越来越多的有机化合物不断地在实验室中合成出来,其中,绝大部分是在与生物体内迥然不同的条件下合成出来的。“生命力”学说渐渐被抛弃了,“有机化学”这一名词却沿用至今。 从19世纪初到1858年提出价键概念之前是有机化学的萌芽时期。在这个时期,已经分离出许多有机化合物,制备了一些衍生物,并对它们作了定性描述,认识了一些有机化合物的性质。 法国化学家拉瓦锡发现,有机化合物燃烧后,产生二氧化碳和水。他的研究工作为有机化合物元素定量分析奠定了基础。1830年,德国化学家李比希发展了碳、氢分析法,1833年法国化学家杜马建立了氮的分析法。这些有机定量分析法的建立使化学家能够求得一个化合物的实验式。 当时在解决有机化合物分子中各原子是如何排列和结合的问题上,遇到了很大的困难。最初,有机化学用二元说来解决有机化合物的结构问题。二元说认为一个化合物的分子可分为带正电荷的部分和带负电荷的部分,二者靠静电力结合在一起。早期的化学家根据某些化学反应认为,有机化合物分子由在反应中保持不变的基团和在反应中起变化的基团按异性电荷的静电力结合。但这个学说本身有很大的矛盾。 类型说由法国化学家热拉尔和洛朗建立。此说否认有机化合物是由带正电荷和带负电荷的基团组成,而认为有机化合物是由一些可以发生取代的母体化合物衍生的,因而可以按这些母体化合物来分类。类型说把众多有机化合物按不同类型分类,根据它们的类型不仅可以解释化合物的一些性质,而且能够预言一些新化合物。但类型说未能回答有机化合物的结构问题。这个问题成为困扰人们多年的谜团。 从1858年价键学说的建立,到1916年价键的电子理论的引入,才解开了这个不解的谜团,这一时期是经典有机化学时期。 1858年,德国化学家凯库勒和英国化学家库珀等提出价键的概念,并第一次用短划“—”表示“键”。他们认为有机化合物分子是由其组成的原子通过键结合而成的。由于在所有已知的化合物中,一个氢原子只能与一个别的元素的原子结合,氢就选作价的单位。一种元素的价数就是能够与这种元素的一个原子结合的氢原子的个数。凯库勒还提出,在一个分子中碳原子之间可以互相结合这一重要的概念。 1848年巴斯德分离到两种酒石酸结晶,一种半面晶向左,一种半面晶向右。前者能使平面偏振光向左旋转,后者则使之向右旋转,角度相同。在对乳酸的研究中也遇到类似现象。为此,1874年法国化学家勒贝尔和荷兰化学家范托夫分别提出一个新的概念:同分异构体,圆满地解释了这种异构现象。

相关文档
最新文档