[Petrel2014使用技巧] Petrel 中实现地震反演的方法和技巧

[Petrel2014使用技巧] Petrel 中实现地震反演的方法和技巧
[Petrel2014使用技巧] Petrel 中实现地震反演的方法和技巧

Petrel 中实现地震反演的方法和技巧介绍地震反演的目标:在井控范围以外使用地震数据来描述岩性和流体属性。

所需井曲线:声波和密度。

确定性反演的步骤包括:使用合成记录对井曲线进行标定和校正、精确的时间-深度标定、确切的子波提取或者描述以及井曲线和地震数据的对应关系。

叠前和叠后的比较:

叠后的结果是AI,声波阻抗。信噪比比较好,不能解决入射角相关的属性问题。

叠前的结果是泊松比、拉梅系数等。针对入射角相关属性。可提取剪切模量信息。

Petrel遗传算法反演

遗传反演是一种结合神经网络算法和遗传算法的反演技术。主要用于通过数据间非线性关系解析获取声波阻抗信息。其所需的输入数据为:地震振幅体和测井曲线。其优势在于:运算快,误差小,可以应用于多种地球物理属性。人工神经网络(ANN)是一种模拟人类神经细胞行为的算法,它的运行基于复杂的神经元关联网络。

遗传算法: 基于DNA链的运行原则,基因可以从父本向子本作转移和交叉互换。

数学运行框图如图5所示:

工作流程示意如图6所示:

基本工作流程框图见图7:

实例分析

步骤一、从GeoFrame中输出Petrel格式数据包。Basemap -> send -> export to Petrel

Geology Office -> tools -> export well data to Petrel

步骤二、安装 GeoFrameDataConnectorForPetrel2009.1.msi ,插件对应功能显示如下:

步骤三、输入压缩包。

步骤四、检查数据。

步骤五、合成记录标定。

步骤六、时间-深度转换。

步骤七、反演。

步骤八、结果评价与分析。

地震资料反演技术概论

地震资料反演技术概论(波阻抗、岩性反演处理技术) 一九九八年九月 辽河油藏工程培训班材料 编写人:钟俊

地震资料反演技术概论 前言 一.反演的概念、目的 二.反演的发展历史及趋势 三.反演的基本方法 四.反演的限制条件 五.反演的基本流程 六.反演实例

前言 地震、测井、钻井是石油工作者认识地下地质构造、地层、岩性、物性、含油气性的最重要的信息来源。虽然测井、钻井仅能提供井孔附近的有关信息,尤其是有关岩性、物性、含油气性的信息,但是这些信息往往具有很高的分辨率,可信度、准确性,能确切地指出含油气层的位置,定量化分析与储层、油藏有关的参数。然而一个油气田勘探、开发方案的设计、实施、调整仅靠测井、钻井资料是远远不够的,必须与地震资料相结合进行综合分析才能取得良好效果。 地震资料的分辨率虽然远远不及测井、钻井,但是随着地震勘探技术的发展,从光电记录、模拟记录到数字记录,从二维到三维,地震资料的信噪比、分辨率、成像的准确性都获得了极大的提高,由于地震资料包含大量地下地质信息,覆盖面积广,具有三维特性,所以这项技术的使用越来越受到石油工作者的重视,如何利用地震资料研究地下地质构造、地层?如何进行储层预测、油藏描述?如何进行油藏、含油气层的预测? 这些问题促使地球物理学家、地质学家开发应用了一系列地震资料特殊处理技术,如地震资料反演技术、地震属性分析技术、AVO分析技术,这些技术充分利用测井、钻井、地震的长处,使人们对地下储层、油藏的研究从点到面、从二维到三维、从三维可视化研究到油藏动态监测、从定性研究到定量化研究,大大提高了钻探成功率,有效地指导了油田开发,

地球物理学专业

地球物理学专业人才培养方案 教研室主任: 系主任: 教学副院长: 院长:

一、专业代码:070801 二、专业名称:地球物理学 三、标准修业年限:四年 四、授予学位:理学学士 五、培养目标: 本专业培养适应社会主义现代化建设需要,德、智、体、美等方面全面发展,具有良好的思想政治素质、人文素质、创新精神与实践能力,具有扎实的数理基础,掌握基本的地质学原理与方法,系统掌握地球物理学的基本理论、基本知识和基本技能,具有从事地震监测预测,地质矿产、煤田和油气资源勘查,道路桥梁的工程地球物理检测等方面的实际工作和研究工作初步能力的应用型人才。 六、基本要求: (一)知识要求: 1.具有基本的人文社科理论知识和素养,在哲学、经济学、法律等方面具备必要的理论知识,对社会有较强的适应能力; 2.具有扎实的数学、物理基础; 3.掌握基本的地质学原理与方法; 4.掌握地球物理场论、数字信号分析、水文地质学等专业基础知识; 5.系统地掌握固体地球物理学和勘探地球物理学的基本理论和基本知识; 6.掌握地震监测预测的基本理论与方法。 (二)能力要求: 1.具有较强的人际交往意识和初步的人际交往能力; 2.具有良好的自学能力和终身学习的意识; 3.具有独立思考问题、分析问题、解决问题的能力; 4.具有独立设计实验,并能对实验数据进行分析评价的能力; 5.具有独立地利用计算机进行文字和图像信息处理及进行科学计算的能力; 6.具有创新意识和创新精神,对特优学生要求具有质疑和挑战传统的理论、方法、假设的意识和能力; 7.了解全球自然灾害现状及防灾减灾体系研究发展趋势,具备综合防灾减灾意识及防震减灾宣传教育能力; 8.具有一定的提出新的问题和新的方法,分析、推断、解释新问题的能力; 9.得到从事基础研究和应用研究的初步训练。 (三)素质要求: 1.热爱祖国,具有高尚的民族气节、良好的道德品质和中华民族的传统美

地震波阻抗反演方法综述

地震波阻抗反演方法综述 一、地震反演技术研究现状 地震反演方法是一门综合运用数学、物理、计算机科学等学科发展起来的新技术新方法,每当数学方法、物理理论有了新的认识和发展时,就会有新的地震反演技术、方法的提出。随着计算机技术的不断发展、硬件设施的不断升级,这些方法技术得到了实践验证和提升,反过来地震反演技术运用中出现的新问题、新思路又不断促使数学方法、地球物理学理论的再次发展。时至今日,地震反演技术仍然是一个不断发展、不断成熟、不断丰富着的领域。 反演是正演的逆过程,在地震勘探中正演是已知地下的地质构造情况、岩性物性分布情况,根据地震波传播规律和适当的数学计算方法模拟地震波在地下传播以及接收地震波传输到地表信息的过程。地球物理反演就是使用已知的地震波传播规律和计算方法,将地表接收到的地震数据通过逆向运算,预测地下构造情况、岩性物性分布情况的过程。地震波阻抗正演是对反演的理论基础和实现手段。 1959年美国人Edwin Laurentine Drake在宾夕法尼亚州开凿的第一口钻井揭开了世界石油工业的序幕。从刚开始的查看地质露头、寻找构造高点寻找石油,到通过地震剖面的亮点技术寻找石油,再到现在运用多种科学技术手段进行油气资源的预测,石油勘探经历了一个飞速的发展历程。 声波阻抗(AI)是介质密度和波在介质中传播速度的乘积,它能够反映地下地质的岩性信息。声波阻抗反演技术是20世纪70年代加拿大Roy Lindseth博士提出的,通过反演能够将反映地层界面信息的地震数据变为反映岩性变化的波阻抗(或速度)信息。由于波阻抗与地下岩石的密度、速度等信息紧密联系,又可以直接与已知地质、钻井测井信息对比,因此广泛应用于储层的预测和油藏描述中,深受石油工作者的喜爱。70年代后期,从地震道提取声波资料的合成声波技术得到了快速发展,以此为基础发展的基于模型的一维有井波阻抗反演技术,提高了反演结果的可靠性。进入80年代,Cooke等人将数学中的广义线性方法运用于地震资料反演,提出了广义线性地震反演。此后Seymour等人又提出了测井声波资料和地震数据正反演相结合求取地下声波阻抗的测井约束反演,大大拓宽了反演结果的纵向分辨能力。 90年代,在基于前人对地质统计学研究的基础上Bortoli和Haas提出了地质统计学反演,Dubrule等人对该方法进行了改进和推广。在国内随着油田对地震反演技术的广泛应用,以周竹生为主提出的地震、地质和测井资料联合反演方法,将地质信息引入地震反演中,提高的反演结果与地质认识的联系,克服了线性反演存在的缺陷。1996年,李宏兵等人将宽频带约束方法应用于递推反演并对其进行改进,减弱了噪音对反演结果的影响。 1999年,任职于英国石油公司的Connolly在《弹性波阻抗》一文中介绍了弹性波阻抗(EI)的概念和计算方法,阐述了不同入射角度(偏移距)地震道集部分叠加反演波阻抗随入射角之间的关系,但是该方法求取的弹性阻抗随入射角变化很大,无法与常规叠后反演波阻抗直接比较,因此推广应用较为困难。2002年,Whitcombe通过修正Patrick Connolly的计算公式,得到了弹性波阻抗的归一化求取方法,消除了弹性阻抗随入射角变化大的难题。2003年,西北大学马劲风教授从Zoeppritz方程简化出发提出了广义弹性波阻抗的概念,克服了以往波阻抗反演要求地震波垂直入射到地表的假设条件,推导出了任意入射角下纵波反射系数的递推公式,提高了中等入射角度下弹性波阻抗反演的精度。

地震波层析成像反演方法及其研究综述

No.13,2010 现代商贸工业 Modern Bus iness Trade Industry2010年第13期 地震波层析成像反演方法及其研究综述 冯 微 (长江大学物理科学与技术学院,湖北荆州434025) 摘 要:通过研究利用初至波走时的层析反演方法建立近地表速度模型,提供近地表地下介质的速度信息,进一步为静校正或浅层工程勘探服务。 关键词:速度建模;层析成像;初至波 中图分类号:TB 文献标识码:A 文章编号:1672 3198(2010)13 0368 01 地震勘探是利用人工在地表激发和接收地震波,再对地震波作分析处理以及解释而得到地下构造信息和岩性信息的一种方法。在整个地震勘探过程中,精确的求取地震波在地下介质中的传播速度,一直是地震勘探的核心问题之一。尤其在地表条件较复杂的区域,地表速度的横向剧烈变化会严重影响中深层目的层的成像效果。近地表速度不准确,将会直接影响到速度分析、偏移成像的质量以及静校正的精度等地震勘探的各个环节和最终的勘探成果。 1 地震面波及波形反演 利用面波进行结构反演一直是了解地球介质结构的重要途径。近几年来,在面波理论和面波反演方面做了大量工作。陈蔚天和陈晓非(2001)提出了一种求解水平层状海洋-地球模型中面波振型问题的新算法,它简洁、高效,彻底消除了高频情况下数值计算的精度失真问题。张碧星等(2000,2002)对瑞利波勘探中 之字形频散曲线形成的物理机理和多模性问题进行了理论分析,研究了诸波模的传播特性及相互关系,以及地表下低速层介质的位置、厚度及其它参数对 之字形频散曲线的相互影响.在面波反演理论方面,朱良保等(2001)通过保角变换,把面波群速度的反演变成了球谐系数的线性化反演,使其计算速度快,等值线光滑,构造界限清晰。众多研究者根据从面波资料求出的频散曲线,对不同地区的地下速度结构作了反演,揭示了横向结构差异的广泛存在。 根据走时反演地下结构是获取结构信息的经典做法。刘伊克等(2001)根据三维地震观测的初至走时数据,利用最小平方与QR分解相结合的算法,在三维空间重建近地表低降速带速度模型。同时,采用分形算法克服了初至波波形差异以及折射波相位反转导致的拾取误差,实现了三维初至拾取的大规模全自动化运算。李录明等(2000)针对地震勘探中的复杂地表问题,提出了一套地震初至波表层模型层析反演方法.它利用地震直达波、回折波、折射波以及三者组合的初至波和层析反演方法具有的纵、横向变速优势,实现适应速度任意变化的复杂表层模型反演。 在利用远震体波接收函数反演地下结构方面。钱辉等(2001)对接收函数反演地壳结构速度的算法作了分析,使之适应正演参数的变化,并利用天然地震接收函数揭示了青藏高原东部地壳结构。 近年来,非线性反演越来越受到重视,许多研究者把新的最优化理论引入地震学反演中。孟洪鹰和刘贵忠(1999)提出了多尺度地震波形反演的小波变换方法。对于一维非线性地震波形反演问题,此方法和已有的简单迭代法及多重网格法比较表明,此方法更为有效。杨峰和聂在平(2000)提出了用于二维轴对称非均匀介质结构的反演和成像的一种新的反演迭代方法变分玻恩迭代方法.与传统的玻恩迭代方法相比,其收敛速度和成像质量均有较大改善。 2 地震勘探、测井问题中的地震波研究及其它 在地震勘探和测井方面,许多研究者针对实际问题,提出了新的方法。沈建国和张海澜(2000)计算了井内靠近井壁的偏心声源激发的声场,得到了在井壁不同位置的接收波形,分析了直达波、井壁反射波、纵波、横波和面波在这些波形中的反映。为了处理横向强变速介质中的深度成像问题,程玖兵等(2001)提出一种基于共炮道集的优化系数的傍轴近似方程叠前深度偏移算子,在基于反射系数估算的成像条件下,可实现叠前深度偏移成像。陈生昌等(2001)实现了一种基于拟线性Born近似的叠张海明等:地震波研究前深度偏移方法,扩大了拟线性Born近似的应用范围,使其能够适应更强的横向速度变化。张美根和王妙月(2001)利用有限元法和最小走时射线追踪的界面点法,实现了各向异性弹性波的叠前逆时偏移.陈志德等(2002)利用叠前深度域地震成像对速度模型变化的敏感性,采用偏移迭代逐次逼近最佳成像速度,研究开发了一套快捷有效的三维叠前深度偏移深度域速度模型建立技术。顾汉明等(2002)在频率-波数域中采用解析法,解出多层条件下海底实测的多分量地震数据分解成上行和下行P波和S波的算法,导出海底各层地震反射系数随入射角变化(简称RVA)的递推计算公式。金胜汶等(2002)给出了一种高效率、高精度的炮检距域叠前深度偏移方法,并得到各个不同照射角下的成像结果。 3 讨论和结论 地震波理论是固体地球物理学研究的重要基础.地震波研究领域的任何实质性进展都会促进固体地球物理学的发展.在过去的4年里,中国地球物理学家在该领域做了很多有意义的研究工作,其中不乏创新性的理论工作.当前地震波研究领域的重要课题包括: (1)复杂地球介质中地震波激发与传播理论; (2)高效计算三维介质中地震波传播的数值方法; (3)利用先进的地震波数值模拟方法,开展设定地震与强地面运动的数值模拟研究,为精细的地震危险分析与预测奠定基础。 参考文献 [1]周庆凡.我国天然气发展前景广阔[J].中国石化,2009. [2]刘英祥.我国天然气价格与天然气发展问题研究[J].企业经济, 2009. [3]牛建娣.我国天然气市场供需状况及发展对策分析[D].对外经济 贸易大学,2007. ! 368 !

反演原理及公式介绍工科

第一章反演理论 第一节基本概念 一.反演和正演 1.反演 反演是一个很广的概念,根据地震波场、地球自由振荡、交变电磁场、重力场以及热学等地球物理观测数据去推测地球内部的结构形态及物质成分,来定量计算各种有关的物理参数,这些都可以归结为反演问题。在地震勘探中,反演的一个重要应用就是由地震记录得到波阻抗。 有反演,还有正演。要正确理解反演问题,还要知道正演的概念。 2.正演 正演和反演相反,它是对一个假设的地质模型,给定某些参数(如速度、层数、厚度)用理论关系式(数学模型)推导出某种可测量的量(如地震波)。在地震勘探中,正演的一个重要应用就是制作合成地震记录。 3.例子 考虑地球内部的温度分布,假定地球内部的温度随深度线性增加,其关系式可表示成:T(z)=a+bz 正演:给定a和b,求不同深度z的对应温度T(z) 反演:已经在不同点z测得T(z),求a和b。 二.反演问题描述和公式表达的几个重要问题 1.应用哪种参数化方式——离散的还是连续的? 2.地球物理数据的性质是什么?观测中的误差是什么? 3.问题能不能作为数学问题提出,如果能够,它是不是适定的? 4.对问题有无物理约束? 5.能获得什么类型的解,达到什么精度?要求得到近似解、解的范围、还是精确解? 6.问题是线性的还是非线性的? 7.问题是欠定的、超定的、还是适定的? 8.什么是问题的最好解法? 9.解的置信界限是什么?能否用其它方法来评价? 第二节反演的数学基础

一.解超定线性反问题 1.简单线性回归 可利用最小平方法确定参数a 、b 使误差的平方和最小。 ??? ? ???∑-∑∑∑-∑=-=∑∑-=2 2)()(x x n y x xy n b x b y n x b y a (1-2-1) 拟合公式为: bx a y +=? (1-2-2) 该方法的公式原来只适用于解超定问题,但同样适用于欠定问题,当我们有多个参数时,称为多元回归,在地球物理领域广泛采用这种方法。此过程用矩阵形式表示,则称为广义最小平方法矩阵方演。 2.非约束最小平方法反演——广义矩阵方法 由前面讨论可知,参数估计的最小平方方法用矩阵公式表示,所得到的算法等价于一个或多个模型参数的一个或多个数据集反演,步骤为: 问题定义→矩阵公式→最小平方解 线性问题采用广义矩阵形式 d=Gm (1-2-3) 对于精确的数据模型,参数m 为 m=G -1d (1-2-4) 但是由于试验误差,实际数据将不能精确拟合获得,故采用最小平方法求解。解的矩阵表示式为 d G G G m T T 1][?-= (1-2-5) 上式具体计算时可用奇异值分解方法 G=U ∧V T 最后,得 m ?=(G T G )-1G T d=V ∧-1U T d (1-2-6)

固体地球物理学

固体地球物理学 (学科代码:070801) 一、培养目标 本学科培养德、智、体全面发展,具有坚实的地球物理理论基础和系统的专业知识,了解固体地球物理学和与其相关学科发展的前沿和动态,能够适应二十一世 纪我国经济、科技和教育发展的需要,并具有较熟练的实验技能和较强的动手能力,具有较全面的计算机知识,具有独立从事该学科领域研究和教学能力的高层次人 才。 二、研究方向 1. 地震学、 2. 地球动力学、 3. 岩石物理、 4. 应用地球物理学、 5. 城市地球物理学 三、学制及学分 按照研究生院有关规定。 四、课程设置 英语、政治等公共必修课和必修环节按研究生院统一要求。 学科基础课和专业课如下所列。 基础课: GP15201★地球内部物理学★(4) GP15202★ 地球动力学★(4) GP15203★地球物理反演★(4) 专业课:

GP14201 计算地震学(3) GP14202 地球物理学进展(4) GP14203 地震学原理(4) GP15210 地震勘探(3) GP15211 定量地震学(4) GP15212 地震偏移与成像(4) GP15213 工程地震学(4) GP15214 岩石本构理论(4) GP15215 应用地球物理学(3) GP15216 地球内部电性与探测(4) GP15218 现代计算机与网络应用(3) GP15219 固体力学(4) GP15220 城市地球物理学(3) GP15701 地球物理高级实验(2) PI05204 工程中的有限元法(3) GP16201 固体地球物理理论(4) GP16202 地球科学中的近代数学(4) GP16203 地球科学前沿讲座(4) 备注:带★号课程为博士生资格考试科目。 五、科研能力要求 按照研究生院有关规定。 六、学位论文要求 按照研究生院有关规定。

地震反演的类型

地震反演的类型 1.1 反演的分类 1)从所利用的地震资料来分可分两类:叠前反演和叠后反演; 2)从测井资料在其中所起作用大小可分为四类:地震直接反演,测井控制下的地震反演,测井—地震联合反演和地震控制下的测井内插外推; 3)从实现方法上可分三类:直接反演、基于模型反演和地震属性反演。 4)从反演模型参数来分主要有:储层特性(如:孔隙度、渗透率、饱和度等)反演、岩石物性反演、地质结构反演、各向异性参数反演、阻抗反演以及速度反演等; 5)从使用的数学方法可分为:最优化拟合反演、遗传算法反演、蒙特卡罗反演、Born近似反演、统计随机反演以及基于神经网络的反演等。 1.2几种主要反演方法的概述 叠前反演尚处于研究试验阶段,而叠后地震反演近年来快速发展,形成了多种技术。下面简要介绍几种主要反演方法:直接反演(递推反演和道积分反演)、基于模型反演、地震属性反演、测井约束反演和叠前AVO反演。 1.2.1直接反演 两种基本做法:递推反演和道积分反演。 1)递推反演:递推反演是一种基于反射系数递推计算地层波阻抗的直接地震反演方法。它完全依赖于地震资料本身的品质,地震资料噪音对反演结果敏感,影响大,地震带宽窄会导致分辨率相对较低,难以满足储层描述的要求。典型的有Seislog,Glog,稀疏脉冲反演(实现方法又有MED,AR,MLD,BED方法等)等;Seislog,CLOG等使用测井信息后,只获得剖面上关键点的低频分量,整个剖面上的低频信息要靠内插来求得。 优点:计算简单,递推列累计误差小。其结果直接反映岩层的速度变化,可以以岩层为单元进行地质解释。缺点:由于受地震固有频率的限制,分辨率低,无法适应薄层解释的需要;其次,无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数。这种方法在处理过程中不能用地质或测井资料对其进行约束控制,因而其结果比较粗略。 2)道积分反演:是以反褶积为基础的地震直接反演法。道积分是利用叠后地震资料计算相对波阻抗的直接反演方法,它无需测井资料控制,计算简单,其结果直接反映了岩层的速度变化,但受地震资料固有频宽的限制,分辨率低,无法适应薄层解释的需要,无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数。 优点:能比较完整地保留地震反射的基本特征(断层、产状),不存在基于模型方法的多解性问题,能够明显地反映岩相、岩性的空间变化,在岩性相对稳定的条件下,能较好地反映储层的物性变化。 缺点:由于受地震频带宽度的限制,递推反演资料的分辨率相对较低,不能满足薄储层的研究需要。 1.2.2基于模型的反演 1)基于模型的反演:就是从地质模型出发,采用模型优选迭代扰动算法(广义线性或非线性最优化算法),通过不断修改更新模型,使模型正演合成地震资料与实际地震数据最佳吻合,最终的模型数据便是反演结果。 实现方法有广义线性反演(GLI)(Cooke,1983);宽带约束反演(BCI)(Martinez,1988);地震岩性模拟(SLIM)(Ge lfand,1984);具有全局优化特点的遗传算法、模拟退火法(Smith等1992:Sen和Stoffa,1995);蒙特卡罗搜索法(Cary和Chapman,19 98)以及人工神经网络法(Ca lderron-Macias 等,1998)等。 目前,以模型为基础的反演方法一般都是依据测井及地质资料建立初始模型,通过广义线性反

地震学原理与应用Chapter5b(1)

二、地震波辐射源的理论模式 1.集中力系点源 (1)集中力 弹性力学中为了分析连续体的运动,引入: Δm为ΔV中之质量;ΔF 为 Δm所受之合力。 1)r点上单位质量所受的体力(密度): 2)r点上单位体积所含质量受到的体力(密度): V r , m Δ F Δ lim )t,r ( X V Δ ∈ = → Δ V Δ r t), ,r ( X t),r (ρ m Δ F Δ V Δ m Δ lim V Δ F Δ lim t),r ( F V V ∈ = = = → Δ → Δ 即运动方程中的体力项。

*如果:???? ?Δ?=Δ∈≠V r 0,V r 0,t),r ( F *如果:(t) g t)dV', r'( F lim V V =∫ Δ→Δ当ΔV 趋于r 点时,积分有限。则称g(t)为作用在r 点上的集中力。 用Dirac δ函数表示: F(r, t)=g(t)δ(r) (2)力场的势函数(用Φ和Ψ表示) *据场论分析,矢量场作Stokes 变换(分解): 0,t),r ( F =Ψ??Ψ×?+Φ?=① *对①式两边分布求散或求旋: Ψ ??=Ψ??Ψ???=Ψ×?×?=×?Φ?=??2 2 2 )(F ;F ②

它们都是泊松方程(非奇次的拉普拉斯方程),有定解 ∫∫ ∞ ∞ ×?= Ψ???=dV' ) r' -r (π 4 t) , r' (F ') t ,r (;dV') r' -r (π 4 t), r' (F ' t),r (Φ③ *求③式的积分:

第二式也可类似导出。力势可由给定的力场表示: ?? ? ? ?? ?×?=Ψ???=Φ∫∫∞∞dV'r t), r' (F 4π1 t),r (dV'r t) , r' (F 4π1 t),r (** ④ (3)几种基本的集中力系点源的弹性波辐射场 (均匀各向同性弹性全空间) 1)单个集中力引起的位移场(基本解)*运动方程: F u μ)u ()μ2(λt u ρ22+×?×?????+=??⑤ *位移矢量场的Stokes 分解(用小写字符?和ψ表示): ψ;ψu =??×?+??=⑥

地震反演方法概述

地震反演方法概述 地震反演:由地震信息得到地质信息的过程。 地震反射波法勘探的基础在于:地下不同地层存在波阻抗差异,当地震波传播有波阻抗差异的地层分界面时,会发生反射从而形成地震反射波。地震反射波等于反射系数与地震子波的褶积,而某界面的法向入射发射系数就等于该界面上下介质的波阻抗差与波阻抗和之比。也就是说,如果已知地下地层的波阻抗分布,我们可以得到地震反射波的分布,即地震反射剖面。即由地层波阻抗剖面得到地震反射波剖面的过程称为地震波阻抗正演,反之,由地震反射剖面得到地层波阻抗剖面的过程称为地震波阻抗反演。 叠前反演主要是指AVO反演,通过AVO反演,可以获得全部的岩石参数,如:岩石密度、纵横波速度、纵横波阻抗、泊松比等。叠前反演与叠后反演的根本区别在于叠前反演使用了未经叠加的地震资料。多道叠加虽然能够改善资料的品质,提高信噪比,但是另一方面,叠加技术是以东校正后的地震反射振幅、波形等特征不随炮检距变化的假设为基础的。实际上,来自同一反射点的地震反射振幅在不同炮检距上是不同的,并且反射波形也随炮检距的变化而发生变化。这种地震反射振幅、波形特征随炮检距的变化关系很复杂,主要原因就在于不同炮检距的地震波经过的地层结构、弹性性质、岩性组合等许多方面都是不同的。叠加破坏了真实的振幅关系,同时损失了横波信息。叠前反演通过叠前地震信息随炮检距的变化特征,来揭示岩性和油气的关系。叠前反演的理论基础是地震波的反射和透射理论。理论上讲,利用反射振幅随入射角的变化规律可以实现全部岩性参数的反演,提取纵波速度、横波速度、纵横波速度比、岩石密度、泊松比、体积模量、剪切模量等参数。 叠后地震剖面相当于零炮检距的自激自收记录。与叠前反演不同,叠后反演只能得到纵波阻抗。虽然叠后反演与叠前反演想必有很多不足之处,但由于其技术方法成熟完备,到目前为止,叠后反演仍然是主流的反演类型,是储层预测的核心技术。 介绍几种叠后反演方法: 1)道积分:利用叠后地震资料计算地层相对波阻抗(速度)的直接反演方法。因为它是在地层波阻抗随深度连续可微的条件下推导出来的,因而又称为连续反演。 原理简述: 上述公式表示,反射系数的积分正比于波阻抗Z的自然对数,这是一种简单的相对波阻抗概念。 适用条件及优缺点 与绝对波阻抗反演相比,道积分的优点:1.递推时累积误差较小;2.计算简单,不需要反射系数标定;3.无需钻井控制,在勘探储气即可推广使用。 缺点:1.由于这种方法受到地震固有频宽的限制,分辨率低,无法适用于薄层解释的需要;2.需要地震记录经过子波零相位化处理;3.无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数;4.这种方法在处理过程中不能用地质或测井资料对其进行约束控制,因而结果比较粗略。 2)递推反演方法:根据反射系数进行递推计算地层波阻抗或层速度,其关键在于由原始地震记录估算反射系数和波阻抗,测井资料不直接参入反演,只起到标定和质量控制的作用。因此又称为直接反演。 原理简述: 利用以上公式,可以从声波时差曲线及密度曲线上(没有密度曲线时可以利用Gardnar 公式进行换算)选择标准层波阻抗作为基准波阻抗,将反褶积得到的反射系数转为波阻抗。

第七章 地震预测1

地震学原理与应用
第七章 地震预测

一、概说
当今世界,各种自然灾害频频发生,全世界每年大约发生20起严 重的自然灾害,年平均死亡8万余人,经济损失80余亿美元。自然灾害 是对现代科学的挑战。 地震灾害的猝发性和惨重性给人类以极大威胁,地震所造成的巨 大灾害和损失,遥居各种自然灾害之首。 1995年1月17日,日本兵库县南部地震(MW=7.2),发生在工业发 达、人口密集的现代化大都市大阪-神户地区。这个地震造成人员死 亡5413人、受伤2.7万人;直接经济损失超过1000亿美元。 2011年3月11日,发生在日本东北部海域的MW 9.0地震及诱发的 海啸,已确认造成14435人死亡、11601人失踪;造成了重大人员伤亡 和财产损失 。
2013-5-27 地震学原理与应用第七章 2

大陆是人类主要活动地区,发生在大陆的地震虽只占全球 地震的15%,但大地震给人类造成的损失却占全球地震损失的 85%。中国是世界大陆区地震分布最广的国家,据1970-1980年 的统计,地震造成的伤亡和损失超过了其他国家和地区的总 和,地震预报的紧迫性明显地摆在中国地震工作者面前。 2008年5月12日下午14:28发生在四川汶川地区的MS8.0级地 震,截至8月25日统计,确认死亡69226人,失踪17823人,受伤 374643人,累计受灾人数4624.9048万人。直接经济损失估计超 过8451亿元人民币。 党和国家领导人多次到灾区视察、指导抗震救援工作。
2013-5-27 地震学原理与应用第七章 3

关于地震反演的一些认识

其实反演,确切的应该叫做“反演预测”。很多人忽略了这个“预测”的真正含义。利用已知少数井点,通过地震资料,提取与钻井揭示的地质特征相对最吻合的信息,来对大片无井空白区的属性做预测,最终反应的是对地质特征的一个预测。既然是一门技术,就有它的可适用性和不可靠性。这就需要反演人员有软件操作的技术,更重要的是要有足够的地质思维!!!如果没有后者,那就需要地质人员来指导!不同的反演人员,即使针对相同的资料,反演出来的结果也不完全一样。换句话说,往往是按照熟悉区块地质特征的地质人员的要求来做出反演预测。不然反演的不确定性就会被放大。真正的地质人员,是不会否定地震反演。 概括一下,只不过有两点: 1、反演一般是在没有足够的井资料控制整个区块的时候采用(那非均质性强的地方呢?)。 2、反演结果的好坏,需要操作人员的技术,更需要地质人员的把握。 对于反演有2点感性认识: 第一点:井越多(测录井数据越全面),反演结果越准确。在井控制范围内,预测精度高,井控制范围以

外,随着距离的增大,精度降低。 第二点:反演人员的地质概念和经验,对反演结果有很大的影像。相同的数据与流程,不同人员作出来的差别还是很大,而且都是在加载了相同解释成果的前提下。 反演分为三种,一种是基本是没有井资料,通常在勘探前期,第二种是有少量井资料,在勘探开发中期,第三种就是井资料很丰富,通常已经是开发中后期。随着井资料的丰富反演结果肯定越来越好啊,如果没有或者很少井,就只能通过插值或者数值模拟的方法搞出来伪井资料,这个往往误差很大 反演结果的好坏,地震资料的质量非常重要,反演结果的分辨率要高于地震资料的分辨率,因为加入了测井资料的高纵向分辨率。 反演预测的物性分布只是一个定性的描述,效果特别好也只是个半定量的描述。 反演的解具有高度不唯一性,需要测井来约束,道理上是井越多越好,但是井多了,约束的方法就比较复杂,能否约束好,是个关键问题。 反演的可信度高的判别标准是:该井参入反演与未参入反演的结果应该差别不大,井多井少结果差别不大,

地震波阻抗反演方法综述

地震波阻抗反演方法综述、地震反演技术研究现状 地震反演方法是一门综合运用数学、物理、计算机科学等学科发展起来的新技术新方法,每当数学方法、物理理论有了新的认识和发展时,就会有新的地震反演技术、方法的提出。随着计算机技术的不断发展、硬件设施的不断升级,这些方法技术得到了实践验证和提升,反过来地震反演技术运用中出现的新问题、新思路又不断促使数学方法、地球物理学理论的再次发展。时至今日,地震反演技术仍然是一个不断发展、不断成熟、不断丰富着的领域。 反演是正演的逆过程,在地震勘探中正演是已知地下的地质构造情况、岩性物性分布情况,根据地震波传播规律和适当的数学计算方法模拟地震波在地下传播以及接收地震波传输到地表信息的过程。地球物理反演就是使用已知的地震波传播规律和计算方法,将地表接收到的地震数据通过逆向运算,预测地下构造情况、岩性物性分布情况的过程。地震波阻抗正演是对反演的理论基础和实现手段。 1959 年美国人Edwin Laurentine Drake 在宾夕法尼亚州开凿的第一口钻井揭开了世界石油工业的序幕。从刚开始的查看地质露头、寻找构造高点寻找石油,到通过地震剖面的亮点技术寻找石油,再到现在运用多种科学技术手段进行油气资源的预测,石油勘探经历了一个飞速的发展历程。 声波阻抗(AI )是介质密度和波在介质中传播速度的乘积,它能够反映地下地质的岩性信息。声波阻抗反演技术是20 世纪70 年代加拿大Roy Lindseth 博士提出的,通过反演能够将反映地层界面信息的地震数据变为反映岩性变化的波阻抗(或速度)信息。由于波阻抗与地下岩石的密度、速度等信息紧密联系,又可以直接与已知地质、钻井测井信息对比,因此广泛应用于储层的预测和油藏描述中,深受石油工作者的喜爱。70 年代后期,从地震道提取声波资料的合成声波技术得到了快速发展,以此为基础发展的基于模型的一维有井波阻抗反演技术,提高了反演结果的可靠性。进入80 年代,Cooke 等人将数学中的广义线性方法运用于地震资料反演,提出了广义线性地震反演。此后Seymour 等人又提出了测井声波资料和地震数据正反演相结合求取地下声波阻抗的测井约束反演,大大拓宽了反演结果的纵向分辨能力。 90 年代,在基于前人对地质统计学研究的基础上Bortoli 和Haas 提出了地质统计学反演,Dubrule等人对该方法进行了改进和推广。在国内随着油田对地震反演技术的广泛应用, 以周竹生为主提出的地震、地质和测井资料联合反演方法,将地质信息引入地震反演中,提高的反演结果与地质认识的联系,克服了线性反演存在的缺陷。1996 年,李宏兵等人将宽 频带约束方法应用于递推反演并对其进行改进,减弱了噪音对反演结果的影响。 1999 年,任职于英国石油公司的Connolly 在《弹性波阻抗》一文中介绍了弹性波阻抗 (EI)的概念和计算方法,阐述了不同入射角度(偏移距)地震道集部分叠加反演波阻抗随入射角之间的关系,但是该方法求取的弹性阻抗随入射角变化很大,无法与常规叠后反演波阻抗直接比较,因此推广应用较为困难。2002 年,Whitcombe 通过修正Patrick Connolly 的计算公式,得到了弹性波阻抗的归一化求取方法,消除了弹性阻抗随入射角变化大的难题。2003 年,西北大学马劲风教授从Zoeppritz 方程简化出发提出了广义弹性波阻抗的概念,克服了以往波阻抗反演要求地震波垂直入射到地表的假设条件,推导出了任意入射角下纵波反 射系数的递推公式,提高了中等入射角度下弹性波阻抗反演的精度。

机械波与电磁波的区别与应用

机械波与电磁波的区别与应用 机械波与电磁波是波的两种主要形式,它们共有波的基本特性:比如说能发生反射、折射、干涉、衍射,都能够传播能量与信息,波速、波长、频率之间具有同样的关系。它们又有各自不同的地方:电磁波是一种纵波,有偏振现象,机械波的形式可以是纵波也可以是横波、电磁波的传播不需要介质,机械波必须在介质中传播。由于两者性质的不同,他们在现实生活中也有着不同的应用。 远距离的测量可以用到机械波和电磁波。在海上航行的船只在测量海底深度时会用到一个叫声纳的装置,它的工作原理是发出一束能量很强的超声波,超声波在到达海底后发生反射,测量超声波发射到反射回船只的时间就能得到海底的深度。当测量地球到月球的距离时,就必须用到电磁波。将上述工作原理中的超声波改为电磁波就能合理地测量地球到月球之间的距离。超声波的穿透能力很强,在水中传播时损耗很小,所以能够较好地测量海底的深度,但是超声波不能在真空中传播,所以在测量地月距离时必须要用到电磁波。 机械波的另一个主要应用表现在对地震波的测量和分析。 地震波是由地震震源发出的在地球介质中传播的弹性波。地震发生时,震源释放出巨大的能量。震源区的介质在这股能量的驱动下发生剧烈的振动和破裂,这种振动构成一个波源。由于地球介质的连续性,这种波动就向地球内部及其表层各处传播出去,形成了连续介质中的弹性波。地震震源施放出的能量沿振动波传播到地表,给地面的建筑物造成强烈的破坏。 地震波主要分为两种,一种是实体波,一种是表面波。表面波只在地表传递,实体波能穿越地球内部。实体波在在地球内部传递,又分成P 波和S 波两种。 P 波为一种纵波,粒子振动方向和波前进方平行,在所有地震波中,前进速度最快,也最早抵达。P 波能在固体、液体或气体中传递。 S 波前进速度仅次于P 波,粒子振动方向垂直于波的前进方向,是一种横波。S 波只能在固体中传递,无法穿过液态外地核。 表面波又称L 波,是由纵波与横波在地表相遇后激发产生的混合波。表面波有低频率、高震幅和低频散的特性,只能沿地表传播,是造成建筑物强烈破坏的主要因素。 根据对波动方程20tt xx u v u -=的分析可以得到:地震波的传播速度由下式决定。 v = 该式中E 为介质的弹性模量,ρ为介质的密度。

第五章 地震波的激发和震源机制3

2.利用S波偏振确定断层面
?1 = ε tg 1) S波的偏振角ε的定义:
SH SV
由直接的记录计算出真入射的SV、SH。 ?1 SH ε = tg SV 2)用地震记录实测ε,并画在Wolf 网上 将Wolf 网上过台站,以 ε为切向的大园弧BC画 出。
2013-5-22
《地震学原理与应用》第五章
99

3)由位错源理论求出偏振方向,并画在Wolf网上 *剪切位错源的震源坐标系 (与断层面法向n 一致)
(与X1,X3组成右手直角坐标系) (与断层面滑动方向λ一致) 则剪切位错源 的辐射波谱为:
*辐射图形因子
2013-5-22
《地震学原理与应用》第五章
100

震源坐标中,eθ方向与偏 振方向(BC)夹角为: ?? du ?1 ε ' = tg ( ) ?θ du
(注意:它虽能确定偏振方向 ,却不是偏振角的定义)
cos θ sin ? ε ' = tg ( ? ) cos 2 θ cos ?
?1
当震源是剪切位错源时 ,位于(θ,?)的台站上 有:
因此,设定一{Xi}便可计算出任意指定点(θ,?)上的偏振方向。
2013-5-22
《地震学原理与应用》第五章
101

4) 穷举对比
2013-5-22
《地震学原理与应用》第五章
102

三、破裂过程和震源参数
断层面上各点同时破裂不太合乎实际,比较合理的模型应是一 个破裂过程(有限时段)。
2013-5-22
《地震学原理与应用》第五章
103

地球物理学专业培养方案

地球物理学专业培养方案 一、专业介绍 地球物理学用物理学的原理和方法,对地球的各种物理场分布及其变化进行观测,探索地球本体及近地空间的介质结构、物质组成、形成和演化,研究与其相关的各种自然现象及其变化规律。研究方向包括地震学、勘探地球物理学、地球内部物理学、岩石力学与岩石物理学、地球电磁学和大地测量学等,该专业学术研究与应用研究并重,其研究成果不仅有助于增进对地球结构和各种物理现象及其运行规律的科学认识,而且也可以为众多的国民经济建设中具有重要意义的产业部门或高科技领域提供支撑,例如,勘探和开发利用石油与天然气、金属与非金属矿藏,预测与预防(或防治)诸如地震、火山、滑坡及岩爆等自然灾害,此外,地球物理学在国防领域也有很重要的应用。 二、专业培养目标 系统掌握本学科基础理论和专业知识,具备基本地球物理实验技能,具有严谨求实的工作态度和作风,具有较强的知识更新能力,具有适合现代科技发展和社会需求的创新意识和创业精神,具有国际化视野的高素质地球物理人才。毕业后能胜任地球物理学相关科研、应用和管理等工作,也可进一步攻读硕士或博士学位。 三、学制、授予学位及毕业学分要求 1、学制:四年。按照学分制管理机制,实行弹性学习年限,年限为3-6年。 2、学位:对完成本科培养方案内容并符合主修要求的学生,授予理学学士学位。 3、最低学分要求:本学科本科专业毕业最低学分要求为151.5学分(细分要求见第七部分)。 四、主干学科 地球物理学

五、专业主要(干)课程 地球与空间科学导论、普通地质学、理论力学I、弹性力学、数值分析、概率论与数理统计、数学物理方法、科学计算和计算机编程、地球物理学基础I (地震学原理)、地球物理学基础II(地磁学、地电学)、地球物理学基础III(重力学、地热学)、应用地球物理学I(地震勘探原理)、应用地球物理学II(重磁电探测方法及测井)、地球物理实验等。 六、主要实践性教学环节 地球物理野外实习、地质学野外实习、应用地球物理学II(重磁电探测方法及测井)、地球物理实验等。 七、课程结构及最低学分要求分布 通识通修必修课68.5学分 通识通修选修课10学分 专业基础课 26学分 专业核心课 22 学分 专业选修课 15 学分 实践课程(包括毕业论文、科技创新项目)10学分 最低毕业学分要求共 151.5 学分。 注:必修课学分不包括实践性课程学分,但包括理论课所带的实验课。

反演技术原理

反演技术 前言 一. 反演的概念、目的 二. 反演的发展历史及趋势 三. 反演的基本方法 四. 地震反演难题的解决方案 五. 反演的实质 六. 反演的基本流程 七. AVO反演处理简介 地震、测井、钻井是石油工作者认识地下地质构造、地层、岩性、物性、含油气性的最重要的信息来源。虽然测井、钻井仅能提供井孔附近的有关信息,尤其是有关岩性、物性、含油气性的信息,但是这些信息往往具有很高的分辨率,可信度、准确性,能确切地指出含油气层的位置,定量化分析与储层、油藏有关的参数。然而一个油气田勘探、开发方案的设计、实施、调整仅靠测井、钻井资料是远远不够的,

必须与地震资料相结合进行综合分析才能取得良好效果。 地震资料的分辨率虽然远远不及测井、钻井,但是随着地震勘探技术的发展,从光电记录、模拟记录到数字记录,从二维到三维,地震资料的信噪比、分辨率、成像的准确性都获得了极大的提高,由于地震资料包含大量地下地质信息,覆盖面积广,具有三维特性,所以这项技术的使用越来越受到石油工作者的重视,如何利用地震资料研究地下地质构造、地层?如何进行储层预测、油藏描述?如何进行油藏、含油气层的预测? 这些问题促使地球物理学家、地质学家开发应用了一系列地震资料特殊处理技术,如地震资料反演技术、地震属性分析技术、AVO 分析技术,这些技术充分利用测井、钻井、地震的长处,使人们对地下储层、油藏的研究从点到面、从二维到三维、从三维可视化研究到油藏动态监测、从定性研究到定量化研究,大大提高了钻探成功率,有效地指导了油田开发,为提高油田最终采收率起到了积极的作用,因此地震技术被列为二十一世纪石油工业发展的首要技术,相信地震资料特殊处理技术(地震资料反演技术、地震属性分析技术、AVO分析技术)也必将在我国油田勘探、开发中起到越来越重要的作用。 一. 反演的概念、目的 地震资料反演技术就是充分利用测井、钻井、地质资料提供的丰富的构造、层位、岩性等信息,从常规的地震剖面推导出地下地层的波阻抗、密度、速度、孔隙度、渗透率、沙泥岩百分比、压力等信息。那么如何理解这个概念?还是让我们看看什么是正演吧! 1.正演的概念 如果我们已知地下的地质模型,它的地震响应如何?通过模拟野外地震采集,得到单炮记录,再通过速度分析、动校正、叠加、偏移得到合成剖面这一过程就是正演。

地震学

一、地震学的主要研究内容及主要应用 1、地震学的主要研究内容 地震学主要是研究固体地球介质中地震的发生规律、地震波的传播规律以及地震的宏观后果等课题的综合性科学。是固体地球物理学的一个分支,研究固体地球的震动和有关现象的一门科学,固体地球物理学中的一个重要分支。它不仅研究天然的地震,也研究某些人为的或自然因素所造成的(比如地下爆炸、岩浆冲击、岩洞塌陷等)地的震动。2、地震学的主要应用 天然地震是在特定的地质条件下,地下发生的一种物理现象,它使地面震动,甚至造成破坏。这个现象不是孤立的,而是一个物理过程中能量突然大量释放的阶段。地震学的应用就表现在: (1)、认识了地震这个过程就可选择适当的前兆来预测地震,预测地震,可以根据地震地质的情况或历史统计资料,这种方法是长期的并带有一定程度的不确定性;另一种方法是根据地震发生的前兆进行预测,这可以是短期的。若要科学地预测地震,这些都是需要对地震学深入研究的。(2)、预防地震不仅是一个科技问题,而且还要考虑地震的社会影响。在地震学的范畴内,这就是根据地震资料来采取防震措施或提出抗震设计。这项工作现正发展成为地震学的一个重要分支──工程地震学。(3)、由地震震源发出的地震波可以穿过地球的任何深度而又返回地面,从而带来地球内部的信息,特别是地球内部各个深度的地震波传播速度。而这个速度与该处介质的密度和弹性有关,所以地震学是研究地球内部最基本的方法。观测内容包括地震波的波形变化和到达时间,以及大地震时地球自由振荡的频谱。根据地震观测结果可以独立地计算地球内部的结构,但同其他的地球物理数据配合时,还可以确定地球内部组成的物理性质和物理状态。 (4)地震波可以用做传递信息的工具直接寻找油、气田和等等。 二、.地震学与土地资源管理的学科交互 由于我的专业是土地资源管理,这个专业的重点是研究土地特征及其管理的,而地震与地震灾害则主要介绍地震及地震所带来的灾害,两者有着非常密切的关系。在我们刚刚结束的第四纪地质学与地貌学和遥感原理与应用还有测量学几门课程上也有提到地震灾害,因此我们专业或多或少的会接触到地震学,这也算我当初选这门课程的理由之一吧。而我认为把两者联系在一起目前最成功的应用应该算CIS技术了。

相关文档
最新文档