信号系统设计_复习知识总结

信号系统设计_复习知识总结
信号系统设计_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分:

确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号;

正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。

① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。

周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。

1. 典型信号

① 指数信号: ()at

f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()t

Sa t t

= 奇异信号

(1) 单位阶跃信号

1()u t ={ 0t =是()u t 的跳变点。

(2) 单位冲激信号

单位冲激信号的性质:

(1)取样性

11()()(0)

()()()f t t dt f t t f t dt f t δδ∞

-∞

-∞

=-=?

?

相乘性质:()()(0)()f t t f t δδ=

000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1

()at t a

δδ=

(4)微积分性质 d ()

()d u t t t

δ= ; ()d ()t u t δττ-∞=?

(5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ;

(0)

t <(0)t >

()1t dt δ∞

-∞

=?

()0t δ=(当0t ≠时)

()()d (0)f t t t f δ∞

-∞

''=-?

()d ()t

t t t δδ-∞

'=? ;

()()t t δδ''-=-

()d 0t t δ∞

-∞

'=?

带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激函数的强度。正跳变对应着正冲激;负跳变对应着负冲激。

重难点2.信号的时域运算

① 移位: 0()f t t +, 0t 为常数

当0t >0时,0()f t t +相当于()f t 波形在t 轴上左移0t ;当0t <0时, 0()f t t +相当于()f t 波形在t 轴上右移0t 。

② 反褶: ()f t - ()f t -的波形相当于将()f t 以t =0为轴反褶。 ③ 尺度变换: ()f at ,a 为常数

当a >1时,()f at 的波形时将()f t 的波形在时间轴上压缩为原来的1a

; 当0

。 ④ 微分运算:

()d

f t dt

信号经微分运算后会突出其变化部分。 2. 系统的分类

根据其数学模型的差异,可将系统划分为不同的类型:连续时间系统与离散时间系统;线性系统与非线性系统;时变系统与时不变系统; 重难点3.系统的特性

(1) 线性性

若同时满足叠加性与均匀性,则称满足线性性。

当激励为1122()()C f t C f t +(1C 、2C 分别为常数时),系统的响应为1122()()C y t C y t +。 线性系统具有分解特性:

)()()(t y t y t y zs zi +=

零输入响应是初始值的线性函数,零状态响应是输入信号的线性函数,但全响应既不是输入信号也不是初始值的线性函数。

(2) 时不变性 :对于时不变系统,当激励为0()f t t -时,响应为0()f t t -。

(3) 因果性

线性非时变系统具有微分特性、积分特性。

重难点4.系统的全响应可按三种方式分解:

;零状态响应零输入响应全响应)()()(t y t y t y zs zi +=

强迫响应自由响应全响应)()()(t y t y t y p h +=

各响应分量的关系:

1

1

1

()()()k k k n

n

n

a t

a t

a t k zik zsk k k k y t A e

B t A e

A e

B t ====+=++∑∑∑强迫响应

自由响应零输入响应

零状态响应

重难点5.系统的零输入响应就是解齐次方程,形式由特征根确定,待定系数由-0初始状态确定。

零输入响应必然是自由响应的一部分。

重难点6.任意信号可分解为无穷多个冲激函数的连续和:

?

∞∞

--=τ

τδτd t f t f )()()(

那么系统的的零状态响应为激励信号与单位冲激响应的卷积积分,即)()()(t h t f t y zs *=。零状态

响应可分解为自由响应和强迫响应两部分。

重难点7.单位冲激响应的求解。冲激响应)(t h 是冲激信号作用系统的零状态响应。 重难点8.卷积积分

(1) 定义 ττττττd f t f d t f f t f t f )()()()()(*)(2121

21-=-=??

∞∞-∞

∞-

(2) 卷积代数

① 交换律 )(*)()(*)((1221t f t f t f t f =

② 分配率 )(*)()(*)()]()([*)(3121321t f t f t f t f t f t f t f +=+ ③ 结合律 )](*)([*)()(*)](*)([321321t f t f t f t f t f t f = 重难点9.卷积的图解法 ( 求某一时刻卷积值)

1212()*()()()f t f t f f t d τττ∞

-∞

=-?

卷积过程可分解为四步:

(1)换元: t 换为τ→得 f 1(τ), f 2(τ)

(2)反转平移:由f 2(τ)反转→ f 2(–τ) 右移t → f 2(t-τ) (3)乘积: f 1(τ) f 2(t-τ)

(4)积分: τ从 –∞到∞对乘积项积分。 (3)性质

1)f (t )*δ(t)=δ(t )*f (t ) = f (t ) )()(*)(00t t f t t t f -=-δ

)()(*)(2121t t t f t t t t f --=--δ (210,,t t t 为常数)

2)f (t )*δ’(t ) = f ’(t ) 3)f (t )*u (t ) ()()d ()d t

f u t f τττττ∞

-∞

-∞

=

-=?

?

u (t ) *u (t ) = tu (t )

4)[]121221d ()d ()d ()*()*()()*d d d n n n

n n n

f t f t f t f t f t f t t t t ==

5)

121212[()*()]d [()d ]*()()*[()d ]t

t

t

f f f f t f t f τττττττ-∞

-∞

-∞

==?

?

?

6) f 1(t –t 1)* f 2(t –t 2) = f 1(t –t 1 –t 2)* f 2(t) = f 1(t)* f 2(t –t 1 –t 2) = f (t –t 1 –t 2) 7) 两个因果信号的卷积,其积分限是从0到t 。 8)系统全响应的求解方法过程归纳如下:

a.根据系统建立微分方程;

b.由特征根求系统的零输入响应)(t y zi ;

c.求冲激响应)(t h ;

d.求系统的零状态响应)()()(t h t f t y zs *=;

e.求系统的全响应

)()()(t y t y t y zs zi +=。

重难点10.周期信号的傅里叶级数

任一满足狄利克雷条件的周期信号()f t (1T 为其周期)可展开为傅里叶级数。 (1)三角函数形式的傅里叶级数 0111

()[cos()sin()]n n n f t a a n t b n t ωω∞

==+

+∑ 式中11

2T π

ω=

,n 为正整数。 直流分量01

011()t T t a f t dt T +=? 余弦分量的幅度01

011

2()cos()t T n t a f t n t dt T ω+=

? 正弦分量的幅度01

112()sin()t T n t b f t n t dt T ω+=? 三角函数形式的傅里叶级数的另一种形式为01

1

()cos()n

n

n f t a A n t ω?∞

==+

+∑

(2)指数形式的傅里叶级数 1()jn t

n

n f t F e

ω∞

=-∞

=

∑ 式中,n 为从-∞到+∞的整数。

复数频谱01101

1()t T jn t

n t F f t e dt T ω+-=

? 利用周期信号的对称性可以简化傅里叶级数中系数的计算。从而可知周期信号所包含的频率成分。

有些周期信号的对称性是隐藏的,删除直流分量后就可以显示其对称性。 ①实偶函数的傅里叶级数中不包含正弦项,只可能包含直流项和余弦项。

()()f t f t =-,纵轴对称(偶函数)

00

240()cos T

t n n t b a f t n tdt T +==Ω?, ②实奇数的傅里叶级数中不包含余弦项和直流项,只可能包含正弦项。

()()f t f t =--,原点对称(奇函数)

00

240()sin T

t n n t a b f t n tdt T +==Ω?, ()()2

T f t f t =+,半周重叠(偶谐函数) 无奇次谐波,只有直流和偶次谐波 ③实奇谐函数的傅里叶级数中只可能包含基波和奇次谐波的正弦、余弦项,而不包含偶次谐波项。

()()2

T f t f t -=+,半周镜像(奇谐函数) 无偶次谐波,只有奇次谐波分量 重难点11.从对周期矩形脉冲信号的分析可知:

(1) 信号的持续时间与频带宽度成反比;

(2) 周期T 越大,谱线越密,离散频谱将变成连续频谱;

(3) 周期信号频谱的三大特点:离散性、谐波性、收敛性。

重难点12.傅里叶变换 傅里叶变换定义为 正变换()[()]()j t F f f t f t e dt ωω∞

--∞

==

?

逆变换1

1

()[()]()2j t f t f F F e d ωωωωπ

--∞

==

?

频谱密度函数()F ω一般是复函数,可以写作 ()

()()j F F e

?ωωω=

其中()F ω是()F ω的模,它代表信号中个频谱分量的相对大小,是ω的偶函数。()?ω是()F ω的相位函数,它表示信号中各频率分量之间的相位关系,是ω的奇函数。 常用函数 F 变换对: δ(t ) 1 1 2πδ(ω)

u (t ) 1

()j πδωω

+

e -αt

u (t )

1

j ωα

+

g τ(t ) 2

Sa ωττ??

???

sgn (t )

2j ω

e –α|t |

22

αω+

2()

cos [()()]sin [()()]

c j t c c c c c c c e t t j ωπδωωωπδωωδωωωπδωωδωω?-?++-?+--

重难点13.傅里叶变换的基本性质 1) 线性特性

1212()()()()af t bf t aF j bF j ωω+?+

2) 对称特性 ()2()F jt f πω?-

3) 展缩特性

1()()f at F j a a

ω

←?

→ 4) 时移特性

0-j t 0()()f t t F j e ωω-←→?

5) 频移特性 0j 0()[()]t

f t e F j ωωω?←→-

6) 时域卷积特性

1212()()()()f t f t F j F j ωω*←→?

7) 频域卷积特性 12121

()()[()()]2f t f t F j F j ωωπ

?←→

* 8) 时域微分特性 ()()n n

n d f j F j dt

ωω←→?

9) 积分特性

1

()()(0)()t

f d F j F j ττωπδωω

-∞

←→

+?

10).频域微分特性 ()

()n n

n

n

dF j t f t j d ωω←→?

11)奇偶虚实性

若()()()F R jX ωωω=+,则

①()f t 是实偶函数()()f R ωω=,即()f ω为ω的实偶函数。 ②()f t 是实奇函数()()f jX ωω=,即()f ω为ω的虚奇函数。 重难点14.周期信号的傅里叶变换

周期信号()f t 的傅里叶变换是由一些冲激函数组成的,这些冲激位于信号的谐频

11(0,,2,)ωω±±处,每个冲激的强度等于()f t 的傅里叶级数的相应系数n F 的2π倍。即

1

[()]2()n

n F f t F n π

δωω∞

=-∞

=-∑

重难点15.冲激抽样信号的频谱

冲激抽样信号()s f t 的频谱为1

()()s s

n s

f F n T ωωω∞

=-∞

=

-∑

其中s T 为抽样周期,()f ω为被抽样信号()f t 的频谱。上式表明,信号在时域被冲激序列抽样后,它的频谱()s F ω是连续信号频谱()f ω以抽样频谱s ω为周期等幅地重复。

重难点16.对于线性非时变系统,若输入为非周期信号,系统的零状态响可用傅里叶变换求得。其方法为:

(1) 求激励f (t )的傅里叶变换F (j ω)。 (2) 求频域系统函数H (j ω)。

(3) 求零状态响应y zs (t )的傅里叶变换Y zs (j ω),即Y zs (j ω)= H (j ω) F (j ω)。 (4) 求零状态响应的时域解,即y zs (t )= F -1

[Y zs (j ω)]

重难点17.对于线性非时变稳定系统,若输入为正弦信号)cos()(0t A t f ω=,则稳态响应为

)

cos()()(000?ωω+=t A j H t y

其中,

)()(00?ωωj e j H j H =为频域系统函数。

重难点18.对于线性非时变系统,若输入为非正弦的周期信号,则系统的稳态响应的频谱为

()()*()[()*e

]()e jn t

jn t T n n n n y t h t f t F h t F H jn ∞

ΩΩ=-∞

=-∞

==

=

Ω∑

其中,

n F 是输入信号的频谱,即)(t f 的指数傅里叶级数的复系统。)(Ωjn H 是系统函数,Ω为基

波。n Y 是输出信号的频谱。时间响应为

∑∞

-∞

=Ω=

n t

jn n

e

Y t y )(

重难点19.在时域中,无失真传输的条件是 )()(0t t f K t y -=

在频域中,无失真传输系统的特性为 0

)(t j e K j H ωω-=

20.理想滤波器是指可使通带之内的输入信号的所有频率分量以相同的增益和延时完全通过,且完全阻止通带之外的输入信号的所有频率分量的滤波器。理想滤波器是非因果性的,物理上不可实现的。

重难点21.理想低通滤波器的阶跃响应的上升时间与系统的截止频率(带宽)成反比。

重难点22.时域取样定理

注意:为恢复原信号,必须满足两个条件:(1)f (t)必须是带限信号;(2)取样频率不能太低,必须f s ≥2f m ,或者说,取样间隔不能太大,必须T s ≤1/(2f m);否则将发生混叠。

通常把最低允许的取样频率f s=2f m 称为奈奎斯特(Nyquist)频率; 把最大允许的取样间隔T s=1/(2f m)称为奈奎斯特间隔。

重难点23.单边拉氏变换的定义为

?

∞--

=0)()(dt

e t

f s F t s

)(21

)(>=

?∞+∞

-t ds e s F j t f j j t s σσ

π

积分下限定义为-=0t 。因此,单位冲激函数1)(?t δ,求解微分方程时,初始条件取为-=0t 。

重难点24.拉普拉斯变换收敛域:

使得拉氏变换存在的S 平面上σ的取值范围称为拉氏变换的收敛域。)(t f 是有限长时,收敛域整个S 平面;)(t f 是右边信号时,收敛域0σσ>的右边区域;)(t f 是左边信号时,收敛域0σσ<的左边区域;)(t f 是双边信号时,收敛域是S 平面上一条带状区域。要说明的是,我们讨论单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域。

单边拉氏变换,只要σ取得足够大总是满足绝对可积条件,因此一般不写收敛域。

重难点25.拉普拉斯正变换求解:

常用信号的单边拉氏变换

1() L

t e u t s αα-←?→

+ () 1 L t δ←?

→ ()()L

n n t s δ←?→ 1u()L t e t s αα←?→- 1() s L u t ←?→ 21()s

L

tu t ←?→ 0220cos u()L

s t t s ωω←?→

+ 00

22

0sin ()L

tu t s ωωω←?→+ 重难点26.拉普拉斯变换的性质

01[()]()0,Re[]s

L f at F a s a a a

σ=

>>(1)尺度变换 000[()()]()st L f t t t t e F s ε---=(2)时移性质

[()]()

t L e f t F s αα-=+(3)频域平移性质

()

4[

]()(0)df t L sf s f dt -=-()时域微分性质 0()

[()]t F s L f t dt s -

=?(5)时域积分性质

[]()()L f t F s =若,则()1

(0)()()d t f F s L f ττs s ---∞??=

+????

? (6)时域卷积定理 f 1(t)*f 2(t) ←→ F 1(s)F 2

(s)

(7)周期信号,只要求出第一周期的拉氏变换1()F s ,1()

()1sT

F s F s e -=-

频域微分性: d ()

()()d F s t f t s

-←→

d ()

()()d n n

n

F s t f t s -←→

频域积分性: ()

()s f t F d t

ηη∞←→?

初值定理:0(0)lim ()lim ()t s f f t sF s →+

→∞

+==

终值定理

若f (t )当t →∞时存在,并且 f (t ) ← → F (s) , Re[s]>σ0, σ0<0,则 0

()lim ()s f sF s →∞=

拉氏变换的性质及应用。

一般规律:有t 相乘时,用频域微分性质。 有实指数t

e α相乘时,用频移性质。 分段直线组成的波形,用时域微分性质。

周期信号,只要求出第一周期的拉氏变换1()F s ,1()

()1sT

F s F s e -=

-

由于拉氏变换均指单边拉氏变换,对于非因果信号,在求其拉氏变换时应当作因果信号处理。

重难点27.拉普拉斯反变换求解:(掌握部分分式展开法求解拉普拉斯逆变换的方法)

(1)单实根时 )

(t Ke a s K

t a ε-?+

(2)二重根时

2

()()

t K

Kte t s αεα-?+ 重难点28.微分方程的拉普拉斯变换分析:

当线性时不变系统用线性常系数微分方程描述时,可对方程取拉氏变换,并代入初始条件,从而将时域方程转化为S 域代数方程,求出响应的象函数,再对其求反变换得到系统的响应。

重难点29.动态电路的S 域模型:

由时域电路模型能正确画出S 域电路模型,是用拉普拉斯变换分析电路的基础。 引入复频域阻抗后,电路定律的复频域形式与其相量形式相似。

重难点30.系统的零状态响应为 )()()(s F s H s Y zs =

其中,)()(s H t h ?,)(s H 是冲激响应的象函数,称为系统函数。系统函数定义为 )()

()(s F s Y s H zs =

重难点31.系统函数的定义 重难点32.系统函数的零、极点分布图

重难点33.系统函数H (·)与时域响应h (·) :LTI 连续因果系统的h (t)的函数形式由H (s)的极点确定。

① H(s)在左半平面的极点无论一阶极点或重极点,它们对应的时域函数都是按指数规律衰减的。 结论:极点全部在左半开平面的系统(因果)是稳定的系统。

② H(s)在虚轴上的一阶极点对应的时域函数是幅度不随时间变化的阶跃函数或正弦函数。 H(s)在虚轴上的二阶极点或二阶以上极点对应的时域函数随时间的增长而增大。 ③ H (s)在虚轴上的高阶极点或右半平面上的极点,其所对应的响应函数都是递增的。

重难点34.系统的稳定性:

稳定系统 H(s)的极点都在左半开平面,

边界稳定系统 H(s)的极点都在虚轴上,且为一阶, 不稳定系统 H(s)的极点都在右半开平面或虚轴上二阶以上。

H (s)=1110

1

110

()()m m m m n n n n b s b s b s b N s D s a s a s a s a ----++++=++++ 判断准则:1)多项式的全部系数i a 符号相同为正数;2)无缺项;

3)对三阶系统,32

3210()D s a s a s a s a =+++的各项系数全为正,且满足1203a a a a >

重难点35、常用的典型信号 1.单位抽样序列)(n δ

1,0()0,

n n n δ=?=?

≠?

?

?

?

?

?

?

t

()

h t 0

i p 位于左半平面

?

?

t

()

h t 0

j ω

σ

t

()

h t 0

12cos()

t k e t αωθ+()

h t 0

t

()

h t t

P i 位于右半平面

减幅的自由振荡

P 为负实根

P 为正实根

P 位于虚轴上

衰减的指数函数

增长的指数函数

等幅正弦振荡

增幅的自由振荡

)(n δ的延迟形式: 1,

()0,

n m n m n m

δ=?-=?

≠?

推出一般式: ∑∞

-∞

=-=k k n k x n x )()()(δ

2.单位阶跃序列()n ε

1,0()0,

n n n ε≥?=?

? 与)(n δ的关系: ()()(1)n n n δεε=-- ? 延迟的表达式()n m ε-。 3. 矩形序列)(n R N -----有限长序列

1,

01()0,

N n N R n n

≤≤-?=?

?其他 ()()()N R n n n N εε=--

4. 实指数序列----实指数序列)(n u a n

重难点36、离散系统的时域模拟

它的基本单元是延时器,乘法器,相加器。 重难点37、系统的零输入响应

若其特征根均为单根,则其零输入响应为:1

()n

k

x xi i i y k c λ==∑

C 由初始状态定(相当于0-的条件) 重难点38、卷积和的定义

12()()()k f n f k f n k ∞

=-∞

=

-∑

=f 1(n)*f 2(n)

卷积和的性质

(1) 交换律:()()()()1221f n f n f n f n *=*

(2) 分配律:()()()()()()123123f n f n f n f n f n f n **=**???????? (3) 结合律.:()()()()()()()1231213f n f n f n f n f n f n f n *+=*+*????

f (n)*δ(n) = f (n) , f (n)*δ(n – n 0) = f (n – n 0) f (n)*ε(n) =

()n

k f k =-∞

f 1(n – n 1)* f 2(n – n 2) = f 1(n – n 1 – n 2)* f 2(n)

卷和的计算:不进位乘法求卷积、利用列表法计算、卷积的图解法 重难点39、离散系统的零状态响应

离散系统的零状态响应等于系统激励与系统单位序列响应的卷积和。即

()()*()zs y n f n h n =

重难点40.z 变换定义

()()n n F z f n z ∞

-=-∞=

称为序列f (k)的双边z 变换

()()n n F z f n z ∞

-==∑ 称为序列f (k)的单边z 变换

重难点41.收敛域

因果序列的收敛域是半径为|a|的圆外部分。 重难点42.熟悉基本序列的Z 变换。

δ(k) ←→ 1 , ?z ?>0

ε(k) ←→

1z

z -, ?z ?>1 ()||||k

z a k z a z a

ε?>-

重难点43.z 变换的性质 1)移位特性

双边z 变换的移位:()n

z F z -?f(k -n)

单边z 变换的移位: f (k-2) ←→ z -2F (z) + f (-2) + f (-1)z -1

2)序列乘a k (z 域尺度变换) a k

f (k) ←→ F (z/a)

3)卷积定理 f 1(k)*f 2(k) ←→ F 1(z)F 2(z)

重难点44.掌握部分分式法求逆Z 变换。

()1,(),()1()

k z z z k k a k z z z a z a

F z z

z

δεε??

?---由和反变换的基本变换式的主要形式故先把展成部分分式,然后再乘以

重难点45.掌握离散系统Z 域的分析方法。 1)差分方程的变换解

()()()()()zs y n h n f n f n h n =*=*

()()()zs Y z H z F z =?

1()()[()]()[()]zs h n y n Z H z H z Z h n -===和

2)系统的z 域框图 3)稳定性

H(z)按其极点在z 平面上的位置可分为:在单位圆内、在单位圆上和在单位圆外三类。 ① 极点全部在单位圆内的系统(因果)是稳定系统。

② H(z)在单位圆上是一阶极点,单位圆外无极点,系统是临界稳定系统。

③ H(z)在单位圆上的高阶极点或单位圆外的极点,系统是不稳定系统。

高中物理 恒定电流知识点总结

第14章:恒定电流 一、知识网络 二、重、难点知识归纳 (五)、滑动变阻器的使用 1、滑动变阻器的作用 (1)保护电表不受损坏; (2)改变电流电压值,多测量几次,求平均值,减少误差。 2、两种供电电路(“滑动变阻器”接法) 电流:定义、微观式:I=q/t ,I=nqSv 电压:定义、计算式:U=W/q ,U=IR 。导体产生电流的条件:导体两端存在电压 电阻:定义、计算式:R=U/I ,R=ρl/s 。金属导体电阻值随温度升高而增大 半导体:热敏、光敏、掺杂效应 超导:注意其转变温度 电动势:由电源本身决定,与外电路无关,是描述电源内部非静电力做功将其它形 式的能转化为电能的物理量 实验 恒定电流 部分电路:I=U/R 闭合电路:I=E/(R+r),或E=U 内+U 外=IR+Ir 适用条件:用于金属和电解液导电 规律 电阻定律:R=ρl/s 基本 概念 欧姆定律: 公式:W=qU=Iut 纯电阻电路:电功等于电热 非纯电阻电路:电功大于电热,电能还转化为其它形式的能 电功: 用电器总功率:P=UI ,对纯电阻电路:P=UI=I 2R=U 2/R 电源总功率:P 总=EI 电源输出功率:P 出=UI 电源损失功率:P 损=I 2r 电源的效率:%100%100?=?= E U P P 总 出 η, 对于纯电阻电路,效率为100% 电功率 : 伏安法测电阻:R=U/I ,注意电阻的内、外接法对结果的影响 描绘小灯泡的伏安特性 测定金属的电阻率 :ρ=R s / l 测定电源电动势和内阻 电表的改装: 多用电表测黑箱内电学元件

(1)、限流式: a 、最高电压(滑动变阻器的接入电阻为零):E 。 b 、最低电压(滑动变阻器全部接入电路): 。 c 、限流式的电压调节范围: 。 (2)、分压式: a 、最高电压(滑动变阻器的滑动头在 b 端):E 。 b 、最低电压(滑动变阻器的滑动头在a 端):0。 c 、分压式的电压调节范围: 。 3、分压式和限流式的选择方法: (1)限流式接法简单、且可省一个耗电支路,所以一般情况优先考虑限流式接法。 (2)但以下情况必须选择分压式: a 、负载电阻R X 比变阻器电阻R L 大很多( R X >2R L ) b 、要求电压能从零开始调节时; c 、若限流接法电流仍太大时。 三、典型例题 例1、某电阻两端电压为16 V ,在30 s 内通过电阻横截面的电量为48 C ,此电阻为多大?30 s 内有多少个电子通过它的横截面? 解析:由题意知U =16 V ,t =30 s ,q =48 C , 电阻中的电流I = t q =1.6 A 据欧姆定律I =R U 得,R =I U =10 Ω n =e q =3.0×1020个 故此电阻为10Ω,30 s 内有3.0×1020 个电子通过它的横截面。 点拨:此题是一个基础计算题,使用欧姆定律计算时,要注意I 、U 、R 的同一性(对同一个导体)。 x L x R U E R R = +,x x L R E E R R ??? ?+?? []0,E

计算机操作系统知识点总结

计算机操作系统知识点总结 导读:我根据大家的需要整理了一份关于《计算机操作系统知识点总结》的内容,具体内容:计算机操作系统考试是让很多同学都觉得头疼的事情,我们要怎么复习呢?下面由我为大家搜集整理了计算机操作系统的知识点总结,希望对大家有帮助!:第一章1、操作系统的定义、目标... 计算机操作系统考试是让很多同学都觉得头疼的事情,我们要怎么复习呢?下面由我为大家搜集整理了计算机操作系统的知识点总结,希望对大家有帮助! :第一章 1、操作系统的定义、目标、作用 操作系统是配置在计算机硬件上的第一层软件,是对硬件系统的首次扩充。设计现代OS的主要目标是:方便性,有效性,可扩充性和开放性. OS的作用可表现为: a. OS作为用户与计算机硬件系统之间的接口;(一般用户的观点) b. OS作为计算机系统资源的管理者;(资源管理的观点) c. OS实现了对计算机资源的抽象. 2、脱机输入输出方式和SPOOLing系统(假脱机或联机输入输出方式)的联系和区别 脱机输入输出技术(Off-Line I/O)是为了解决人机矛盾及CPU的高速性和I/O设备低速性间的矛盾而提出的.它减少了CPU的空闲等待时间,提高了I/O速度.

由于程序和数据的输入和输出都是在外围机的控制下完成的,或者说,它们是在脱离主机的情况下进行的,故称为脱机输入输出方式;反之,在主机的直接控制下进行输入输出的方式称为联机(SPOOLing)输入输出方式 假脱机输入输出技术也提高了I/O的速度,同时还将独占设备改造为共享设备,实现了虚拟设备功能。 3、多道批处理系统需要解决的问题 处理机管理问题、内存管理问题、I/O设备管理问题、文件管理问题、作业管理问题 4、OS具有哪几个基本特征?它的最基本特征是什么? a. 并发性(Concurrence),共享性(Sharing),虚拟性(Virtual),异步性(Asynchronism). b. 其中最基本特征是并发和共享. c. 并发特征是操作系统最重要的特征,其它三个特征都是以并发特征为前提的。 5、并行和并发 并行性和并发性是既相似又有区别的两个概念,并行性是指两个或多个事件在同一时刻发生;而并发性是指两个或多少个事件在同一时间间隔内发生。 6、操作系统的主要功能,各主要功能下的扩充功能 a. 处理机管理功能: 进程控制,进程同步,进程通信和调度. b. 存储管理功能:

信号与系统重要知识总结

基本概念 一维信号:信号是一个独立变量的函数时,称为一维信号。 多维信号:如果信号是n 个独立变量的函数,就称为n 维信号。 归一化能量或功率:信号(电压或电流)在单位电阻上的能量或功率。 能量信号:若信号的能量有界,则称其为能量有限信号,简称为能量信号。 功率信号:若信号的功率有界,则称其为功率有限信号,简称为功率信号。 门函数: ()g t τ常称为门函数,其宽度为τ,幅度为1 因果性:响应(零状态响应)不出现于激励之前的系统称为因果系统。 因果信号:把t=0时接入的信号(即在t<0时,f(t)=0的信号)称为因果信号,或有始信号。 卷积公式: 1212()()*()()()f t f t f t f f t d τττ∞ -∞==-? 梳妆函数: 相关函数:又称为相关积分。 意义:衡量某信号与另一延时信号之间的相似程度。延时为0时相似程度是最好的。 1212()()()R f t f t dt ττ∞-∞==-? 前向差分: ()(1)()f k f k f k ?=+- 后向差分: ()()(1)f k f k f k ?=-- 单位序列: ()k δ 单位阶跃序列: ()k ε 基本信号: 时间域:连续时间系统以冲激函数为基本信号,离散时间系统以单位序列为基本信号。任意输入信号可分解为一系列冲积函数(连续)或单位序列(离散)的加权和。 频率域:连续时间系统以正弦函数或虚指数函数jwt e 为基本信号,将任意连续时间信号表示为一系列不同频率的正弦信号或虚指数信号之和(对于周期信号)或积分(对于非周期信号)。 DTFT :离散时间信号,以虚指数函数2j kn N e π或j k e θ为基本信号,将任意离散时间信号表示为N 个不同频率的虚指数之和(对于周期信号)或积分(对于非周期信号)。 系统响应:

最新电流和电路知识点总结经典

最新电流和电路知识点总结经典 一、电流和电路选择题 1.如图所示是一个能吹出冷热风的电吹风简化电路图,图中A是吹风机,B是电热丝.下列分析正确的是() A. 只闭合开关S2,电吹风吹出热风 B. 只闭合开关S1,电吹风吹出冷风 C. 同时闭合开关S1、S2,电吹风吹出冷风 D. 同时闭合开关S1、S2,电吹风吹出热风 【答案】 D 【解析】【解答】开关S2在干路上,S1在B所在的支路. A、只闭合开关S2时,电热丝所在支路的开关是断开的,电热丝不工作,只有吹风机接入电路,吹出冷风,A不符合题意; B、此时干路开关S2是断开的,电路没有接通,所有用电器都不工作,B不符合题意; C、同时闭合开关S1、S2时,电热丝与吹风机并联接入电路,同时工作,吹出热风,C不符合题意,D符合题意. 故答案为:D. 【分析】根据电路的工作状态,电路并联,且电热丝有开关,并联时同时工作. 2.在图所示的实物电路中,当开关闭合时,甲电流表的示数为0.5 A,乙电流表的示数为0.2 A,则下列判断正确的是() A. 通过灯L1的电流为0.5 A B. 通过灯L1的电流为0.3 A C. 通过灯L2的电流为0.7 A D. 通过灯L2的电流为0.3 A 【答案】 B 【解析】【解答】由图示可知,两个灯泡是并联的,电流表甲测干路的电流为0.5A,电流表乙测通过灯泡L2的电流为0.2A,根据并联电路中电流的特点可知,通过灯泡L1的电流为0.5A-0.2A=0.3A,B符合题意. 故答案为:B。

【分析】首先判断电流表所测量的位置,根据并联电路中的干路电流和各支路电流的关系分析各支路电流。 3.汽车的手动刹车器(简称“手刹”)在拉起时处于刹车制动状态,放下时处于解除刹车状态。如果手刹处在拉爆状态,汽车也能运动,但时间长了会损坏刹车片,有一款汽车设计了一个提醒司机的电路;汽车启动,开关S1闭合,手刹拉起,开关S2闭合,仪表盘上的指示灯会亮;汽车不启动,开关S1断开,指示灯熄灭,或者放下手刹,开关S2断开,指示灯也熄灭,下列电路图符合上述设计要求的是() A. B. C. D. 【答案】 A 【解析】【解答】根据用电器的工作要求,当开关都闭合时用电器才能工作,所以电路是串联电路,A符合题意。 故答案为:A. 【分析】串联电路的特点是各用电器互相影响。 4.有一个看不见内部情况的小盒(如图所示),盒上有两只灯泡,由一个开关控制,闭合开关两灯都亮,断开开关两灯都灭;拧下其中任一灯泡,另一灯都亮。选项所示的图中符合要求的电路图是() A. B.

操作系统知识点整理

第一章操作系统引论 操作系统功能: 1. 资源管理:协调、管理计算机的软、硬件资源,提高其利用率。 2. 用户角度:为用户提供使用计算机的环境和服务。 操作系统特征:1.并发性:指两个或多个事件在同一时间间隔内发生。 2.共享性:资源可供内存中多个并发执行的进程(线程)共同使用 3.虚拟性:是指通过某种技术把一个物理实体变为若干个逻辑上的对应物 在操作系统中,虚拟的实现主要是通过分时使用的方法。 4.异步性:进程是以人们不可预知的速度向前推进,此即进程的异步性 客户/服务器模式的优点: 1.提高了系统的灵活性和可扩充性 2.提高了OS的可靠性 3.可运行于分布式系统中 微内核的基本功能: 进程管理、进程间通信、存储器管理、低级I/O功能。 第二章进程 程序和进程区别:程序是静止的,进程是动态的,进程包括程序和程序处理的对象 程序顺序执行:顺序性,封闭性,可再现性 程序并发执行:间断性,无封闭性,可再现性 进程:1.进程是可并发执行的程序的一次执行过程; 2.是系统进行资源分配和调度的一个独立的基本单位和实体; 3.是一个动态的概念。 进程的特征: 1.动态性: 进程是程序的一次执行过程具有生命期; 它可以由系统创建并独立地执行,直至完成而被撤消 2.并发性; 3.独立性; 4.异步性; 进程的基本状态: 1.执行状态; 2.就绪状态; 3.阻塞状态; 进程控制块PCB:记录和描述进程的动态特性,描述进程的执行情况和状态变化。 是进程存在的唯一标识。 进程运行状态: 1.系统态(核心态,管态)具有较高的访问权,可访问核心模块。 2.用户态(目态)限制访问权 进程间的约束关系: 1.互斥关系 进程之间由于竞争使用共享资源而产生的相互约束的关系。

奥本海姆 信号与系统 第一章知识点总结

第一章 信号与系统 一.连续时间和离散时间信号 1.两种基本类型的信号: 连续时间信号和离散时间信号。在前一种情况下,自变量是连续可变的,因此信号在自变量的连续值上都有定义;而后者是仅仅定义在离散时刻点上,也就是自变量仅取在一组离散值上。为了区分,我们用t 表示连续时间变量。而用n 表示离散时间变量,连续时间变量用圆括号()?把自变量括在里面,而离散时间信号则用方括号[]?来表示。 2.信号能量与功率 连续时间信号在[]21t t ,区间的能量定义为:E=dt t x t t 2 2 1 )(? 连续时间信号在[]21,t t 区间的平均功率定义为:P=dt t x t t t t 21 221)(1 ?- 离散时间信号在[]21,n n 区间的能量定义为:E=∑=2 1 2 ][n n n n x 离散时间信号在[]21,n n 区间的平均功率定义为:P=∑=+-2 1 2 12)(11n n n t x n n 在无限区间上也可以定义信号的总能量: 连续时间情况下:??+∞ ∞ --∞→? ∞==dt t x E T T T 2 2 x(t)dt )(lim 离散时间情况下:∑ ∑ +∞ -∞ =+-=∞ →? = =n N N n N n x n x E 2 2 ][][lim 在无限区间内的平均功率可定义为: ? -∞→?∞=T T T dt t x T P 2 )(21lim ∑+-=∞→? ∞+=N N n N n x N P 2 ][121lim 二.自变量的变换 1.时移变换 x(t)→x(t-0t ) 当0t >0时,信号向右平移0t ;当0t <0时,信号向左平移0t

信号与系统知识点整理

第一章 1.什么是信号? 是信息的载体,即信息的表现形式。通过信号传递和处理信息,传达某种物理现象(事件)特性的一个函数。 2.什么是系统? 系统是由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。3.信号作用于系统产生什么反应? 系统依赖于信号来表现,而系统对信号有选择做出的反应。 4.通常把信号分为五种: ?连续信号与离散信号 ?偶信号和奇信号 ?周期信号与非周期信号 ?确定信号与随机信号 ?能量信号与功率信号 5.连续信号:在所有的时刻或位置都有定义的信号。 6.离散信号:只在某些离散的时刻或位置才有定义的信号。 通常考虑自变量取等间隔的离散值的情况。 7.确定信号:任何时候都有确定值的信号 。 8.随机信号:出现之前具有不确定性的信号。 可以看作若干信号的集合,信号集中每一个信号 出现的可能性(概率)是相对确定的,但何时出 现及出现的状态是不确定的。 9.能量信号的平均功率为零,功率信号的能量为无穷大。 因此信号只能在能量信号与功率信号间取其一。 10.自变量线性变换的顺序:先时间平移,后时间变换做缩放. 注意:对离散信号做自变量线性变换会产生信息的丢失! 11.系统对阶跃输入信号的响应反映了系统对突然变化的输入信号的快速响应能 力。(开关效应) 12.单位冲激信号的物理图景: 持续时间极短、幅度极大的实际信号的数学近似。 对于储能状态为零的系统,系统在单位冲激信号作 用下产生的零状态响应,可揭示系统的有关特性。

例:测试电路的瞬态响应。 13.冲激偶:即单位冲激信号的一阶导数,包含一对冲激信号, 一个位于t=0-处,强度正无穷大; 另一个位于t=0+处,强度负无穷大。 要求:冲激偶作为对时间积分的被积函数中一个因子, 其他因子在冲激偶出现处存在时间的连续导数. 14.斜升信号: 单位阶跃信号对时间的积分即为单位斜率的斜升信号。 15.系统具有六个方面的特性: 1、稳定性 2、记忆性 3、因果性 4、可逆性 5、时变性与非时变性 6、线性性 16.对于任意有界的输入都只产生有界的输出的系统,称为有界输入有界输出(BIBO )意义下的稳定系统。 17.记忆系统:系统的输出取决于过去或将来的输入。 18.非记忆系统:系统的输出只取决于现在的输入有关,而与现时刻以外的输入无关。 19.因果系统:输出只取决于现在或过去的输入信号,而与未来的输入无关。 20.非因果系统:输出与未来的输入信号相关联。 21.系统的因果性决定了系统的实时性:因果系统可以实时方式工作,而非因果系统不能以实时方式工作. 22.可逆系统:可以从输出信号复原输入信号的系统。 23.不可逆系统:对两个或者两个以上不同的输入信号能产生相同的输出的系统。 24.系统的时变性: 如果一个系统当输入信号仅发生时移时,输出信号也只产生同样的时移,除此之外,输出响应无任何其他变化,则称该系统为非时变系统;即非时变系统的特性不随时间而改变,否则称其为时变系统。 25.检验一个系统时不变性的步骤: 1. 令输入为 ,根据系统的描述,确定此时的输出 。 1()x t 1()y t

电流和电路知识点总结

电流和电路 、电荷 1、物体有了吸引轻小物体的性质,我们就说物体带了电荷;换句话说,带电体具有吸引轻小物体的 性质。 2、用摩擦的方法使物体带电叫摩擦起电; 3、摩擦起电的实质:摩擦起电并不是创生了电,而是电子从一个物体转移到了另一个物体,失去电 子的带正电;得到电子的带负电。 二、两种电荷: 1、把用丝绸摩擦过的玻璃棒带的电荷叫正电荷:电子从玻璃棒转移到丝绸。 2、把用毛皮摩擦过的橡胶棒带的电荷叫负电荷:电子从毛皮转移到橡胶棒。 3、基本性质:同种电荷相互排斥,异种电荷相互吸引; 4、带电体排斥带同种电荷的物体;带电体吸引带异种电荷的物体和轻小物体。 例:1、A带正电,A排斥B , B肯定带正电; 2、A带正电,A吸引B , B可能带负电也可能不带电。(A、B都是轻小物体) 三、验电器 1、用途:用来检验物体是否带电;从验电器张角的大小,可以粗略的判断带电体所带电荷的多少。 2、原理:利用同种电荷相互排斥; 四、电荷量(电荷)电荷的多少叫电荷量,简称电荷;单位:库仑(C)简称库; 五、原子的结构质子(带正电) 「原子核< 原』I中子(不带电) 电子(带负电) 原子核所带的正电荷与核外所有电子总共带的负电荷数在数量上相等,整个院子呈中性,原子对外不显带电的性质。 六、元电荷 1、最小的电荷叫做元电荷,用符号e表示,e=1.6*10-19C。 2、电子电荷量的大小是最小的。 七、导体、绝缘体 1、善于导电的物体叫导体:如:金属、人体、大地、石墨、酸碱盐溶液; 2、不善于导电的物体叫绝缘体.如:橡胶、玻璃、塑料、陶瓷、油、空气等; 3、导体和绝缘体在一定条件下可以相互转换; 例如:1、干木头(绝缘体)、湿木头(导体)2、玻璃通常是绝缘体、加热到红炽状态(导体)。

操作系统知识点总结

操作系统是一组控制和管理计算机硬件和软件资源,合理地对各类作业进行调度,以及方便用户使用的程序的集合。 虚拟机:在裸机的基础上,每增加一层新的操作系统的软件,就变成了功能更为强大的虚拟机或虚机器。 操作系统的目标:1. 方便性2. 有效性3. 可扩充性4. 开放性 操作系统的作用:OS作为用户与计算机硬件系统之间的接口;OS作为计算机系统资源的管理者;OS实现了对计算机资源的抽象(作扩充机器)。 操作系统的特征:并发性;共享性;虚拟性;异步性 推动操作系统发展的主要动力:不断提高计算机资源利用率;方便用户;器件的不断更新换代;计算机体系结构的不断发展。 人工操作方式的特点:用户独占全机;CPU等待人工操作;独占性;串行性。缺点:计算机的有效机时严重浪费;效率低 脱机I/O方式的主要优点:减少了CPU的空闲时间;提高I/O速度。 单道批处理系统的特征:自动性; 顺序性;单道性 多道批处理系统原理:用户所提交的作业都先存放在外存上并排成一个队列,称为“后备队列”;然后,由作业调度程序按一定的算法从后备队列中选择若干个作业调入存,使它们共享CPU和系统中的各种资源。 多道批处理系统的优缺点资源利用率高;系统吞吐量大;可提高存和I/O设备利用率;平均周转时间长;无交互能力 多道批处理系统需要解决的问题(1)处理机管理问题(2)存管理问题(3)I/O设备管理问题4)文件管理问题(5)作业管理问题 分时系统:在一台主机上连接了多个带有显示器和键盘的终端,同时允许多个用户通过自己的终端,以交互方式使用计算机,共享主机中的资源。 时间片:将CPU的时间划分成若干个片段,称为时间片,操作系统以时间片为单位,轮流为每个终端用户服务 实时系统与分时系统特征的比较:多路性;独立性;及时性;交互性;可靠性 操作系统的特征:并发性;共享性;虚拟性;异步性 操作系统的主要功能:处理机管理;存储器管理;设备管理;文件管理;作业管理 对处理机管理,可归结为对进程的管理:进程控制(创建,撤消,状态转换);进程同步(互斥,同步);进程通信;进程调度(作业调度,进程调度)。 存储器管理功能:存分配(最基本);存保护;地址映射;存扩充 设备管理功能:设备分配;设备处理(相当于启动);缓冲管理;虚拟设备 文件管理功能:文件存储空间管理;目录管理;文件读写管理;文件保护。 用户接口:命令接口;程序接口;图形接口 传统的操作系统结构:无结构OS;模块化OS结构;分层式OS结构 模块化操作系统结构:操作系统是由按其功能划分为若干个具有一定独立性和大小的模块。每个模块具有某个方面的管理功能,规定好模块之间的接口。 微核的基本功能:进程管理-存储器管理-进程通信管理-I/O设备管理 进程的特征:动态性(最基本);并发性;异步性;独立性;结构特征(程序段,数据段,进程控制块PCB) 进程的基本属性:可拥有资源的独立单位;可独立调度和分配的基本单位。 进程控制块的基本组成:进程标识符;处理机的状态;进程调度所需信息;进程控制信息。进程控制一般是由操作系统的核中的原语来实现 临界资源:如打印机、磁带机等一段时间只允许一个进程进行使用的资源。

恒定电流知识点总结

恒定电流知识点总结 一、 知识网络 二、知识归纳 一、部分电路欧姆定律 电功和电功率 (一)部分电路欧姆定律 1.电流 (1)电流的形成:电荷的定向移动就形成电流。形成电流的条件是: ①要有能自由移动的电荷; ②导体两端存在电压。 电流:定义、微观式:I=q/t ,I=nqSv 电压:定义、计算式:U=W/q ,U=IR 。导体产生电流的条件:导体两端存在电压 电阻:定义、计算式:R=U/I ,R=ρl/s 。金属导体电阻值随温度升高而增大 半导体:热敏、光敏、掺杂效应 超导:注意其转变温度 电动势:由电源本身决定,与外电路无关,是描述电源内部非静电力做功将其它形 式的能转化为电能的物理量 实验 恒定电流 部分电路:I=U/R 闭合电路:I=E/(R+r),或E=U 内+U 外=IR+Ir 适用条件:用于金属和电解液导电 规律 电阻定律:R=ρl/s 基本 概念 欧姆定律: 公式:W=qU=Iut 纯电阻电路:电功等于电热 非纯电阻电路:电功大于电热,电能还转化为其它形式的能 电功: 用电器总功率:P=UI ,对纯电阻电路:P=UI=I 2R=U 2/R 电源总功率:P 总=EI 电源输出功率:P 出=UI 电源损失功率:P 损=I 2r 电源的效率:%100%100?=?= E U P P 总 出 η, 对于纯电阻电路,效率为100% 电功率 : 伏安法测电阻:R=U/I ,注意电阻的内、外接法对结果的影响 描绘小灯泡的伏安特性 测定金属的电阻率 :ρ=R s / l 测定电源电动势和内阻 电表的改装: 多用电表测黑箱内电学元件

(2)电流强度:通过导体横截面的电量q跟通过这些电量所用时间t的比值 ①电流强度的定义式为: ②电流强度的微观表达式为: n为导体单位体积的自由电荷数,q是自由电荷电量,v是自由电荷定向移动的速率,S 是导体的横截面积。 (3)电流的方向:物理学中规定正电荷的定向移动方向为电流的方向,与负电荷定向移动方向相反。在外电路中电流由高电势端流向低电势端,在电源部由电源的负极流向正极 2.电阻定律 (1)电阻:导体对电流的阻碍作用就叫电阻,数值上:。 (2)电阻定律:公式:,式中的为材料的电阻率,由导体的材料和温度决定。纯 金属的电阻率随温度的升高而增大,某些半导体材料的电阻率随温度的升高而减小,某些合金的电阻率几乎不随温度的变化而变化。 (3)半导体:导电性能介于导体和绝缘体之间,如锗、硅、砷化镓等。 半导体的特性:光敏特性、热敏特性和掺杂特性,可以分别用于制光敏电阻、热敏电阻及晶体管等。 (4)超导体:有些物体在温度降低到绝对零度附近时。电阻会突然减小到无法测量的程度,这种现象叫超导;发生超导现象的物体叫超导体,材料由正常状态转变为超导状态的温度叫做转变温度T c。 3.部分电路欧姆定律 容:导体中的电流跟它两端的电压成正比,跟它的电阻成反比。 公式: 适用围:金属、电解液导电,但不适用于气体导电。 欧姆定律只适用于纯电阻电路,而不适用于非纯电阻电路。 伏安特性:描述导体的电压随电流怎样变化。若图线为过原点的直线,这样的元件叫线性元件;

操作系统复习题整理

第一章 1.说明分布式系统相对于集中式系统的优点和缺点。从长远的角度看,推动分布式系统发展的主要动力 是什么? 答:相对于集中式系统,分布式系统的优点:1)从经济上,微处理机提供了比大型主机更好的性能价格比;2)从速度上,分布式系统总的计算能力比单个大型主机更强;3)从分布上,具有固定的分布性,一些应用涉及到空间上分散的机器;4)从可靠性上,具有极强的可靠性,如果一个极强崩溃,整个系统还可以继续运行;5)从前景上,分布式操作系统的计算能力可以逐渐有所增加。 分布式系统的缺点:1)软件问题,目前分布式操作系统开发的软件太少;2)通信网络问题,一旦一个系统依赖网络,那么网络的信息丢失或饱和将会抵消我们通过建立分布式系统所获得的大部分优势;3)安全问题,数据的易于共享也容易造成对保密数据的访问。 推动分布式系统发展的主要动力:尽管分布式系统存在一些潜在的不足,但是从长远的角度看,推动分布式系统发展的主要动力是大量个人计算机的存在和人们共同工作于信息共享的需要,这种信息共享必须是以一种方便的形式进行。而不受地理或人员,数据以及机器的物理分布的影响 2.多处理机系统和多计算机系统有什么不同? 答:共享存储器的计算机系统叫多处理机系统,不共享存储器的计算机系统为多计算机系统。它们之间的本质区别是在多处理机系统中,所有CPU共享统一的虚拟地址空间,在多计算机系统中,每个计算机有它自己的存储器。 多处理机系统分为基于总线的和基于交换的。基于总线的多处理机系统包含多个连接到一条公共总线的CPU以及一个存储器模块。基于交换的多处理机系统是把存储器划分为若干个模块,通过纵横式交换器将这些存储器模块连接到CPU上。 多计算机系统分为基于总线的和基于交换的系统。在基于总线的多计算机系统中,每个CPU都与他自身的存储器直接相连,处理器通过快速以太网这样的共享多重访问网络彼此相连。在基于交换的多计算机系统中,处理器之间消息通过互联网进行路由,而不是想基于总线的系统中那样通过广播来发送。 3.真正的分布式操作系统的主要特点是什么? 必须有一个单一的、全局的进程间通信机制。进程管理必须处处相同。文件系统相同。使用相同的系统调用接口。 4.分布式系统的透明性包括哪几个方面,并解释透明性问题对系统和用户的重要性。 答:对于分布式系统而言,透明性是指它呈现给用户或应用程序时,就好像是一个单独是计算机系统。 具体说来,就是隐藏了多个计算机的处理过程,资源的物理分布。 具体类型:

信号与系统_复习知识总结

重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号; 连续信号和离散信号; 周期信号和非周期信号; 能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ① 连续正弦信号一定是周期信号。 ② 两连续周期信号之和不一定是周期信号。 周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()s i n ()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: s i n ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞ -∞ =-=? ? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞ =? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; (0) t <(0)t > ()1t dt δ∞ -∞ =? ()0t δ=(当0t ≠时)

(完整word版)恒定电流知识点总结

恒定电流知识点总结 一、部分电路欧姆定律电功和电功率 (一) 部分电路欧姆定律 1.电流 (1) 电流的形成:电荷的定向移动就形成电流。形成电流的条件是: ①要有能自由移动的电荷;②导体两端存在电压。 (2) 电流强度:通过导体横截面的电量q 跟通过这些电量所用时间t 的比值,叫电流强度。 ①电流强度的定义式为: ②电流强度的微观表达式为: n 为导体单位体积内的自由电荷数,q 是自由电荷电量,v 是自由电荷定向移动的速率,S是导体的横截面积。 (3) 电流的方向:物理学中规定正电荷的定向移动方向为电流的方向,与负电荷定向移动方向相反。在外电路中电流由高电势端流向低电势端, 在电源内部由电源的负极流向正极。 2.电阻定律 (1) 电阻:导体对电流的阻碍作用就叫电阻,数值上: (2) 电阻定律:公式:,式中的为材料的电阻率,由导体的材料和温度决定。 纯金属的电阻率随温度的升高而增大,某些半导体材料的电阻率随温度的升高而减小,某些合金的电阻率几乎不随温度的变化而变化。 (3) 半导体:导电性能介于导体和绝缘体之间,如锗、硅、砷化镓等。 半导体的特性:光敏特性、热敏特性和掺杂特性,可以分别用于制光敏电阻、热敏电阻及晶体管等。 (4) 超导体:有些物体在温度降低到绝对零度附近时。电阻会突然减小到无法测量的程度,这种现象叫超导;发生超导现象的物体叫超导体,材料由正常状态转变为超导状态的温度叫做转变温度T c。 3.部分电路欧姆定律内容:导体中的电流跟它两端的电压成正比,跟它的电阻成反比。 公式: 适用范围:金属、电解液导电,但不适用于气体导电。欧姆定律只适用于纯电阻电路,而不适用于非纯电阻电路。 伏安特性:描述导体的电压随电流怎样变化。若图线为过原点的直线,这样的元件叫线性元件; 若图线为曲线叫非线性元件。 (二) 电功和电功率 1.电功

计算机操作系统知识点总结重点题型答案

计算机操作系统复习资料 1.操作系统的定义 操作系统(Operating System,简称OS)是管理计算机系统的全部硬件资源包括软件资源及数据资源;控制程序运行;改善人机界面;为其它应用软件提供支持等,使计算机系统所有资源最大限度地发挥作用,为用户提供方便的、有效的、友善的服务界面。 操作系统通常是最靠近硬件的一层系统软件,它把硬件裸机改造成为功能完善的一台虚拟机,使得计算机系统的使用和管理更加方便,计算机资源的利用效率更高,上层的应用程序可以获得比硬件提供的功能更多的支持。 操作系统是一个庞大的管理控制程序,大致包括5个方面的管理功能:进程与处理机管理、作业管理、存储管理、设备管理、文件管理。 2.操作系统的作用 1)OS作为用户与计算机硬件系统之间的接口 2)OS作为计算机系统资源的管理者 3)OS实现了对计算机资源的抽象 3.操作系统的基本特征 1)并发 2)共享 3)虚拟 4)异步 4.分时系统的概念 把计算机的系统资源(尤其是CPU时间)进行时间上的分割,每个时间段称为一个时间片,每个用户依次轮流使用时间片,实现多个用户分享同一台主机的操作系统。 5.分时系统要解决的关键问题(2个) 1)及时接收 2)及时处理 6.并发性的概念 并发性是指两个或多个事件在同一事件间隔内发生。在多道程序环境下,并发性是指在一段时间内宏观上有多个程序在同时运行,但在单处理机系统中,每一时刻却仅能有一道程序执行,故微观上这些程序只能是分时的交替执行。 7.程序顺序执行的特征和并发执行的特征 顺序执行的特点: 顺序性封闭性可再现性 程序并发执行的特点:

1)、间断性(失去程序的封闭性) 2)、不可再现性 任何并发执行都是不可再现 3)、进程互斥(程序并发执行可以相互制约) 8.进程的定义 进程是指在系统中能独立运行并作为资源分配的基本单位。 为了使参与并发执行的每个程序(含数据)都能独立的运行,在操作系统中必须为之配置一个专门的数据结构,称为进程控制块(PCB)。系统利用PCB来描述进程的基本情况和活动过程,进而控制和管理进程。 9.进程的组成部分 进程是由一组机器指令,数据和堆栈组成的,是一个能独立运行的活动实体。 由程序段,相关的数据段和PCB三部分便构成了进程实体(又称进程映像)。 10.进程的状态(状态之间的变化) 就绪状态、执行状态、阻塞状态。 处于就绪状态的进程,在调度程序为之分配了处理机之后,该进程便可以执行,相应的,他就由就绪状态转变为执行状态。 正在执行的进程,如果因为分配给它的时间片已经用完而被暂停执行时,该进程便由执行状态又回到就绪状态;如果因为发生某事件而使进程的执行受阻(如进程请求访问临界资源,而该资源正在被其它进程访问),使之无法继续执行,该进程将有执行状态转变为阻塞状态。处于阻塞状态的进程,在获得了资源后,转变为就绪状态。 11.进程同步的概念 进程同步是是并发执行的诸进程之间能有效地相互合作,从而使程序的执行具有可再现性,简单的说来就是:多个相关进程在执行次序上的协调。 12.PV原语的作用

操作系统重点知识总结

《操作系统》重点知识总结 请注意:考试范围是前6章所有讲授过内容,下面所谓重点只想起到复习引领作用。 第一章引论 1、操作系统定义操作系统是一组控制和管理计算机软件和硬件合理进行作业调度方便 用户管理的程序的集合 2、操作系统的目标有效性、方便性、可扩充性、开放性、 3、推动操作系统发展的主要动力不断提高计算机资源的利用率、方便用户、器件的不 断更新和换代、计算机体系结构的不断发展 4、多道批处理系统的特征及优缺点用户所提交的作业都先存放在外存上并排成一个队 列,称为后备队列。然后作业调度程序按一定的算法从后备队列中选择若干个作业调入内存,使他们共享cpu和系统内存。优点:资源利用率高、系统吞吐量打缺点:平均周转时间长、无交互能力 5、操作系统的基本特征并发性(最重要的特征)、共享性、虚拟性、异步性 6、操作系统的主要功能设别管理功能、文件管理功能、存储器管理功能、处理机管理 功能 7、O S的用户接口包括什么?用户接口、程序接口(由一组系统调用组成) 第二章进程管理 1、程序顺序执行时的特征顺序性、封闭性、可再现性 2、程序并发执行的特征间断性、失去封闭性、不可再现性 3、进程及其特征进程是资源调度和分配的基本单位,是能够独立运行的活动实体。 由一组机器指令、数据、堆栈等组成。特征:结构特征、动态性、并发性、独 立性、异步性 4、进程的基本状态及其转换p38 5、引入挂起状态的原因终端用户请求、父进程请求、负荷调节需要、操作系统 的需要 6、具有挂起状态的进程状态及其转换p39 7、进程控制块及其作用进程数据块是一种数据结构,是进程实体的一部分,是操 作系统中最重要的记录型数据结构。作用:使在一个多道程序环境下不能独立运 行的程序成为一个能够独立运行的基本单位,能够与其他进程并发执行 8、进程之间的两种制约关系直接相互制约关系、间接相互制约关系 9、临界资源是指每次只能被一个进程访问的资源 10、临界区是指每次进程中访问临界资源的那段代码 11、同步机构应遵循的规则空闲让进、忙则等待、有限等待、让权等待 12、利用信号量实现前驱关系p55/ppt 13、经典同步算法p58/ppt 14、进程通信的类型共享存储器系统、消息传递系统、管道通信系统 15、线程的定义是一种比进程更小,能够独立运行的基本单位用来提高系统内

信号与系统_复习总结(完整资料).doc

【最新整理,下载后即可编辑】 第一章知识要点 重难点一第A章A 1.1本章重难点总结 知识点一 1)知识点定义 2)背景或地位 3)性质、作用 4)相关知识点链接 5)常见错误分析 操作说明: 当专业课学习到冲刺阶段后,考生学习会及时转移到直接考查概率高、考查难度大的重难点,即需要考生掌握和应用的重点、难点。按照学科的内在逻辑、顺序呈现,并表现在ppt中。 1.2冲刺练习题及解析 第二章 重难点1.信号的概念与分类 按所具有的时间特性划分: 确定信号和随机信号;连续信号和离散信号; 周期信号和非周期信号;能量信号与功率信号; 因果信号与反因果信号; 正弦信号是最常用的周期信号,正弦信号组合后在任一对频率(或周期)的比值是有理分数时才是周期的。其周期为各个周期的最小公倍数。 ①连续正弦信号一定是周期信号。 ②两连续周期信号之和不一定是周期信号。

周期信号是功率信号。除了具有无限能量及无限功率的信号外,时限的或,∞→t 0)(=t f 的非周期信号就是能量信号,当∞→t ,0)(≠t f 的非周期信号是功率信号。 1. 典型信号 ① 指数信号: ()at f t Ke =,a ∈R ② 正弦信号: ()sin()f t K t ωθ=+ ③ 复指数信号: ()st f t Ke =,s j σω=+ ④ 抽样信号: sin ()t Sa t t = 奇异信号 (1) 单位阶跃信号 1()u t ={ 0t =是()u t 的跳变 点。 (2) 单位冲激信号 单位冲激信号的性质: (1)取样性 11()()(0) ()()()f t t dt f t t f t dt f t δδ∞ ∞ -∞-∞ = -=?? 相乘性质:()()(0)()f t t f t δδ= 000()()()()f t t t f t t t δδ-=- (2)是偶函数 ()()t t δδ=- (3)比例性 ()1 ()at t a δδ= (4)微积分性质 d () ()d u t t t δ= ; ()d ()t u t δττ-∞=? (5)冲激偶 ()()(0)()(0)()f t t f t f t δδδ'''=- ; ()()d (0)f t t t f δ∞ -∞''=-? ()d ()t t t t δδ-∞'=? ; ()()t t δδ''-=- ()d 0t t δ∞ -∞'=? 带跳变点的分段信号的导数,必含有冲激函数,其跳变幅度就是冲激 (0)t <(0)t > ()1t dt δ∞ -∞=? ()0t δ=(当0t ≠时)

(完整版)初三物理电流和电路知识点总结.doc

第十五章电流和电路 摩擦起电:摩擦过的物体具有吸引轻小物体的现象——带电体==本质:电荷 的转移 正电荷:被丝绸摩擦过的玻璃棒带的电荷 种类 电荷负电荷:被毛皮摩擦过的橡胶棒带的电荷 性质:同种电荷互相排斥,异种电荷互相排斥 检验:验电器——原理:同种电荷互相排斥 电量: q 单位:库伦简称:库符号: C 元电荷:最小电荷:e=1.6 × 10 19 C 组成:电源、开关、导线、用电器 电源:提供电能 开关:控制电路通断 作用用电器:消耗电能 导线:传输电能的路径 导体:金属、人体、食盐水 两种材料 绝缘体:橡胶、玻璃、塑料 电流产生条件①电路闭合 ②保持通路 定义:正电荷移动的方向 电路电流的方向 在电源中电源的正极→用电器→电源的负极 单位: A 103 mA 10 3 A 工具:电流表 ○ A 测量使用方法①电流表必须和被测的用电器串联电流的大小( I )②看清量程、分度值,不准超过电流 表的量程 ③必须正入负出 ④任何情况下都不能直接连到电源 的两极 电路的连接:先串后并,就近连线,弄清首尾 通路:接通的电路 三种状态断路:断开的电路 短路:电流不经过用电器直接回到电源的负极 两种类型: 类型定义开关作用 串联把用电器逐个连接起来的电路可以控制所有用电器,与开关位置无关 并联把用电器并列连接起来的电路在干路时,可控制所有用电器;在支路时,只可 以控制本支路的用电器

类型电流规律用电器特点 串联在串联电路中,电流处处相等任何一个用电器工作与否,都会影响其他的 用电器 并联在并联电路中,干路电流等于支路任何一个用电器工作与否,不会影响其他的电流之和用电器 一、电荷 1、物体有了吸引轻小物体的性质,我们就说物体带了电荷;换句话说,带电体具有吸引 轻小物体的性质。 2、用摩擦的方法使物体带电叫摩擦起电; 3、摩擦起电的实质:摩擦起电并不是创生了电,而是电子从一个物体转移到了另一个物 体,失去电子的带正电;得到电子的带负电。 二、两种电荷: 1、把用丝绸摩擦过的玻璃棒带的电荷叫正电荷;电子从玻璃棒转移到丝绸。 2、把用毛皮摩擦过的橡胶棒带的电荷叫负电荷;电子从毛皮转移到橡胶棒。 3、基本性质:同种电荷相互排斥,异种电荷相互吸引; 4、带电体排斥带同种电荷的物体;带电体吸引带异种电荷的物体和轻小物体。 例: 1、A 带正电, A 排斥 B , B 肯定带正电; 2、A 带正电, A 吸引 B , B 可能带负电也可能不带电。( A 、 B 都是轻小物体) 三、验电器 1、用途:用来检验物体是否带电;从验电器张角的大小,可以粗略的判断带电体所带电 荷的多少。 2、原理:利用同种电荷相互排斥; 电荷;单位:库仑( C)简称库; 四、电荷量(电荷)电荷的多少叫电荷量,简称 五、原子的结构质子(带正电) 原子核 原子中子(不带电) 电子(带负电) 原子核所带的正电荷与核外所有电子总共带的负电荷数在数量上相等,整个院子呈中性,原子对外不显带电的性质。 六、元电荷 1、最小的电荷叫做元电荷,用符号 e 表示, e=1.6*10 -19C。 2、电子电荷量的大小是最小的。 七、导体、绝缘体 1、善于导电的物体叫导体;如:金属、人体、大地、石墨、酸碱盐溶液; 2、不善于导电的物体叫绝缘体,如:橡胶、玻璃、塑料、陶瓷、油、空气等; 3、导体和绝缘体在一定条件下可以相互转换; 例如: 1、干木头(绝缘体)、湿木头(导体) 2、玻璃通常是绝缘体、加热到红炽状态(导体) 一、电流 1、电荷的定向移动形成电流;(电荷包括正电荷和负电荷定向移动都可以形成电流) 3、规定:正电荷定向移动的方向为电流的方向(负电荷定向移动的方向与电流方向相反,

操作系统知识点整理(完整版)

第一章操作系统概述 1)一个完整的计算机系统是由硬件系统和软件系统两大部分组成 2)计算机软件是指程序和与程序相关的文档的集合 3)按功能可把软件分为“系统软件”和“应用软件”两部分 系统软件:操作系统语言处理程序,数据库管理系统 应用软件:各种管理软件,用于工程计算的软件包,辅助设计软件4)通常把未配置任何软件的计算机称为“裸机” 5)操作系统可以被看作是计算机系统的核心,统管整个系统资源,制定各种资源的分配策略,调度系统中运行的用户程序,协调它们对资源的需求,从而使整个系统在高效、有序的环境里工作。 6)发展的动力: (1)提高计算机资源的利用率的需要 (2)方便用户使用计算机的需要 (3)硬件技术不断发展的需要 (4)计算机体系结构发展的需要 7)操作系统是在“裸机”上加载的第一层软件,是对计算机硬件系统功能的首次扩充8)操作系统的定义: 操作系统是控制和管理计算机硬件和软件资源,合理地组织计算机工作流程,以及方便用户使用计算机的一个大型程序 9)操作系统的功能: 处理机管理:进程控制,进程同步,进程通信、调度、实施CPU分配 存储器管理:内存分配,内存保护,地址映射,内存扩充 设备管理:缓冲管理,设备分配,设备管理 文件管理:存储空间管理,目录管理,读写管理和保护 与用户有关的接口:用户接口,程序接口,人机交互 10)操作系统另一种定义:操作系统是一组能有效地组织和管理计算机硬件和软件资源,合理地对各类作业进行调度,以及方便用户使用的程序的集合 操作系统的种类: 1)单道批处理系统

特点:单路性、独占性、自动性、封闭性、顺序性 缺点:系统的资源得不到充分的利用 2)多道批处理系统 特点:多路性、共享性、自动型、封闭性、无序性、调度性 好处: ?提高CPU的利用率 ?提高内存和I/O设备的利用率 ?增加系统吞吐量 缺点:平均周转时间长,无交互能力 3)分时系统 分时系统是指在一台主机上连接了多个配有显示器和键盘的终端,由此所组成的系统,该系统允许多个用户同时通过自己的终端,以交互方式使用计算 机,共享主机中的资源。 采用了“时间片轮转”的处理机调度策略 4)实时系统 实时系统是指系统能及时响应外部事件的请求,在规定的时间内完成对该事件的处理,并控制所有实时任务协调一致地运行 第二章处理机管理 1)进程是指在系统中能独立运行并作为资源分配的基本单位,它是由一组机器指 令,数据和堆栈等组成的,是一个能独立运行的活动实体,多个进程可以并发 执行和交换信息 2)程序是一个在时间上严格有序的指令集合 3)在单道程序设计下,系统具有的特点 a.资源的独占性 b.执行的顺序性 c.结果的再现性 在多道程序设计环境下,系统具有: a.执行的并发性 b.相互的制约性

相关文档
最新文档