曲线与方程练习题68638

曲线与方程练习题68638
曲线与方程练习题68638

曲线与方程

一、选择题

1.已知两定点A (1,1),B (-1,-1),动点P 满足PA →·PB →=x

22

,则点P 的轨迹是

( )

A .圆

B .椭圆

C .双曲线

D .拋物线 解析 设点P (x ,y ),则PA →=(1-x,1-y ),PB →=(-1-x ,-1-y ), 所以PA →·PB →=(1-x )(-1-x )+(1-y )(-1-y )=x 2+y 2-2.

由已知x 2

+y 2

-2=x 22,即x 24+y 2

2

=1,所以点P 的轨迹为椭圆.

答案 B

2.已知点F ?

??

??

14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ).

A .双曲线

B .椭圆

C .圆

D .抛物线

解析 由已知:|MF |=|MB |.由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线,故选D. 答案 D

3.长为3的线段AB 的端点A 、B 分别在x 轴、y 轴上移动,AC =2CB ,则点C 的轨迹是( )

A .线段

B .圆

C .椭圆

D .双曲线 解析 设C (x ,y ),A (a,0),B (0,b ),则a 2+b 2=9,① 又AC =2CB ,所以(x -a ,y )=2(-x ,b -y ),

即???

a =3x ,

b =32y ,

代入①式整理可得x 2

+y 2

4

=1.

答案 C

4.设圆(x +1)2+y 2=25的圆心为C ,A (1,0)是圆内一定点,Q 为圆周上任一点.线段AQ 的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为( ). A.4x 221-4y 225=1 B.4x 221+4y 2

25=1 C.4x 225-4y 221=1 D.4x 225+4y 2

21=1 解析 M 为AQ 垂直平分线上一点,则|AM |=|MQ |,

∴|MC |+|MA |=|MC |+|MQ |=|CQ |=5,故M 的轨迹为椭圆,

∴a =52,c =1,则b 2=a 2-c 2

=214

∴椭圆的标准方程为4x 225+4y 2

21

=1.

答案 D

5.已知二面角α-l -β的平面角为θ,点P 在二面角内,PA ⊥α,PB ⊥β,A ,B 为垂足,且PA =4,PB =5,设A ,B 到棱l 的距离分别为x ,y ,当θ变化时,点(x ,y )的轨迹方程是( ) A .x 2-y 2=9(x ≥0)

B .x 2-y 2=9(x ≥0,y ≥0)

C .y 2-x 2=9(y ≥0)

D .y 2-x 2=9(x ≥0,y ≥0)

解析 实际上就是求x ,y 所满足的一个等式,设平面PAB 与二面角的棱的交点是C ,则AC =x ,BC =y ,在两个直角三角形Rt △PAC ,Rt △PBC 中其斜边相等,根据勾股定理即可得到x ,y 所满足的关系式.如图,x 2+42=y 2+52, 即x 2-y 2=9(x ≥0,y ≥0).

答案 B

6.△ABC 的顶点A (-5,0)、B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( ) A.x 29-y 216

=1 B.

x 216

-y 2

9

=1 C.x 2

9-y 2

16=1(x >3) D.x 216-y 2

9=1(x >4) 解析 如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.

根据双曲线定义,所求轨迹是以A 、B 为焦点,

实轴长为6的双曲线的右支,方程为x 29-y 2

16

=1(x >3).

答案 C

7.|y |-1=1-(x -1)2表示的曲线是( ).

A .抛物线

B .一个圆

C .两个圆

D .两个半圆 解析

原方程等价于???

|y |-1≥0

1-x -

2≥0

y |-

2

=1-x -

2

????

|y |-1≥0x -

2

+y |-

2

=1

????

y ≥1x -

2

+y -

2

=1

或??

?

y ≤-1x -

2

+y +

2

=1

答案 D 二、填空题

8. 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在 x 轴上,离

。过l 的直线 交于,A B 两点,且2ABF 的周长为16,那么C 的方程为 。

答案

9.在△ABC 中,A 为动点,B 、C 为定点,B ? ????-a 2,0,C ? ??

??a 2,0(a >0),且满足条件sin C -sin B =1

2

sin A ,则动点A 的轨迹方程是________.

解析 由正弦定理:|AB |2R -|AC |2R =12×|BC |

2R ,

∴|AB |-|AC |=1

2

|BC |,且为双曲线右支.

答案 16x 2a 2-16y 2

3a

2=1(x >0且y ≠0)

10.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0)、B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是____________.

解析 设抛物线焦点为F ,过A 、B 、O 作准线的垂线AA 1、BB 1、OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|FA |+|FB |,∴|FA |+|FB |=4,故F 点的轨迹是以A 、B 为焦点,长轴长为4的椭圆(去掉长轴两端点). 答案 x 24+y 2

3

=1(y ≠0)

11.已知P 是椭圆x 2a 2+y 2

b 2=1上的任意一点,F 1、F 2是它的两个焦点,O 为坐标原

点,OQ →=PF 1→+PF 2→

,则动点Q 的轨迹方程是______________.

解析 由OQ →=PF 1→+PF 2→

, 又PF 1→+PF 2→=PM →=2PO →=-2OP →,

设Q (x ,y ),则OP →

=-12OQ →=-1

2

(x ,y )

=? ????-x

2

,-y 2,

即P 点坐标为? ????-x

2

,-y 2,又P 在椭圆上,

则有? ????-x 22a 2+? ??

?

?-y 22b 2=1,即x 24a 2+y 24b

2=1.

答案 x 24a 2+y 2

4b 2

=1

12. 曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2

(a >1)的点的轨迹,给出下列三个结论: ①曲线C 过坐标原点;

②曲线C 关于坐标原点对称;

③若点P 在曲线C 上,则△F 1PF 2的面积不大于1

2

a 2.

其中,所有正确结论的序号是________.

解析 ①曲线C 经过原点,这点不难验证是错误的,如果经过原点,那么a =1,与条件不符;②曲线C 关于原点对称,这点显然正确,如果在某点处|PF 1||PF 2|=a 2,关于原点的对称点处也一定符合|PF 1||PF 2|=a 2;③三角形的面积S △

F

1F 2P 2≤a 2

2

,很显然

S △F 1F 2P =12|PF 1||PF 2|sin ∠F 1PF 2≤12|PF 1||PF 2|=a 2

2

.所以②③正确.

答案 ②③ 三、解答题

13.如图,已知F (1,0),直线l :x =-1,P 为平面上的动点,过点P 作l 的垂线,垂足为点Q ,且QP ·QF =FP ·FQ .求动点P 的轨迹C 的方程.

解析 法一:设点P (x ,y ),则Q (-1,y ),

由QP ·QF =FP ·FQ ,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得C :y 2=4x .

法二:由QP ·QF =FP ·FQ ,

得FQ ·(PQ +PF )=0,∴(PQ -PF )·(PQ +PF )=0,

∴PQ 2-PF 2=0.∴|PQ |=|PF |.

∴点P 的轨迹C 是抛物线,由题意,轨迹C 的方程为y 2=4x .

14.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C .

(1)求动点C 的轨迹方程;

(2)过点F 的直线l 2交轨迹于两点P 、Q ,交直线l 1于点R ,求RP →·RQ →

的最小值.

解析 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴动点C 的轨迹方程为x 2=4y .

(2)由题意知,直线l 2方程可设为y =kx +1(k ≠0), 与抛物线方程联立消去y ,得x 2-4kx -4=0.

设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.

又易得点R 的坐标为? ??

??

-2k ,-1,

∴RP →·RQ →

=? ????x 1+2k ,y 1+1·? ??

??

x 2+2k ,y 2+1

=?

?

???x 1+2k ? ????x 2+2k +(kx 1+2)(kx 2+2)

=(1+k 2)x 1x 2+? ??

??

2k +2k (x 1+x 2)+4k 2+4

=-4(1+k 2)+4k ? ????2k +2k +4

k

2+4

=4? ????

k 2+1k 2+8.

∵k 2

+1k

2≥2,当且仅当k 2=1时取等号,

∴RP →·RQ →≥4×2+8=16,即RP →·RQ →

的最小值为16.

15.已知双曲线x 2

2

-y 2

=1的左、右顶点分别为A 1、A 2,点P (x 1,y 1),Q (x 1,-y 1)

是双曲线上不同的两个动点.

(1)求直线A 1P 与A 2Q 交点的轨迹E 的方程;

(2)若过点H (0,h )(h >1)的两条直线l 1和l 2与轨迹E 都只有一个交点,且l 1⊥l 2,求h 的值.

解析 (1)由题设知|x 1|>2,A 1(-2,0),A 2(2,0), 则有直线A 1P 的方程为y =

y 1

x 1+2(x +2),①

直线A 2Q 的方程为y =-y 1

x 1-2

(x -2).②

联立①②解得交点坐标为x =2x 1,y =2y 1

x 1

即x 1=2x ,y 1=2y x ,③

则x ≠0,|x |< 2.

而点P (x 1,y 1)在双曲线x 22

-y 2

=1上,

x 212

-y 21=1.

将③代入上式,整理得所求轨迹E 的方程为

x 2

2

+y 2=1,x ≠0且x ≠± 2.

(2)设过点H (0,h )的直线为y =kx +h (h >1),

联立x 2

2

+y 2=1得(1+2k 2)x 2+4khx +2h 2-2=0.

令Δ=16k 2h 2-4(1+2k 2)(2h 2-2)=0得h 2-1-2k 2=0,

解得k 1= h 2-12,k 2= -h 2-1

2

.

由于l 1⊥l 2,则k 1k 2=-h 2-1

2

=-1,故h = 3.

过点A 1,A 2分别引直线l 1,l 2通过y 轴上的点H (0,h ),且使l 1⊥l 2,因此A 1H ⊥A 2H ,

由h 2×?

????

-h 2=-1,得h = 2.此时,

l 1,l 2的方程分别为y =x +2与y =-x +2,

它们与轨迹E 分别仅有一个交点? ????-23

223与? ????

23,223. 所以,符合条件的h 的值为3或 2.

16.设椭圆方程为x 2

+y 2

4=1,过点M (0,1)的直线l 交椭圆于A ,B 两点,O 为坐

标原点,点P 满足OP →=12(OA →+OB →

),点N 的坐标为? ??

??

12,12,当直线l 绕点M 旋转

时,求:

(1)动点P 的轨迹方程;

(2)|NP →

|的最大值,最小值.

解析 (1)直线l 过定点M (0,1),设其斜率为k ,则l 的方程为y =kx +1.

设A (x 1

,y 1

),B (x 2

,y 2

),由题意知,A 、B 的坐标满足方程组???

y =kx +1,

x 2

+y

2

4

=1.

消去y 得(4+k 2)x 2+2kx -3=0. 则Δ=4k 2+12(4+k 2)>0.

∴x 1+x 2=-2k 4+k 2,x 1x 2

=-3

4+k 2

. 设P (x ,y )是AB 的中点,则OP →=1

2

(OA →+OB →

),得

?????

x =12x 1+x 2=k 4+k 2

y =12

y 1+y 2

=12

kx 1+1+kx 2+1

=4+2k 2

4+k 2

消去k 得4x 2+y 2-y =0.

当斜率k 不存在时,AB 的中点是坐标原点,也满足这个方程, 故P 点的轨迹方程为4x 2+y 2-y =0.

(2)由(1)知4x 2+?

?

???y -122=14

∴-14≤x ≤14

而|NP |2

=?

????x -122+? ????y -122

=?

?

???x -122+1-16x 24

=-3?

?

???x +162+712,

∴当x =-16时,|NP →|取得最大值21

6

当x =14时,|NP →

|取得最小值1

4

.

曲线与方程练习题

曲线与方程 命题人:褚晓清 审核人:王焕功 一、选择题 1、方程(x 2+y 2-4) x +y +1=0的曲线形状是( ) 2、已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ) A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 3、已知命题“曲线C 上的点的坐标是方程(,)0f x y =的解”是正确的,则下列命题中正确的是 A .满足方程(,)0f x y =的点都在曲线C 上 B .方程(,)0f x y =是曲线 C 的方程 C .方程(,)0f x y =所表示的曲线不一定是C D .以上说法都正确 4、方程2(326)[log (2)3]0x y x y --+-=表示的图形经过点(0,1)A -,(2,3)B ,(2,0)C ,57(,)34 D -中的 A .0个 B .1个 C .2个 D .3个 52(2)0y +=表示的图形是 A .圆 B .两条直线 C .一个点 D .两个点 6、方程y =- A B C D

7、一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上 且4AM MB =,则点M 的轨迹方程是 A .221664x y += B . 221664x y += C .22168x y += D .22168x y += 8、“点M 在曲线||y x =上”是“点M 到两坐标轴距离相等”的 A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 9、已知(2,0)M -,(2,0)N ,则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是 A . 222x y += B .224x y += C .222(2)x y x +=≠± D .224(2)x y x +=≠± 10、一动点C 在曲线221x y +=上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是 A .22(3)4x y ++= B .22(3)1x y -+= C .22(23)41x y -+= D .223()12 x y ++= 11、已知F 1,F 2分别为椭圆C :x 24+y 23 =1的左、右焦点,点P 为椭圆C 上的动点,则△PF 1F 2的重心G 的轨迹方程为( ) A.x 236+y 227=1(y ≠0) B.4x 29 +y 2=1(y ≠0) C.9x 24+3y 2=1(y ≠0) D .x 2+4y 23=1(y ≠0) 12、设圆C 与圆x 2+(y -3)2 =1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆 二、填空题 13、已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________. 14、曲线y =||0()y ax a +=∈R 的交点有______个. 15、已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的 轨迹所包围的图形的面积为__________.

曲线和方程时

课题:求曲线的方程(第一课时) 教学目标: (1)了解坐标法和解析几何的意义,了解解析几何的基本问题. (2)进一步理解曲线的方程和方程的曲线. (3)初步掌握求曲线方程的方法. (4)通过本节内容的教学,培养学生分析问题和转化的能力. 教学重点、难点:求曲线的方程. 教学用具:计算机. 教学方法:启发引导法,讨论法. 教学过程: 【引入】 1?提问:什么是曲线的方程和方程的曲线. 学生思考并回答?教师强调. 2?坐标法和解析几何的意义、基本问题. 对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方 程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何?解析几何的两大基本问题就是: (1)根据已知条件,求岀表示平面曲线的方程. (2)通过方程,研究平面曲线的性质. 事实上,在前边所学的直线方程的理论中也有这样两个基本问题. 而且要先研究如何求岀曲线方程,再研究如何用方程研究曲线?本节课就初步研究曲线方程的求法. 【问题】 如何根据已知条件,求岀曲线的方程. 【实例分析】

例1:设「、亦两点的坐标是、(3,7),求线段工三的垂直平分线-的方程.

由斜率关系可求得l 的斜率为 于是有 y~ 沪奶7 即丨的方程为 -0 ① 分析、引导:上述问题是我们早就学过的,用点斜式就可解决?可是,你们是否想过①恰好 就是所求的吗?或者说①就是直线 '的方程?根据是什么,有证明吗? (通过教师引导,是学生意识到这是以前没有解决的问题, 应该证明,证明的依据就是定义 中的两条). 证明:(1)曲线上的点的坐标都是这个方程的解. 设是线段」:王的垂直平分线上任意一点,贝9 呦?|阙 即 J (呵十if 十S 十if = J (仓_ 十也 将上式两边平方,整理得 首先由学生分析:根据直线方程的知识,运用点斜式即可解决. 解法一:易求线段 二占的中点坐标为(1, 3),

圆锥曲线与方程测试题及答案

2013-2014学年度第二学期3月月考 高二数学试卷 满分:150分,时间:120分钟 一、选择题:(本大题共12小题,每小题5分,共60分) 1、抛物线y2=-2px (p >0)的焦点为F ,准线为l ,则p表示 ( ) A 、F 到准线l 的距离 B、F到y 轴的距离 C 、F点的横坐标 D 、F到准线l 的距离的一半 2.抛物线 2 2x y =的焦点坐标是 ( ) A .)0,1( B.)0,4 1(?C.)8 1,0( D .)4 1,0( 3.离心率为 3 2,长轴长为6的椭圆的标准方程是 ( )A.22195x y + = B .22195x y +=或22 159 x y += C.2213620x y += D.2213620x y +=或22 12036 x y += 4、焦点在x 轴上,且6,8==b a 的双曲线的渐近线方程是 ( ) A.043=+y x B .043=-y x C .043=±y x D . 034=±y x 5、以椭圆15 82 2=+y x 的焦点为顶点,椭圆的顶点为焦点的双曲线的方程为 ( ) A.15322=-y x B.13522=-y x C.181322=-y x D .15 132 2=-y x 6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( ) A .y x 292-=或x y 342= B .x y 2 9 2-=或y x 3 42= C .y x 3 4 2 = D.x y 2 92 - = 7.抛物线2 2y px =的焦点与椭圆22 162 x y + =的右焦点重合,则p = ( ) A.4 B.4-?C .2 D. 2-

曲线和方程练习题

曲线和方程练习题 一、选择题 1、(2014·安徽高考文科·T3)抛物线2 14 y x = 的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x 【解题提示】 将抛物线化为标准形式即可得出。 【解析】选A 。22 144 y x x y = ?,所以抛物线的准线方程是y=-1. 2. (2014·新课标全国卷Ⅱ高考文科数学·T10) (2014·新课标全国卷Ⅱ高考文科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,则 AB = ( ) A. B.6 C.12 D. 【解题提示】画出图形,利用抛物线的定义求解. 【解析】选C.设AF=2m,BF=2n,F 3,04?? ??? .则由抛物线的定义和直角三角形知识可得, 2m=2· 34·34n,解得m=32 ),n=3 2 所以m+n=6. AB=AF+BF=2m+2n=12.故选C. 3. (2014·新课标全国卷Ⅱ高考理科数学·T10)设F 为抛物线C:y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( ) A. 4 B. 8 C. 6332 D. 9 4 【解题提示】将三角形OAB 的面积通过焦点“一分为二”,设出AF,BF,利用抛物线的定义求得面积. 【解析】选D.设点A,B 分别在第一和第四象限,AF=2m,BF=2n,则由抛物线的定义和直角三角形知识可 得,2m=2· 34+m,2n=2·34-n,解得m=32 (2+),n=3 2 (2-),所以m+n=6.所以S △OAB =1324?·(m+n)=94 .故选D. 4. (2014·四川高考理科·T10)已知F 为抛物线x y =2 的焦点,点A ,B 在该抛物线上且位于x 轴的两 侧,2OA OB ?=u u u r u u u r (其中O 为坐标原点),则ABO ?与AFO ?面积之和的最小值是( ) A. 2 B.3 C. 8 【解题提示】

曲线和方程典型例题

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而 在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三 例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例4 曲线4)1(2 2=-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分

双曲线及其标准方程练习题一

《双曲线及其标准方程》练习题一 1.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方 程是( ) A.x 29-y 216=1 B.y 29-x 216=1 C.x 29-y 216=1(x ≤-3) D.x 29-y 2 16 =1(x ≥3) 2.“ab<0”是“方程c by ax =+22表示双曲线”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分又不必要条件 3.双曲线的两焦点坐标是F 1(3,0),F 2(-3,0),2b =4,则双曲线的标准方程是( ) A.x 25-y 24=1 B.y 25-x 24=1 C.x 23-y 22=1 D.x 29-y 2 16 =1 4.方程x =3y 2-1所表示的曲线是( ) A .双曲线 B .椭圆 C .双曲线的一部分 D .椭圆的一部分 5.双曲线x 216-y 2 9 =1上一点P 到点(5,0)的距离为15,那么该点到点(-5,0)的距 离为( ) A .7 B .23 C .5或25 D .7或23 6.圆P 过点 ,且与圆 外切,则动圆圆心P 的轨迹方程( ). A . ; B . C . D . 7.椭圆x 24+y 2a 2=1与双曲线x 2a -y 2 2 =1有相同的焦点,则a 的值是( ) A.12 B .1或-2 C .1或12 D .1 8. 已知ab<0,方程y= —2x+b 和bx 2+ay 2=ab 表示的曲线只可能是图中的( ) 9.双曲线m y x =-222的一个焦点是)3,0(,则m 的值是_______。 10.过双曲线)0,0(122 22>>=-b a b y a x 的焦点且垂直于x 轴的弦的长度为_____。

曲线和方程教案

《课堂教学设计》 课题:曲线和方程(1) 一:教学目标 ?知识与技能目标 (1)了解曲线上的点与方程的解之间的一一对应关系; (2)初步领会“曲线的方程”与“方程的曲线”的概念; (3)学会根据已有的情景资料找规律,培养学生分析、判断、归纳的逻辑思维能力与抽象思维能力,同时强化“形”与“数”一致并相互转化的思想方法。 ?过程与方法目标 (1)通过直线方程的复习引入,加强学生对方程的解和曲线上的点的一一对应关系的直观认识; (2)在形成曲线和方程概念的过程中,学生经历观察,分析,讨论等数学活动过程,探索出结论并能有条理的阐述自己的观点; (3)能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。 ?情感与态度目标 (1)通过概念的复习引入,从特殊到一般,让学生感受事物的发展规律; (2)通过本节课的学习,学生能够体验几何问题可以转化成代数问题来研究,真正认识到数学是解决实际问题的重要工具; (3)学生通过观察、分析、推断可以获得数学猜想,体验到数学活动充满着探索性和创造性。 二:教材分析 1、教学分析:因为学生已有了用方程(有时用函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程。所以本节课采用了复习引入课题,从特殊到一般的方法让学生易于接受。在概念的探索过程中采用了举反例的方法来揭示概念的内涵。在概念的应用即例题的设计方面,着重巩固对概念的两个条件的认识。 2、教学重点 “曲线的方程”与“方程的曲线”的概念。

圆锥曲线与方程练习题

《圆锥曲线与方程》单元测试 姓名_____________ 学号__________ 成绩____________ 一、选择题:本大题共10小题,每小题5分,共50分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.直线过抛物线24y x =的焦点,与抛物线交于A(x 1, y 1)、B(x 2, y 2)两点,如果x 1 + x 2 = 6,那么AB 等于 ( ) A.10 B.8 C.7 D.6 2.已知双曲线12222=-b y a x 的一条渐近线方程为x 43 y =,则双曲线的离心率为 ( ) A.35 B.34 C.45 D.23 3.以(-6,0),(6,0)为焦点,且经过点(-5,2)的双曲线的标准方程是( ) A. 1201622=-y x B.1201622=-x y C.1162022=-y x D.116 2022=-x y 4.方程 22 125-16x y m m +=+表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) A.1625m -<< B.9162m -<< C.9252m << D.92 m > 5.过双曲线22149 x y -=的右焦点F 且斜率是32的直线与双曲线的交点个数是( ) A.0个 B.1个 C.2个 D.3个 6.抛物线2y x =上的点到直线24x y -=的最短距离是( ) A.35 B.553 C.552 D.105 3 7.抛物线x y 122=截直线12+=x y 所得弦长等于( ) A. 15 B.152 C. 2 15 D.15 8.设12,F F 是椭圆164942 2=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则 21F PF ?的面积为( ) A.4 B.6 C.22 D.24 9.如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线

(完整word)19圆锥曲线与方程(中职数学春季高考练习题)

学校______________班级______________专业______________考试号______________姓名______________ 数学试题 圆锥曲线与方程 . 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟, 考试结束后,将本试卷和答题卡一并交回. . 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01. 第Ⅰ卷(选择题,共60分) 30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项 . 设12F F 、 为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆 B .直线 C .圆 D .线段 . 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2 12y x = B .2 12y x =- C .2 6y x = D .2 6y x =- . 已知椭圆方程为 22 1916 x y +=,那么它的焦距是 A .10 B .5 C .7 D .27 . 抛物线2 6y x =-的焦点到准线的距离为 A .2 B .3 C .4 D .6 . 若椭圆满足4a =,焦点为()()0303-,,, ,则椭圆方程为 A . 22 1167 x y += B . 22 1169x y += C . 22 1167y x += D . 22 1169 y x += . 抛物线2 40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7 B .6 C .7- D .6- . 一椭圆的长轴是短轴的2倍,则其离心率为 A .34 B . 32 C . 22 D .12 8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是 A . 12 B . 32 C . 2 D . 14 9. 椭圆 22 1164 x y +=在y 轴上的顶点坐标是 A .()20±, B .()40±, C .()04±, D .()02±, 10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3 4 y x =± ,则双曲线的离心率为 A . 54 B . 53 C . 7 D . 7 11. 椭圆 22 1169 x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于 A .5 B .7 C . 5 D .4 12. 如果椭圆22 221x y a b +=经过两点()()4003A B ,、,,则椭圆的标准方程是 A . 221259 x y += B . 22 1163x y += C . 22 1169x y += D . 22 1916 x y += 13. 双曲线2 2 44x y -=的顶点坐标是 A .()()2020-,、, B .()()0202-,、, C .()()1010-,、, D .()()0101-,、, 14. 若双曲线22 221x y a b -=的两条渐近线互相垂直,则该双曲线的离心率是 A .2 B . 3 C . 2 D .32 15. 双曲线 22 1169 x y -=的焦点坐标为 A .()40±, B .()30±, C .()50±, D .()

圆锥曲线与方程测试题(带答案)

圆锥曲线与方程 单元测试 时间:90分钟 分数:120分 一、选择题(每小题5分,共60分) 1.椭圆12 2 =+my x 的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A . 41 B .2 1 C .2 D .4 2.过抛物线x y 42 =的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( ) A .10 B .8 C .6 D .4 3.若直线y =kx +2与双曲线62 2 =-y x 的右支交于不同的两点,则k 的取值范围是( ) A .315(- ,)315 B .0(,)315 C .315(-,)0 D .3 15 (-,)1- 4.(理)已知抛物线x y 42 =上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( ) A .(2,5) B .(-2,5) C .(5,-2) D .(5,2) (文)过抛物线)0(22 >=p px y 的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若 p x x 321=+,则||PQ 等于( ) A .4p B .5p C .6p D .8p 5.已知两点)4 5,4(),45 ,1(--N M ,给出下列曲线方程:①0124=-+y x ;②32 2=+y x ;③ 122 2=+y x ;④12 22=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( ) (A )①③ (B )②④ (C )①②③ (D )②③④ 6.已知双曲线122 22=-b y a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图 象上,若△21F AF 的面积为1,且2 1 tan 21= ∠F AF ,2tan 12-=∠F AF ,则双曲线方程为( ) A .1351222=-y x B .1312522=-y x C .1512322 =-y x D .112 5322=-y x 7.圆心在抛物线)0(22 >=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .04 1 22 2 =- --+y x y x B .01222=+-++y x y x C .01222=+--+y x y x D .04 122 2=+--+y x y x

圆锥曲线与方程练习题及答案解析

圆锥曲线与方程练习题及答案解析 一、选择题 1.(2013?呼和浩特高二检测)椭圆x225+y2169=1的焦点坐标为( ) A.(5,0),(-5,0) B.(0,5),(0,-5) C.(0,12),(0,-12) D.(12,0),(-12,0) 【解析】由c2=a2-b2求出c 的值.因为169>25,所以焦点在y轴上.因为c2=169-25=144,所以c=12,所以焦点坐标为(0,12),(0,-12).故选C. 【答案】C 2.已知椭圆的两个焦点的坐标分别是(0,-3)和(0,3),且椭圆经过点(0,4),则该椭圆的标准方程是( ) A.x216+y27=1 B.y216+x27=1 C.x225+y216=1 D.y225+x29=1 【解析】∵椭圆的焦点在y轴上,∴可设它的标准方程为y2a2+x2b2=1(a>b>0).∵2a=++-=8,∴a=4,又c=3,∴b2=a2-c2=16-9=7,故所求的椭圆的标准方程为y216+x27=1. 【答案】 B 3.(2013?福州高二检测)已知A(0,-1)、B(0,1)两点,△ABC 的周长为6,则△ABC的顶点C的轨迹方程是( ) A.x24+y23= 1(x≠±2) B.y24+x23=1(y≠±2) C.x24+y23=1(x≠0) D.y24 +x23=1(y≠0) 【解析】∵2c=|AB|=2,∴c=1,∴|CA|+|CB|=6-2=4=2a,∴顶点C的轨迹是以A、B为焦点的椭圆(A、B、C 不共线).因此,顶点C的轨迹方程y24+x23=1(y≠±2).【答案】 B 4.如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) 【解析】椭圆方程可化为x22+y22k=1,依题意2k>2,∴0

曲线和方程知识要点

曲线和方程的概念 【知识要点】 定义 一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系:(1)曲线C 上的点的坐标都是方程0),(=y x F 的解;(2)以方程0),(=y x F 的解为坐标的点都在曲线C 上. 我们就把0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线. 注意:要建立曲线与方程间的对应关系,仅有条件“曲线C 上的点的坐标都是方程0),(=y x F 的解”是不够的,因为可能有满足方程0),(=y x F 的点不在曲线C 上;仅有条件“以方程0),(=y x F 的解为坐标的点都在曲线C 上”也是不够的,因为曲线C 上可能有不满足方程0),(=y x F 的点.只有同时具备这两个条件时,才能说方程0),(=y x F 是曲线C 的方程,曲线C 是方程0),(=y x F 的曲线. 求曲线的方程 【知识要点】 1 求曲线的方程的步骤: ①建立适当的直角坐标系(如果已给出,本步骤省略). ②设曲线上任意一点的坐标为),(y x ,写出已知点的坐标,设出相关点的坐标. ③根据曲线上点所适合的条件,写出等式. ④用坐标表示这个等式(方程),并化简. ⑤证明以化简后的方程的解为坐标的点都是曲线上的点(在本教材不作要求). (6)检验,该说明的要说明. 2 求曲线方程的常用方法:定义法、直接法、代入法、参数法等. (1)定义法:根据题意可以得出或推出动点的轨迹是直线或圆或椭圆或双曲线或抛物线.根据所学知识可以写出或求出轨迹方程.若方程形式知道,往往用待定系数法求. (2)直接法:根据题设条件直接写出动点的坐标),(y x 所满足的关系式,即方程0),(=y x F . (3)相关点法(代入法):是所求轨迹上的动点),(y x P 随着另一个已知曲线上的动点),(11y x M 的运动而运动时,一般用代入法求动点P 的轨迹方程.其方法是根据题设条件求得两动点坐标),(y x 与),(11y x 之间的关系式,从中解出),(),,(11y x g y y x f x ==,由于),(11y x M 在已知曲线上,故),(11y x M 满足已知曲线方程,将11,y x 的表达式代入已知曲线方程,从而求得动点P 的轨迹方程. (4)参数法:根据题意得出动点P 的坐标y x ,用其他点的坐标或长度、角、斜率、时间等参

高二理科数学选修1第二章《圆锥曲线与方程》测试题

选修2-1第二章《圆锥曲线与方程》测试题 班级 姓名 座号 分数 一、选择题(本大题共10小题,每小题5分,共50分) 1.已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为 3 1 ,则椭圆的方程是( ) A.1442x +1282y =1 B.362x +20 2y =1 C.322x +36 2y =1 D.362x +32 2y =1 2.双曲线22a x -22 b y =1的两条渐近线互相垂直,那么它的离心率为( ) A. 2 B.3 C. 2 D. 2 3 3.平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么( ) A .甲是乙成立的充分不必要条件 B .甲是乙成立的必要不充分条件 C .甲是乙成立的充要条件 D .甲是乙成立的非充分非必要条件 4.椭圆4 x 2+y 2 =k 两点间最大距离是8,那么k =( ) A .32 B .16 C .8 D .4 5.已知方程 11 22 2=-+-k y k x 的图象是双曲线,那么k 的取值范围是( ) A.k <1 B.k >2 C.k <1或k >2 D.1<k <2 6.过抛物线y x 42 =的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,若621=+y y ,则21P P 的 值为 ( ) A .5 B .6 C .8 D .10 7.圆心在抛物线x y 22 =(0>y )上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .2 2 1 204 x y x y +--- = B .22210x y x y ++-+= C .22210x y x y +--+= D .04 122 2=+--+y x y x 8.已知方程0,,0(02 2>≠≠=++=+c b a ab c by ax ab by ax 其中和,它们所表示的曲线可能是( )

圆锥曲线与方程测试题及答案

2013-2014学年度第二学期3月月考 高二数学试卷 满分:150分,时间:120分钟 一、选择题:(本大题共12小题,每小题5分,共60分) 1、抛物线y 2=-2px (p>0)的焦点为F ,准线为l ,则p 表示 ( ) A 、F 到准线l 的距离 B 、F 到y 轴的距离 C 、F 点的横坐标 D 、F 到准线l 的距离的一半 2.抛物线22x y =的焦点坐标是 ( ) A .)0,1( B .)0,4 1 ( C .)8 1,0( D .)4 1,0( 3.离心率为 3 2 ,长轴长为6的椭圆的标准方程是 ( )A .22195x y + = B .22195x y +=或22 159x y += C .2213620x y + = D .2213620x y +=或22 12036 x y += 4、焦点在x 轴上,且6,8==b a 的双曲线的渐近线方程是 ( ) A .043=+y x B .043=-y x C .043=±y x D . 034=±y x 5、以椭圆1582 2=+y x 的焦点为顶点,椭圆的顶点为焦点的双曲线的方程为 ( ) A .15322=-y x B .13522=-y x C .181322=-y x D .15 1322=-y x 6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( ) A.y x 292-=或x y 342= B.x y 2 9 2-=或y x 3 42= C.y x 3 4 2 = D.x y 2 92 - = 7.抛物线2 2y px =的焦点与椭圆22 162 x y + =的右焦点重合,则p = ( ) A .4 B .4- C .2 D . 2- 8、双曲线112 42 2=-y x 的焦点到渐近线的距离为 ( ) A . 1 B .2 C .3 D .32 9.以椭圆 22=1169144 x y +的右焦点为圆心,且与双曲线22 =1916x y -的渐近线相切的圆方程是

第二章圆锥曲线与方程单元测试卷

第二章圆锥曲线与方程单元测试卷 一、选择题: 1.双曲线2 214 x y -=的实轴长为( ) A .3 B .4 C .5 D .12 2.抛物线22y x =的准线方程为( ) A .14y =- B .18y =- C .12x = D .1 4x =- 3.已知椭圆 22 1102 x y m m +=--,长轴在y 轴上.若焦距为4,则m 等于( ) A .4 B .5 C .7 D .8 4.抛物线21 4 x y = 的焦点到准线的距离为( ) A .2 B .4 C .18 D .1 2 、 5.已知椭圆()222104x y a a + =>与双曲线22 193 x y -=有相同的焦点,则a 的值为( ) C.4 D.10 6.若双曲线()22 22103 x y a a -=>的离心率为2,则实数a 等于( ) A.2 B. C. 3 2 D.1 7.曲线221259x y + =与曲线()22 19259x y k k k +=<--的( ) A.长轴长相等 B.短轴长相等 C.焦距相等 D.离心率相等 8.已知抛物线2:4C y x =的焦点为F ,点,A B 在C 上且关于x 轴对称,点,M N 分别为,AF BF 的中点,且AN BM ⊥,则AB =( ) A . B . C .8或8 D .12或12-

… 9.已知双曲线22 221x y a b -=(0,0)a b >>的一条渐近线过点,且双曲线的一个焦点在抛物线 2y =的准线上,则双曲线的方程是( ) A .2212128x y -= B .22 12821x y - = C .22134x y -= D .22 143x y - = 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点A (0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ) D.92 11.已知椭圆22 22:1(0)x y E a b a b +=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交 椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于4 5 ,则椭圆E 的离心率的取值范围是( ) A .(0, ]2 B .3(0,]4 C .[2 D .3[,1)4 12.已知直线1y x =-与双曲线221ax by +=(0a >,0b <)的渐近线交于A ,B 两点,且过原点 和线段AB 中点的直线的斜率为2- ,则a b 的值为( ) A . B . C . D . 第Ⅱ卷(非选择题共90分) @ 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横一上. 13.若双曲线1162 2=-m x y 的离心率2=e ,则=m ________. 14.动圆经过点(3,0)A ,且与直线:3l x =-相切,则动圆圆心M 的轨迹方程是____________.

圆锥曲线与方程知识点复习及例题

第二章 圆锥曲线与方程 §2.1椭圆:知识梳理 1、椭圆及其标准方程 (1).椭圆的定义:椭圆的定义中,平面动点与两定点1F 、2F 的距离的和大于|1F 2F |这个条件不可忽视.若这个距离之和小于|1F 2F |,则这样的点不存在;若距离之和等于|1F 2F |,则动点的轨迹是线段1F 2F . (2).椭圆的标准方程:12222=+b y a x 122 22=+b x a y (a >b >0) (3).椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果2 x 项的分母大于2y 项的分母,则椭圆的焦点在x 轴上,反之,焦点在y 轴上. 2、椭圆的简单几何性质(a >b >0). (1).椭圆的几何性质:设椭圆方程12 2 22=+b y a x , 线段1A 2A 、1B 2B 分别叫做椭圆的长 轴和短轴.它们的长分别等于2a 和2b , (2).离心率: a c e =2 21b a =- 0<e <1.e 越接近于1时,椭圆越扁;反之,e 越接近于0 时,椭圆就越接近于圆. (3)椭圆的焦半径: ex a MF +=1,ex a MF -=2.2 a =2 b +2 c

典例剖析

(4).椭圆的的外部点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的部2200221x y a b ?+< (5).焦点三角形21F PF ?经常利用余弦定理....、三角形面积公式.......将有关线段1PF 、2PF 、2c ,有关角21PF F ∠结合起来,建立12PF PF +、12PF PF ?等关系. §2.1.1椭圆及其标准方程:典例剖析 题型一 椭圆的定义应用 例1 题型二 椭圆标准方程的求法 例2 已知椭圆的两个焦点为(-2,0),(2,0)且过点53(,)22 -,求椭圆的标准方程 §2.1.2椭圆的简单的几何性质 典例剖析 题型一 求椭圆的长轴和短轴的长、焦点坐标、顶点坐标等. 例 1 已知椭圆2 2 (3)(0)x m y m m ++=>的离心率3 2 e =,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.

曲线和方程_1

曲线和方程 教学目标(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题. (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念. (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点. (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法. (5)进一步理解数形结合的思想方法. 教学建议教材分析(1)知识结构曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲

线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.(2)重点、难点分析①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.②本节的难点是曲线方程的概念和求曲线方程的方法.教法建议(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.(4)从集合与对应的观点可以看得更清楚:设表示曲线上适合某种条件的点的集合;表示二元方程的解对应的点的坐标的集合.可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这

高中数学《曲线与方程》自测试题

2015年高中数学《曲线与方程》自测试题 【梳理自测】 一、曲线与方程 1.f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的( ) A.充分不必要条件B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.方程(x-y)2+(xy-1)2=0表示的是( ) A.一条直线和一条双曲线 B.两条双曲线 C.两个点 D.以上答案都不对 答案:1.C 2.C ◆以上题目主要考查了以下内容: 一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系: (1)曲线上点的坐标都是方程f(x,y)=0的解. (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 二、直接法求轨迹方程 1.若M,N为两个定点,且|MN|=6,动点P满足PM→·PN→=0,则P点的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线 2.已知点A(-2,0),B(3,0),动点P(x,y)满足AP→·BP→=x2-6,则P点的轨迹方程是________.3.过圆x2+y2=4上任一点P作x轴的垂线PN,N为垂足,则线段PN中点M的轨迹方程为________. 答案:1.A 2.y2=x 3.x2 4 +y2=1 ◆以上题目主要考查了以下内容: (1)直接法求动点的轨迹方程的一般步骤 ①建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标. ②写出适合条件p的点M的集合P={M|p(M)}. ③用坐标表示条件p(M),列出方程f(x,y)=0. ④化方程f(x,y)=0为最简形式. ⑤说明以化简后的方程的解为坐标的点都在曲线上. (2)两曲线的交点 由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点,方程组无解,两条曲线就没有交点. 【指点迷津】 1.一个核心问题 通过坐标法,由已知条件求轨迹方程,通过对方程的研究,明确曲线的位置、形状以及性质是解析几何需要完成的两大任务,是解析几何的核心问题. 2.二个检验方向 求出轨迹方程后,从两个方面检验 ①曲线上所有点的坐标都适合方程; ②方程的解表示的点都是曲线上的点. 3.五种方法 求轨迹方程的常用方法 (1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0; (2)待定系数法:已知所求曲线的类型,求曲线方程——先根据条件设出所求曲线的方程,再由

高二曲线和方程

曲线和方程 一、选择题(每个小题的四个选项中,只有一项是符合题目要求) 1.已知集合}0,9|),{(2≠-==y x y y x M ,}|),{(b x y y x N +==且M ∩N ≠φ,则b 的取值范围是( ) A .2333≤≤-b B .23b 3≤<+ C .20≤≤b D .233≤<-b 2.已知两点)45 ,1(M ,)45,4(--N ,给出下列曲线方程:①4x+2y-1=0;②32 2=+y x ;③1222=+y x ;④12 22 =-y x ,在曲线上存在点P 满足|PM|=|PN|的所有曲线是( ) A .①②③ B .②④ C .①③ D .②③④ 3.若点),(00y x 不在曲线f(x ,y)=0上,则曲线0),(),(00=+y x f y x f λ(λ为非零实数)与曲线f(x ,y)=0的交点个数为( ) A .0 B .1 C .无数个 D .以上都错 4.点P (x ,y )到直线4x-3y+1=0与到直线12x+5y+13=0的距离相等,则点P 的轨迹方程为( ) A .2x+16y+13=0,56x-7y+39=0 B .2x-16y+13=0,56x+7y+39=0 C .2x+16y-13=0,56x-7y-39=0 D .2x+16y+13=0,56x+7y+39=0 5.与曲线f(x ,y)=0关于直线y=-x 对称的曲线方程是( ) A .f(y ,x)=0 B .f(-x ,-y)=0 C .f(-y ,-x)=0 D .f(y ,-x)=0 6.AB 是等腰三角形OAB 的底边,O 是原点,A 点的坐标是(3,4),则点B 的轨迹方程是( ) A .252 2=+y x

相关文档
最新文档