集成电路工艺发展历程

集成电路工艺发展历程
集成电路工艺发展历程

近20年集成电路工艺发展历程

集成电路工艺(integrated circuit technique )是把电路所需要的晶体管、二极管、电阻器和电容器等元件用一定工艺方式制作在一小块硅片、玻璃或陶瓷衬底上,再用适当的工艺进行互连,然后封装在一个管壳内,使整个电路的体积大大缩小,引出线和焊接点的数目也大为减少。集成的设想出现在50年代末和60年代初,是采用硅平面技术和薄膜与厚膜技术来实现的。电子集成技术按工艺方法分为以硅平面工艺为基础的单片集成电路、以薄膜技术为基础的薄膜集成电路和以丝网印刷技术为基础的厚膜集成电路。

单片集成电路除向更高集成度发展外,也正在向着大功率、线性、高频电路和模拟电路方面发展。不过,在微波集成电路、较大功率集成电路方面,薄膜、厚膜混合集成电路还具有优越性。在具体的选用上,往往将各类单片集成电路和厚膜、薄膜集成工艺结合在一起,特别如精密电阻网络和阻容网络基片粘贴于由厚膜电阻和导带组装成的基片上,装成一个复杂的完整的电路。必要时甚至可配接上个别超小型元件,组成部件或整机。

半导体IC通过层的方法制造,包括以下关键步骤:

成像

沉积

蚀刻

单晶硅晶圆(或对于特殊应用,silicon on sapphire或砷化镓)用作基层。使用影像技术标明基层上不同的区域,这些区域将被掺杂质或是多晶硅,绝缘体或金属(以铝为代表)的轨迹,在上面沉积。

最早的集成电路使用陶瓷扁平封装,这种封装很多年来因为可靠性和小尺寸继续被军方使用。商用电路封装很快转变到双列直插封装(dual in-line package DIP),开始是陶瓷,之后是塑料。20世纪80年代,VLSI电路的针脚超过了DIP封装的应用限制,导致插针网格阵列和leadless chip carrier (LCC)的出脚形状现。表面贴的封装在20世纪80年代初期出现,在80年代后期开始流行。他使用更细的脚间距,引为海鸥翼型或J型。以Small-Outline Integrated Circuit(SOIC)为例,比相等的DIP 面积少30-50%,厚度少70%。这种封装在两个长边有海鸥翼型引脚突出,引脚间距为0.05英寸。

Small-Outline Integrated Circuit (SOIC) 和PLCC封装。20世纪90年代,尽管PGA封装依然经常用于高端微处理器。PQFP 和thin small-outline package(TSOP)成为高引脚数设备的通常封装。Intel和AMD的高端微处理器现在从PGA封装转到了land grid array (LGA)封装。

Ball grid array (BGA) 封装从20世纪70年代开始出现。20世纪90年代开发了比其他封装有更多管脚数的Flip-chip Ball Grid Array(FCBGA)封装。在FCBGA封装中,die被上下翻转(flipped)安装,通过与PCB相似的基层而不是线与封装上的焊球连接。FCBGA封装使得输入输出信号阵列(称为I/O区域)分布在整个die的表面,而不是限制于die的外围。

在2005年,一个制造厂(通常称为半导体工厂)建设费用要超过10亿美金,因为大部分操作是自动化的。最先进的过程用到了以下技术:晶圆直径达到了300mm(比通常的餐盘要宽) 使用65纳米或更小的制程。Intel, IBM, NEC和AMD在他们的CPU上,使用45纳米技术。用铜线代替铝进行互相连接Low-k 电介质绝缘体Silicon on insulator (SOI) IBM的Strained silicon directly on

insulator (SSDOI)

市场上第一种获得广泛接纳的封装是双列直插式(DIP,Dual In Line),可用陶瓷和塑料封装体。这种封装于20世纪60年代未开发出来,正如其名,引线从封装两边引出,并与封装垂直。这是低成本封装,电气性能相对较差,通过将引脚插到电路板的通孔中,便可将封装安装在PCB上,引线会在电路板的另一面夹断,再利用波峰焊接技术来焊接。该封装可容纳最多的引线数目为40,而电路板间距则为0.65mm。这种封装形式至今仍在使用。

在20世纪70年代末80年代初,一种新的电路板装配技术出现,名为表面安装(surface mount)。在这种方法中芯片上的引线(引脚)和元件都被焊接在电路板的某一表面,而不是穿过板体。这使得电路板两面都可用于粘结芯片,安装过程使用了焊料回流技术,今天,超过95%的封装都采用了表面安装技术,为了支持这项工艺,小外形的封装应运而生,其引线也是从封装的两边伸出,并做成海鸥翅膀的形状以便板级安装,这类型封装一般比DIP 更薄,能支持最大的引线数为80。

到20世纪80年代中期四边都有引线的封装出现,这类封装称为四方扁平封装(Quad Flat Packs,QFP)(引线呈海鸥翅膀形状)或引线芯片载体(Leaded Chip Carriers)(引线呈弯曲的J字形状)。最常用的典型四方扁平封装间距为0.65mm或0.5mm,引线数高达208。这些封装在20世纪90年代初期之硬盘驱动器和图形市场获得广泛应用。在电气方面它们大约与SO封装相近,但能提供更多的引线,因此在相同的尺寸上具备更多功能,这种封装备有多种不同的尺寸和厚度。

20世纪80年代末90年代初,客户需求在相同的占位面积上享有更高的热性能,于是,裸露焊盘引线封装(Exposed-Pad Leaded Package)得以诞生。这种封装就是把芯片粘接端暴露于底部的四方扁平或更小外形封装。这些暴露的粘接端可以焊接在电路板上,以建立高效的路径为芯片进行散热。在其他因素相同的情况下,该封装的热性能比较相同尺寸的标准四方扁平封装提高50%。此外,它可以在更好的频率下(2-2.5GHz)工作,这类封装在便携式应用如寻呼机和PDA中得到广泛使用。

随着手持便携式设备的尺寸不断缩小,消费者要求在更小的尺寸中享有相同或更多的功能,对于手机和PDA等应用来说,要求的封装尺寸要小,质量要轻,但却不会影响性能。业界隧在20世纪90年代开发出微引线框架(MLF)系列封装,MLF接近于芯片级封装(Chip Scale Package,CSP),用封装的底部引线端提供到PCB板的电气接触,而不是到海鸥翅膀形状引线的soic和qual封装,因此,这种封装有利于保证散热和电气性能。便携式应用是它的主要动力来源,2004年所付用的封装量差不多达20亿。

引线框架引线框架通常由铜制作,与基板材料一样。20世纪90年代出现了一种新型封装,采用分层板作为基板材料,名为球栅阵列封装(Ball Grid Array,BGA)以引线框架为基础的封装只能够把引线引导到封装体的周边…球栅阵列封装的引线则可引导到布满封装底部的焊球上,这样,对于引线数量相同的封装尺寸而言,较之于四方扁平封装,BGA封装自然更具优势,由于基板是分层的,因而具有电源和接地平面可进一步提高电气性能,起初,BGA封装的典型焊球间距为1.27mm,与间距为0.5mm的四方扁平封装相比,板级装配更加轻而易举。

球栅阵列封装的自然发展使得相同芯片的焊球间距及其封装尺寸减小,当间距降低为0.4至0.8mm时,就创造了精细间距球栅阵列,该封装是手持式产品的解决方案,虽然不是真正的芯片级封装,但在业界常被称为分层式芯片级封装。

为了适应集成电路的发展,划片设备技术和工艺也有了较快发展。

2000年,占有国际划片机市场最大份额的日本DISCO公司推出了引领划片机潮流,代表了划片机最高技术水平的双轴对装式Ф300mm全自动划片机,它已逐渐进入实用化阶段。

1999年版的ITRS曾经预计在0.10um制造工艺中将需要采用157nm的光刻技术,但是目前已经被大大延后了。这主要归功于分辨率提高技术的广泛使用,其中尤以浸入式光刻技术最受关注。浸入式光刻是指在投影镜头与硅片之间用液体充满,以提高光刻工具的折射率,获得更好的分辨率及增大镜头的数值孔径。如193nm光刻机的数值孔径为0.85左右,而采用浸入式技术后,可提高至1.0及以上。基于193nm浸入式光刻技术在2004年取得了长足进展,并有望被使用在未来45nm技术节点中。目前一些主要的集成电路制造商都已经将浸入式光刻技术作为首选。原先预计将在0.10um和90nm制造工艺中采用的157nm光刻技术,已经被193nm浸入式光刻技术所替代。

2003年5月英特尔公司宣布的策略表明,它有意放弃157nm光刻技术,取而代之的是努力延伸和拓展193nm光刻功能,然后使32nm工艺直接进入EUV时代。IBM也在2003年宣布其193nm光刻技术扩展到65nm节点,而157nm光刻技术被挤到了45nm节点。最新的2004年ITRS修订版扩充了193nm浸入式光刻技术的使用范围,并将ArF浸入式光刻技术作为65nm和45nm技术节点的首选,同时还认为浸入式光刻可能成为用于32nm和22nm 节点的解决方案。全球主要的光刻设备供应商——ASML、佳能和尼康均已推出了193nm浸入式光刻设备,而且有计划将浸入式技术应用到248nm光刻中。

为了能在下一个技术节点上获得领先,目前一些企业已经开始在部署研制下一代的光刻技术,如远紫外光光刻(EUV)、电子束投影光刻、离子束投影光刻及X射线光刻等。2004年8月英特尔公司宣布已经在EUV光刻上取得重要进展,安装了全球第一套商用EUV光刻工具,并建立了一条EUV掩模试产线,表明该技术已从研发阶段进入试用阶段。

设计开始向DFT、DFM、IP核复用方向发展

随着系统的集成度越来越高,传统的设计、制造、测试方面已经受到越来越大的限制,基于可测性设计(DFT, design for test)和可制造性设计(DFM, design for manufacture)的方案是克服这些限制的很好解决方法。设计一般要同时面对两种复杂性——硅复杂性和系统复杂性,即工艺的按比例缩小和新材料、器件的引入带来的复杂性,以及受越来越小特征尺寸和客户对增加功能、降低成本、更短上市时间要求所驱动的晶体管数量的指数增长带来的复杂性。如果按照传统方法设计,必然会带来极高的制造成本、成品率急剧下降、测试成本的指数级增加或根本无法测试等问题。因此,必须在设计时就要考虑产品的可制造性和可测试性。目前,可测试设计和可制造性设计已经广泛应用于深亚微米制造工艺和SOC芯片中。深亚微米的特殊性使器件更容易产生越迁和桥接等故障,为此,新型高速可测试设计成为了保证芯片质量、降低测试成本的关键技术。虽然,可制造性设计并不是最新出现的技术,只是在纳米级技术引起严重成品率问题后才得到了空前的重视。可制造性设计要求在产品设计时,把制造性能作为结构设计的一项评价准则,避免不必要的过高制造要求,从而造成不必要的生产费用浪费。在过去数年间,可制造性设计(主要是分辨率增强技术)一直是保证成品率的关键,今后的发展方向是在设计和制造之间建立更具鲁棒性的通信链路才能获得更高的成品率。集成电路设计与制造在进入纳米时代后已成为密不可分的一个整体,将成为前向设计与制造数据反馈相互融合的一个更加复杂的过程。

由于系统复杂性越来越高,以及对更短上市时间的追求,设计的复杂性也相应成指数性增加,提高设计生产率已经成为集成电路设计业主要目标。其中IP复用设计正在成为越来越多厂商的选择。SOC实现的一个主要基础就是IP复用设计,把已有优化的子系统甚至系统级模块纳入到新的系统设计中,实现集成电路设计能力的飞跃。2002年ITRS修订版认为,设计成本才是对半导体技术可持续发展的最大威胁,并导致设计和生产力之间产生鸿沟。IP复用设计是加快设计进程和降低成本的有效方法。目前,IP复用设计已经在集成电路设计中被广泛应用,而且也形成了专门生产可复用IP核的产业和生产商。可复用IP核根据实现性不同可分为以HDL语言形式提交的软核、经过完全布局布线的网表形式提供,且不能由系统设计者修改的硬核,以及结合了软核硬核两种形式的固核三种。但是也正因为有不同的厂商参与可复用IP核的生产,又缺乏标准借口,造成了目前存在不同可复用IP核之间无法良好对接和可复用IP知识产权交易发展仍较慢的现象。业界也因此成立了多个国际组织推动可复用IP核标准的建立,如VSIA协会、OPENMORE计划等。今后,标准核接口、通信协议的综合、验证和测试轭套等的发展将是可复用IP产业主要解决的方式。

目前正在出现的其他一些新设计方法,如C/C++语言被越来越多的引入到IC系统级设计中,可以较好平衡软件和硬件两个方面的设计需求,而且在面向对象方面有着不可比拟的生产率优势;采用COT设计方法,要求设计者承担物理设计的全部内容,不仅意味着在芯片的内部增加了布局和布线工作,而且COT的设计者还需要负责封装、测试,以及成品率管理;EDA(电子设计自动化)向EDO(电子设计最优化)的转变,EDO并不是EDA的改良,是一种全新的设计思路,是从逻辑和物理两个角度来分析、设计芯片的混合工具。

目前主流Intel主板芯片组介绍

买电脑,要能省则省,根据每个人的使用需求不同,就需要选购不同的电脑。这个时候,选择一款合适的主板就很重要,而主板上,主板芯片组就是一个很核心的部件,它影响着主板的性能,平台的定位和主板的性能一定要符合,才能够选择到极具性价比的电脑。这就是今天要说的问题,向大家介绍目前市面主流的Intel主板芯片组,希望大家能够从规格上了解到各款主板的区别,在选购主板的时候做到心中有底。 G31: 目前在Intel平台低端市场,G31芯片组主板可以说是独占鳌头,与它同为“3”系列整合主板的G33和G35芯片组主板都因各自的一些原因都非常少见,而nVIDIA出品的MCP73整合主板又因为不支持双通道等硬伤而性能短缺,现在市场上Intel低端平台,首选就是G31主板。 G31芯片组可以支持Intel LGA 775封装的系列处理器,并支持双通道DDR2内存,并可以支持800MHz的内存频率。在显示性能方面,G31芯片组整合了Intel GMA 3100显示核心,可以应付大多数的日常使用需求,并且支持Display Port、DVI等视频输出接口。南桥方面,G31芯片组搭配的是ICH7南桥芯片,ICH7南桥提供了4个SATA接口、6个USB接口以及4条PCI-E通道。虽然ICH7南桥提供的接口方面不太丰富,不过考虑到G31芯片组的市场定位,这样的配置对于入门平台来说,还是足够使用的。 G41: Intel G41芯片组是一款新的入门级整合芯片组,于2008年第四季度发布。在市场定位上,G41芯片组和G31相同,最终的目的,是让G41芯片组主板取代G31芯片组主板,成为Intel平台入门级平台的首选主板。G41芯片组主板在性能上较G31芯片组主板更加强大,支持DX 10特效,并且在高清硬解方面,也支持部分格式的高清片源硬解。不过,目前G41芯片组主板的价格还是要比G31芯片组主板贵一些,可以根据使用需要进行选购。 虽然在Intel的G41芯片组系统图表上,G41芯片组使用的是ICH10(R)南桥芯片,不过在实际中,为了节约成本,降低售价,南桥芯片使用的依然是和G31芯片组相同的ICH7南桥芯片,不过,即便如此,ICH7还是能够满足用户的一般使用需求的,对这方面,不用太过在意。 G41芯片组支持Intel LGA 775封装的系列处理器,并可以支持DDR2和DDR3双通道内存,并支持PCI-E 1.1规范,提供了一条PCI-E 1.1 16X插槽,在集成显示核心方面,G41主板集成了Intel GMA X4500显示核心,该显示核心支持DX 10,并且可以支持部分格式的高清硬解。并且,G41芯片组主板可以支持DVI和Display Port视频输出。 G43: G43和G45这两款整合主板芯片组于2008年6月发布,同时发布的还有P45和P43两款非整合主板芯片组,从那时候起,Intel “4”系列的芯片组主板就开始发售,G43和G45两款芯片组是相对定位中高端的两款整合芯片组。 G43芯片组的北桥芯片方面,规格与G41芯片组有一些提升,虽然同是集成Intel GMA X4500显示核心,不过在视频输出方面,G43芯片组提供了G41所没有HDMI接口,并且,还支持PCI-E 2.0规范。南桥方面,ICH10(R)系列南桥芯片也更加的强大,不仅提供了更多的USB、SATA接口,还可以支持eSATA,并且ICH10R芯片还支持硬盘RAID 模式,并且该系列南桥提供了6条PCI-E通道,可以支持千兆网卡等等。 G45: G45芯片组是Intel系列整合芯片组中定位比较高端的,它是Intel系列整合芯片组中唯一可以实现全高清硬解的芯片组,目前在市场上,也有一些499元的G45主板出售,价格方面还是比较亲民的。 G45芯片组集成的是Intel GMA X4500HD显示核心,该显示核心要比G41和G43芯片组集成的显示核心多出“HD”字样,也就是可以实现全高清硬解。除此之外,北桥和南桥芯片其他规格和G43芯片组相同,不过在实际测试中,G45芯片组的3D性能要较G43高一些,G43又要较G41高一些,差别也不是太大。 P31: P31芯片组是作为一款入门级的非整合主板芯片组推出的,不过经过市场的洗牌,现在P31芯片组的主板已经很少能够看到了,市场上仅剩的一些P31主板,甚至在价格上比G31主板还贵,所以,使用这款芯片组的主板并不推荐选购。 P31芯片组同时搭配的是ICH7南桥,在规格放面,和G31主板基本相同,不过要比G31主板少了集成的核心,在这一点上,P31芯片组和G31芯片组各有各的优势,毕竟整合了显示核心的芯片肯定会带来更高的发热,这对于主板的稳定性会有一定的影响。 P35: 在2008年6月前,Intel的“4”系列芯片组主板还未推出的时候,P35主板就是Intel市场上的明星主板,虽然并不是“3”系列芯片组主板中规格最高的,但是,却是性能与价格最均衡的主板。不过,从有了P45芯片组主板后,拥有更强的规格的P45芯片组主板开始吸引更多用户的注意,P35芯片组主板的市场占有率就开始走了下坡路。到了现在,P35芯片组主板已经很少,同时,不少厂商为了清理最后的库存,不少P35主板都以一个很优惠的价格出售,相比同价位的P45芯片组主板,这些P35主板都有更好的用料和做工,而在超频性能方面,又要比P43更好,所以也还是有

集成电路的现状与发展趋势

集成电路的现状与发展趋势 1、国内外技术现状及发展趋势 目前,以集成电路为核心的电子信息产业超过了以汽车、石油、钢铁为代表的传统工业成为第一大产业,成为改造和拉动传统产业迈向数字时代的强大引擎和雄厚基石。1999年全球集成电路的销售额为1250亿美元,而以集成电路为核心的电子信息产业的世界贸易总额约占世界GNP的3%,现代经济发展的数据表明,每l~2元的集成电路产值,带动了10元左右电子工业产值的形成,进而带动了100元GDP的增长。目前,发达国家国民经济总产值增长部分的65%与集成电路相关;美国国防预算中的电子含量已占据了半壁江山(2001年为43.6%)。预计未来10年内,世界集成电路销售额将以年平均15%的速度增长,2010年将达到6000~8000亿美元。作为当今世界经济竞争的焦点,拥有自主版权的集成电路已曰益成为经济发展的命脉、社会进步的基础、国际竞争的筹码和国家安全的保障。 集成电路的集成度和产品性能每18个月增加一倍。据专家预测,今后20年左右,集成电路技术及其产品仍将遵循这一规律发展。集成电路最重要的生产过程包括:开发EDA(电子设计自动化)工具,利用EDA进行集成电路设计,根据设计结果在硅圆片上加工芯片(主要流程为薄膜制造、曝光和刻蚀),对加工完毕的芯片进行测试,为芯片进行封装,最后经应用开发将其装备到整机系统上与最终消费者见面。 20世纪80年代中期我国集成电路的加工水平为5微米,其后,经历了3、1、0.8、0.5、0.35微米的发展,目前达到了0.18 微米的水平,而当前国际水平为0.09微米(90纳米),我国与之相差约为2-3代。 (1)设计工具与设计方法。随着集成电路复杂程度的不断提高,单个芯片容纳器件的数量急剧增加,其设计工具也由最初的手工绘制转为计算机辅助设计(CAD),相应的设计工具根据市场需求迅速发展,出现了专门的EDA工具供应商。目前,EDA主要市场份额为美国的Cadence、Synopsys和Mentor等少数企业所垄断。中国华大集成电路设计中心是国内唯一一家EDA开发和产品供应商。 由于整机系统不断向轻、薄、小的方向发展,集成电路结构也由简单功能转向具备更多和更为复杂的功能,如彩电由5片机到3片机直到现在的单片机,手机用集成电路也经历了由多片到单片的变化。目前,SoC作为系统级集成电路,能在单一硅芯片上实现信号采集、转换、存储、处理和I/O等功能,将数字电路、存储器、MPU、MCU、DSP等集成在一块芯片上实现一个完整系统的功能。它的制造主要涉及深亚微米技术,特殊电路的工艺兼容技术,设计方法的研究,嵌入式IP核设计技术,测试策略和可测性技术,软硬件协同设计技术和安全保密技术。SoC以IP复用为基础,把已有优化的子系统甚至系统级模块纳入到新的系统设计之中,实现了集成电路设计能力的第4次飞跃。

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

主板芯片组详解

[转帖]主板芯片组详解 Intel 845E Intel 845E是为了533MHz外频Pentium 4推出的DDR芯片组,它正式支持533MHz的系统前端总线,支持DDR266的内存规范,由于i845PE的推出,其价格势必降低,也是其成为一款高性价比的主流芯片组,很适合对性能要求较高和资金又不很充裕的用户购买,其支持533MHz的系统前端总线,在升级上也有较大的空间。 i845E芯片组由北桥芯片82845E GMCH和南桥芯片ICH4组成,继续使用i845的架构,南桥采用了ICH4芯片,支持增强型的六声道 AC97音效控制器和USB 2.0的通用串行总线传输规范。 技术规范 支持 Intel Pentium4 处理器 提供 400/533MHz 系统前端总线 支持 AGP 2X/4X 支持最多 2.0GB DDR200/266 SDRAM 南北桥芯片之间采用Intel Hub Architecture总线连接,提供高达266MB/s 数据传输宽带 支持网络唤醒功能 内建 AC-97控制芯片 内建 10/100M以太网络适配器 支持 ATA 33/66/100/磁盘传输界面 支持 6个USB 2.0接口 支持高级电源管理功

Intel 845D i845D是第一代的基于Pentium 4处理器的DDR整合型芯片组,由于i845使用SDRAM的效能实在无法满足Pentium 4处理器的需求,使得Pentium 4处理器在家用主流系统的性能表现平平,但i850芯片组的价格有过高,在这样的情形下,intel只好回到DDR SDRAM的的怀抱,i845D就是Intel在i845芯片组的基础上改进其内存管理器,使其支持DDR200/266的SDRAM,在DDR内存的帮助下,Pentium 4的性能得到了长足的提高,其合理的价格也使得Pentium 4处理器迅速的流行起来。但Intel官方并没有用i845D为其命名,而是用其代替了原来的i845,由于其推出的时间较长,其价格已经大幅降低,其性能表现仍然不差,搭配400外频的Pentium 4十分理想,是一个高性价比的组合,配合一款600元左右的Gefcrce 3 Ti显卡,满全可以满足大部分个人用户和游戏爱好者的需求。 i845D芯片组由北桥芯片82845 MCH和南桥芯片ICH2组成,作为第一款P4平台的DDR芯片组,其同时兼容DDRAM和SDRAM内存,而且南桥芯片ICH2整合了10/100M自适应以太网络控制器、6声道AC97音效控制器以及USB 1.1的支持,其外设的扩展能力还是十分强大的。 技术规范 支持 Intel Pentium4 处理器 提供 400系统前端总线 支持最多 2.0GB DDR200/266/PC133 SDRAM 南北桥芯片之间采用Intel Hub Architecture总线连接,提供高达266MB/s 数据传输宽带 支持网络唤醒功能 内建 AC-97控制芯片

主板上各种芯片、元件的识别及作用

主板芯片组: 芯片组(Chipset)是主板的核心组成部分,联系CPU和其他周边设备的运作。主板上最重要的芯组就是南桥和北桥。 1、北桥芯片:(North Bridge)是主板芯片组中起主导作用的最重要的组成部分,也称为主桥(Host Bridge)。一般来说,芯片组的名称就是以北桥芯片的名称来命名的,例如英特尔875P芯片组的北桥芯片是82875P、最新的则是支持双核心处理器的945/955/975系列的82945P、82945G、82945GZ、82945GT、82945PL、82955X、82975X等七款北桥芯片等等。 北桥作用:北桥芯片负责与CPU的联系并控制内存(仅限于Intel的cpu,AMD系列cpu在K8系列以后就在cpu中集成了内存控制器,因此AMD平台的北桥芯片不控制内存)、AGP 数据在北桥内部传输,提供对CPU的类型和主频、系统的前端总线频率、内存的类型(SDRAM,DDR SDRAM以及RDRAM等等)和最大容量、AGP插槽、ECC纠错等支持,整合型芯片组的北桥芯片还集成了显示核心。 北桥识别及特点:北桥芯片就是主板上离CPU最近的芯片,这主要是考虑到北桥芯片与处理器之间的通信最密切,为了提高通信性能而缩短传输距离。因为北桥芯片的数据处理量非常大,发热量也越来越大,所以现在的北桥芯片都覆盖着散热片用来加强北桥芯片的散热,有些主板的北桥芯片还会配合风扇进行散热。因为北桥芯片的主要功能是控制内存,而内存标准与处理器一样变化比较频繁,所以不同芯片组中北桥芯片是肯定不同的,当然这并不是说所采用的内存技术就完全不一样,而是不同的芯片组北桥芯片间肯定在一些地方有差别。 2、南桥芯片:南桥芯片(South Bridge)是主板芯片组的重要组成部分,一般位于主板上离CPU插槽较远的下方,PCI插槽的附近,这种布局是考虑到它所连接的I/O总线较多,离处理器远一点有利于布线。相对于北桥芯片来说,其数据处理量并不算大,所以南桥芯片一般都没有覆盖散热片。南桥芯片不与处理器直接相连,而是通过一定的方式(不同厂商各种芯片组有所不同,例如英特尔的英特尔Hub Architecture以及SIS的Multi-Threaded“妙渠”)与北桥芯片相连。 南桥作用:南桥芯片负责I/O总线之间的通信,如PCI总线、USB、LAN、ATA、SATA、音频控制器、键盘控制器、实时时钟控制器、高级电源管理等,这些技术一般相对来说比较稳定,所以不同芯片组中可能南桥芯片是一样的,不同的只是北桥芯片。所以现在主板芯片组中北桥芯片的数量要远远多于南桥芯片。例如早期英特尔不同架构的芯片组Socket 7的430TX和Slot 1

如何鉴别主板芯片组型号)

如何鉴别主板芯片组型号 一19:48由于目前的主板规格品种繁多,厂商更始雨后春笋。技术参数也差异很大,编号当然也会随着升级,越来越复杂,就连销售商都开始头痛了总是对于记忆那些繁琐的编号在与之配合那些性能参数很头疼,其实大多数配件厂商对于其产品的命名都是有着很清晰的规律性的,而且都是严格遵守的,所以有些时候,了解这些编号的含义,对于选购产品有着很大的便利。 微星(MSI) 微星主板编号主要分为“型号名”和“产品名”两种形式来命名。前期采用的“数字名”就是用“MS-”+“XXXX”+“PCBXX”方式来表达主板型号,比如“MS-6309 2.0”和“MS-6199 1.0”。在这种命名方式中,数字编号是厂商研发部门命名的而且没有其他的含义,PCB版本号也无规律,编号特点不明显,一般用户很难知道该主板型号的特点。 为了方便用户记忆和了解产品型号,微星后期采用了“型号名”的命名方式。它的识别方式为“芯片组名”+“架构类型(M/D)”+“主板定位(Pro /Turbo/Master)”+“附加功能(S/L/A/I/R)”的方式表达。芯片组的后缀“D”则代表该主板支持双CPU ,“M”表示Micro A TX主板架构。“Pro”表示一般的主板产品,“Turbo”是功能加强型主板,而“Master”则指高端主板(如网络服务器或图形工作站使用主板)。Master主板通常具有SCSI功能(特殊主板产品例外)。在附加功能中,“S”表示主板自带SCSI接口,“L”表示主板集成了网络适配器,“A”表示主板集成其他厂商的声卡或支持ATA 100规格,“I”表示主板有IEEE 1394火线接口,“R”表示主板支持RAID功能。例如:主板编号为K7T Turbo-R,从编号就可以看出该主板使用VIA KT133A芯片组并且增加了对RAID功能的支持。 另外微星也有一些特殊的命名方式,用于特殊规格产品。如早期的“6309”这个系列的产品,“6309NL”表示无D-LED灯。而“6309NL100”则通过增加“100”这个后缀表达该主板支持ATA 100规范,同时也避免了使用“A”后缀与带硬声卡的6309A相混淆。 技嘉(GIGA) 技嘉主板编号以“GA-”开头,其后紧跟数字和英文字母,用来区分具体主板的规格。编号石油“GA-”+“支持CPU类型”+“主板采用的芯片组型号”+“使用板型”+“后缀”构成 技嘉主板可以通过数字来区分主板支持的处理器类型,现在有5、6、7、8四种。例如支持Intel 系列的处理器采用“6”开头(支持Pentium 4的以“8”开头),而支持AMD系列处理器的主板以数字“7”开头。接下来的英文字母代表主板采用的芯片组型号,A表示采用Ali公司的主板芯片组,现在已经很少见了、B表示的是Intel 440BX,很“经典”的产品、字母C表示采用Intel i820芯片组、D表示AMD 760芯片组、O指采用Intel i815芯片组、W表示采用Intel BX/LX/ZX 芯片组,而V说明主板采用VIA芯片组、S表示采用SiS芯片组、Z最早指的是Intel 440 ZX,如今又加上了KT 133/KM 133等。第三位英文字母表示主板的版型,X表示A TX版型,(标准型)、M表示Micro ATX版型(小版型)、F是指采用Flex A TX版型(目前最小的版型)、A则代表采用Baby AT版型。最后的后缀编号,它用以区分具体主板品种,技嘉主板的后缀编号一般用1到4位的字母或数字,而且可以相互组合使用 A表示Audio,说明这块主板上集成声卡。 B表示改主板南桥芯片使用的是VIA 686B,也就是说支持UDMA 100。

CMOS集成电路制造工艺流程

C M O S集成电路制造工艺 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西国防工业职业技术学院课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤 目录

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D-NMOS和p沟MOS兼容的CMOS电路。双阱CMOS,是在低阻n+衬底上再外延一层中高阻n――硅层,然后在外延层中制造n 阱和p阱,并分别在n、p阱中制造p沟和n沟晶体管,从而使PMOS和NMOS晶体管都在高阻、低浓度的阱中形成,有利于降低寄生电容,增加跨导,增强p沟和n沟晶体管的平衡性,适用于高性能电路的制造。

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

主板芯片与CPU的搭配

主板芯片组与CPU的合理搭配,知识扫盲贴!! 有重大改变,仅仅是使用了支持USB2.0的ICH4和支持FSB533而已,但845D芯片组也同样能够支持FSB533,而且经过超频之后内存子系统性能更高,整体甚至超过了845PE芯片组。这也显示出了Intel芯片组更新速度快,但实际功能改进甚微。 二、875、865系列芯片组 自从英特尔FSB(前端总线)800M Hz的新一代Pentium 4处理器发布以后,能够完全支持FSB 800M Hz Pentium 4处理器便只有英特尔i875P芯片组。无论产品规格还是性能,英特尔i875P芯片组都在P4平台上所向披靡,具备了400MHz的双通道DDR技术,还首度加入了一项Intel PAT技术(Intel Performance Acceleration Technology,不过近期似乎Intel并不认可PA T),支持ECC内存校验。i875P的强大性能在这里就不赘述,但是从这些高新技术上,我们不难看出875P这款芯片的是针对初级工作站和高端用户而设计。为了扩张产品线,英特尔推出取代845PE/GE的865P/PE/G,在发布前后短短一个月中,许多品牌的i865主板就已经出现在市场上。 芯片875P865G 865PE 865P 开发代号Canterwood Springdale-G Springdale-PE Springdale-P 前端总线800/533MHz 800/533/400MHz 800/533/400MHz 533/400MHz 总线带宽6.4GB/Sec 6.4GB/Sec 6.4GB/Sec 4.2GB/sec 支持内存DDR400/333 DDR400/333/266DDR400/333/266DDR333/266 内存模式双通道双通道双通道双通道 AGP界面8X 8X 8X 8X 整合图形芯片否是否否 CSA设置支持支持支持支持 ICH芯片ICH5 ICH5 ICH5 ICH4/ICH5 SATA SATA 150 SATA 150 SATA 150 SATA 150 英特尔865系列一共分了三个类型,分别是自带显卡的865G,不带显卡的865PE和仅支持FSB 533的865P。 865芯片组不象875P一样针对高端市场,但同875P相比,它的功能却并没有缩水多少,它同样支持FSB 800MHz的P4 处理器,同时又支持现有的Northwood的P4处理器,以及未来的0.09微米工艺的Prescott处理器。内存方面支持DDR 266/333/400双通道内存,支持AGP 8X的显卡接口,并且还有英特尔全新的Communications Streaming Architecture(通信流架构)用于支持千兆以太网。865北桥芯片的针脚数目一共是932个,采用了FCBGA 的封装形式,外观就象以前的铜矿PIII处理器,而且需要对外露的核心进行散热处理,所以北桥上都会到看有散热片,甚至带散热风扇。i865支持双通道内存模式,不过工作频率就和CPU处理器的总线频率分开,就是说800MHz FSB的Pentium 4处理器,也可以搭配DDR266的内存。由于i865内部由两个不同的内存控制器组成双通道的模式,所以用户可以选择用一条内存,使用单通道模式,如果使用双通道模式的话,就要装上两条规格相同(频率,容量)的内存在不同的内存控制器插槽上,这样才会达到最佳的双通道性能。 在南桥方面,865和875P一样使用了ICH5(个别品牌会使用ICH4),加入了一个串行ATA功能,支持软RAID。在南桥上加入这些功能,还是前所未有的,这给不少RAID 芯片厂商带来巨大的压力。考虑到目前还是新旧设备的交替时期,865系列主板上仍然会保留着IDE接口进行过渡。在接口上,USB2.0接口达到了8个,无论从480MB/S的传输速率

集成电路工艺流程

集成电路中双极性和CMOS工艺流程 摘要:本文首先介绍了集成电路的发展,对集成电路制作过程中的主要操作进行了简要 讲述。双极性电路和MOS电路时集成电路发展的基础,双极型集成电路器件具有速度高、驱动能力强、模拟精度高的特点,但是随着集成电路发展到系统级的集成,其规模越来越大,却要求电路的功耗减少,而双极型器件在功耗和集成度方面无法满足这些方面的要求。CMOS电路具有功耗低、集成度高和抗干扰能力强的特点。文章主要介绍了双极性电路和CMOS电路的主要工艺流程,最后对集成电路发展过程中出现的新技术新工艺以及一些阻 碍集成电路发展的因素做了阐述。 关键词:集成电路,双极性工艺,CMOS工艺 ABSTRACT This paper first introduces the development of integrated circuits, mainly operating in the process of production for integrated circuits were briefly reviewed. Bipolar and MOS circuit Sas the basis for the development of integrated circuit. Bipolar integrated circuits with high speed, driving ability, simulated the characteristics of high precision, but with the development of integrated circuit to the system level integration, its scale is more and more big.So, reducing the power consumption of the circuit is in need, but bipolar devices in power consumption and integration can't meet these requirements. CMOS circuit with low power consumption, high integration and the characteristics of strong anti-interference ability. This paper mainly introduces the bipolar circuit and CMOS circuit the main technological process.finally, the integrated circuit appeared in the process of development of new technology and new technology as well as some factors hindering the development of the integrated circuit are done in this paper. KEY WORDS integrated circuit, Bipolar process, CMOS process

(完整版)电脑主板图文详解

电脑主板图文详解 认识主机板 「主机板」( Motherboard )不算电脑里最先进的零组件,但绝对是塞最多东西的零组件。事实上,现在新的主机板简直像怪物,上面可能有数十个长长短短、大大小小、圆的方的、各式各样的插槽。即使我已经见过不下百张的主机板,仍然会惊讶于一张板子怎么能塞这么多东西,更可怕的是,东西还一年比一年多。 平台的概念 在电脑零件组中,主机板扮演的是一个「平台」( Platform )的角色,它把所有其他零 组件串连起来,变成一个整体。我们常说CPU象大脑一样,负责所有运算的工作,而主机板就有点像脊椎,连接扩充卡、硬盘、网络、音效、键盘、鼠标器、打印机等等所有的周边,让CPU可以掌控。所以玩电脑的人,常会在意「板子稳不稳」,因为主机板连接的周边太多,若稳定性不够就容易出现各种灵异现象。CPU不够快,顶多人笨一点算得慢,但脊椎出毛病 就不良于行了。当然,CPU还是最重要的零件,CPU挂了,就像本草纲目所记载的:「脑残没药医」。目前全世界最大的主机板厂通通都在台湾 (生产线当然在大陆) ,所以一定要好好认识一下台湾之光,但就像最前面说的,现在主机板上实在塞太多东西,每个插槽都是一种规格,有自己的历史和技术。这篇主要是讲一个「综观」,各插槽的技术会在对应零组件里详细说明,出现一堆英文缩写请别在意。废话不多说,我们挑一张目前最新的主机板做介绍,大家一起感谢微星提供两张P35 Platinum 供小弟任意解体,幸好,在本专题中没有一张主机板死亡。

主机板外观 这是目前新的主机板的模样, 看起来密密麻麻跟鬼一样。 你电脑里装的可能没这么高级, 花样也不一定这么多,但某些东西是每一张主机板都会有的。 p I 1 h cn S A ■ t-. ll n -J

(工艺技术)集成电路的基本制造工艺

第1章 集成电路的基本制造工艺 1.6 一般TTL 集成电路与集成运算放大器电路在选择外延层电阻率上有何区别?为什么? 答:集成运算放大器电路的外延层电阻率比一般TTL 集成电路的外延层电阻率高。 第2章 集成电路中的晶体管及其寄生效应 复 习 思 考 题 2.2 利用截锥体电阻公式,计算TTL “与非”门输出管的CS r ,其图形如图题2.2 所示。 提示:先求截锥体的高度 up BL epi mc jc epi T x x T T -----= 然后利用公式: b a a b WL T r c -? = /ln 1ρ , 2 1 2?? =--BL C E BL S C W L R r b a a b WL T r c -? = /ln 3ρ 321C C C CS r r r r ++= 注意:在计算W 、L 时, 应考虑横向扩散。 2.3 伴随一个横向PNP 器件产生两个寄生的PNP 晶体管,试问当横向PNP 器件在4种可能的偏置情况下,哪一种偏置会使得寄生晶体管的影响最大? 答:当横向PNP 管处于饱和状态时,会使得寄生晶体管的影响最大。 2.8 试设计一个单基极、单发射极和单集电极的输出晶体管,要求其在20mA 的电流负载下 ,OL V ≤0.4V ,请在坐标纸上放大500倍画出其版图。给出设计条件如下: 答: 解题思路 ⑴由0I 、α求有效发射区周长Eeff L ; ⑵由设计条件画图 ①先画发射区引线孔; ②由孔四边各距A D 画出发射区扩散孔; ③由A D 先画出基区扩散孔的三边; ④由B E D -画出基区引线孔; ⑤由A D 画出基区扩散孔的另一边;

芯片制造工艺发展史

芯片制造工艺发展史 1947年:贝尔实验室肖特莱等人发明了晶体管,这是微电子技术发展中第一个里程碑; 1950年:结型晶体管诞生; 1950年:R Ohl和肖特莱发明了离子注入工艺; 1951年:场效应晶体管发明; 1956年:C S Fuller发明了扩散工艺; 1958年:仙童公司Robert Noyce与德仪公司基尔比间隔数月分别发明了集成电路,开创了世界微电子学的历史; 1960年:H H Loor和E Castellani发明了光刻工艺; 1962年:美国RCA公司研制出MOS场效应晶体管; 1963年:F.M.Wanlass和C.T.Sah首次提出CMOS技术,今天,95%以上的集成电路芯片都是基于CMOS工艺; 1964年:Intel摩尔提出摩尔定律,预测晶体管集成度将会每18个月增加1倍; 1966年:美国RCA公司研制出CMOS集成电路,并研制出第一块门阵列(50门); 1967年:应用材料公司(Applied Materials)成立,现已成为全球最大的半导体设备制造公司; 1971年:Intel推出1kb动态随机存储器(DRAM),标志着大规模集成电路出现; 1971年:全球第一个微处理器4004由Intel公司推出,采用的是MOS工艺,这是一个里程碑式的发明; 1974年:RCA公司推出第一个CMOS微处理器1802; 1976年:16kb DRAM和4kb SRAM问世; 1978年:64kb动态随机存储器诞生,不足0.5平方厘米的硅片上集成了14万个晶体管,标志着超大规模集成电路(VLSI)时代的来临; 1979年:Intel推出5MHz 8088微处理器,之后,IBM基于8088推出全球第一台PC; 1981年:256kb DRAM和64kb CMOS SRAM问世; 1984年:日本宣布推出1Mb DRAM和256kb SRAM; 1985年:80386微处理器问世,20MHz; 1988年:16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路(ULSI)阶段; 1989年:1Mb DRAM进入市场; 1989年:486微处理器推出,25MHz,1μm工艺,后来50MHz芯片采用0.8μm工艺; 1992年:64M位随机存储器问世; 1993年:66MHz奔腾处理器推出,采用0.6μm工艺; 1995年:Pentium Pro, 133MHz,采用0.6-0.35μm工艺; 1997年:300MHz奔腾Ⅱ问世,采用0.25μm工艺; 1999年:奔腾Ⅲ问世,450MHz,采用0.25μm工艺,后采用0.18μm工艺; 2000年: 1Gb RAM投放市场; 2000年:奔腾4问世,1.5GHz,采用0.18μm工艺; 2001年:Intel宣布2001年下半年采用0.13μm工艺。

超大规模集成电路及其生产工艺流程

超大规模集成电路及其生产工艺流程 现今世界上超大规模集成电路厂(Integrated Circuit, 简称IC,台湾称之为晶圆厂)主要集中分布于美国、日本、西欧、新加坡及台湾等少数发达国家和地区,其中台湾地区占有举足轻重的地位。但由于近年来台湾地区历经地震、金融危机、政府更迭等一系列事件影响,使得本来就存在资源匮乏、市场狭小、人心浮动的台湾岛更加动荡不安,于是就引发了一场晶圆厂外迁的风潮。而具有幅员辽阔、资源充足、巨大潜在市场、充沛的人力资源供给等方面优势的祖国大陆当然顺理成章地成为了其首选的迁往地。 晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)。前者只是一片像镜子一样的光滑圆形薄片,从严格的意义上来讲,并没有什么实际应用价值,只不过是供其后芯片生产工序深加工的原材料。而后者才是直接应用在应在计算机、电子、通讯等许多行业上的最终产品,它可以包括CPU、内存单元和其它各种专业应用芯片。 一、晶圆 所谓晶圆实际上就是我国以往习惯上所称的单晶硅,在六、七十年代我国就已研制出了单晶硅,并被列为当年的十天新闻之一。但由于其后续的集成电路制造工序繁多(从原料开始融炼到最终产品包装大约需400多道工序)、工艺复杂且技术难度非常高,以后多年我国一直末能完全掌握其一系列关键技术。所以至今仅能很小规模地生产其部分产品,不能形成规模经济生产,在质量和数量上与一些已形成完整晶圆制造业的发达国家和地区相比存在着巨大的差距。 二、晶圆的生产工艺流程: 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两面大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 多晶硅——单晶硅——晶棒成长——晶棒裁切与检测——外径研磨——切片——圆边——表层研磨——蚀刻——去疵——抛光—(外延——蚀刻——去疵)—清洗——检验——包装 1、晶棒成长工序:它又可细分为: 1)、融化(Melt Down):将块状的高纯度多晶硅置石英坩锅内,加热到其熔点1420℃以上,使其完全融化。2)、颈部成长(Neck Growth):待硅融浆的温度稳定之后,将,〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此真径并拉长100---200mm,以消除晶种内的晶粒排列取向差异。 3)、晶冠成长(Crown Growth):颈部成长完成后,慢慢降低提升速度和温度,使颈直径逐渐加响应到所需尺寸(如5、6、8、12时等)。 4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5、)尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2、晶棒裁切与检测(Cutting & Inspection):将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3、外径研磨(Surface Grinding & Shaping):由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4、切片(Wire Saw Slicing):由于硅的硬度非常大,所以在本序里,采用环状、其内径边缘嵌有钻石颗粒的薄锯片将晶棒切割成一片片薄片。 5、圆边(Edge profiling):由于刚切下来的晶片外边缘很锋利,单晶硅又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6、研磨(Lapping):研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。

主板各芯片图解

(图)全程图解主板(下) 初学菜鸟们必看 硬盘维修交流9(精英维修) 电源插座主要有AT电源插座和ATX电源插座两种,有的主板上同时具备这两种插座。AT插座应用已久现已淘汰。而采用20口的ATX电源插座,采用了防插反设计,不会像AT电源一样因为插反而烧坏主板。除此而外,在电源插座附近一般还有主板的供电及稳压电路。 此主题相关图片如下: 主板的供电及稳压电路也是主板的重要组成部分,它一般由电容,稳压块或三极管场效应管,滤波线圈,稳压控制集成电路块等元器件组成。此外,P4主板上一般还有一个4口专用12V电源插座。 及电池 BIOS(BASIC INPUT/OUTPUT SYSTEM)基本输入输出系统是一块装入了启动和自检程序的EPROM或EEPROM集成块。实际上它是被固化在计算机

ROM(只读存储器)芯片上的一组程序,为计算机提供最低级的、最直接的硬件控制与支持。除此而外,在BIOS芯片附近一般还有一块电池组件,它为BIOS提供了启动时需要的电流。 此主题相关图片如下: 常见BIOS芯片的识别主板上的ROM BIOS芯片是主板上唯一贴有标签的芯片,一般为双排直插式封装(DIP),上面一般印有“BIOS”字样,另外还有许多PLCC32封装的BIOS。 此主题相关图片如下: 早期的BIOS多为可重写EPROM芯片,上面的标签起着保护BIOS内容的作用,因为紫外线照射会使EPROM内容丢失,所以不能随便撕下。现在的ROM BIOS多采用Flash ROM(快闪可擦可编程只读存储器),通过刷新程序,可以对Flash ROM进行重写,方便地实现BIOS升级。 目前市面上较流行的主板BIOS主要有Award BIOS、AMI BIOS、Phoenix BIOS三种类型。Award BIOS是由Award Software公司开发的BIOS产品,在目前的主板中使用最为广泛。Award BIOS功能较为齐全,支持许多新硬

相关文档
最新文档