人教版八下数学家之勾股定理(基础)知识讲解

人教版八下数学家之勾股定理(基础)知识讲解
人教版八下数学家之勾股定理(基础)知识讲解

勾股定理(基础)

【学习目标】

1.掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条

边长求出第三条边长.

2.掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.

3.熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.

【要点梳理】

要点一、勾股定理

直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.

要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.

(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解

决问题的目的.

(3)理解勾股定理的一些变式:

a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab.

要点二、勾股定理的证明

方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.

图(1)中,所以.

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.

图(2)中,所以.

方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以.

要点三、勾股定理的作用

1.已知直角三角形的任意两条边长,求第三边;

2.用于解决带有平方关系的证明问题;

3.利用勾股定理,作出长为的线段.

【典型例题】

类型一、勾股定理的直接应用

△1、在ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.

(1)若a=5,b=12,求c;

(2)若c=26,b=24,求a.

【思路点拨】利用勾股定理a2+b2=c2来求未知边长.

【答案与解析】

解:(△1)因为ABC中,∠C=90°,a2+b2=c2,a=5,b=12,

所以c2=a2+b2=52+122=25+144=169.所以c=13.

(△2)因为ABC中,∠C=90°,a2+b2=c2,c=26,b=24,

所以a2=c2-b2=262-242=676-576=100.所以a=10.

【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式.

举一反三:

【变式△1】在ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)已知b=2,c=3,求a;

(2)已知a:c=3:5,b=32,求a、c.

【答案】

解:(1)∵∠C=90°,b=2,c=3,

∴a=c2-b2=32-22=5;

(2)设a=3k,c=5k.

∵∠C=90°,b=32,

∴a2+b2=c2.

即(3k)2+322=(5k)2.

解得k=8.

∴a=3k=3?8=24,c=5k=5?8=40.

【变式2】(2015秋?永登县期中)分析探索题:细心观察如图,认真分析各式,然后解答问题.

OA 22=(

OA 32=(

OA 42=(

)2+1=2 ,S 1=

)2+1=3,S 2=

)2+1=4,S 3=

(1)请用含有 n (n 为正整数)的等式 S n =___________; (2)推算出 OA 10=______________. (3)求出 S 12+S 22+S 32+…+S 102 的值.

【答案】解:(1)

+1=n+1

Sn=

(n 是正整数);

故答案是:

(2)∵OA 12=1,

OA 22=( )2+1=2, OA 32=( )2+1=3, OA 42=( )2+1=4, ∴OA 12= , OA 2= , OA 3= ,… ∴OA 10= ; 故答案是: ;

(3)S 12+S 22+S 32+…+S 102

=( )2+( )2+( )2+…+(

)2

= (1+2+3+ (10)

=

即:S 12+S 22+S 32+…+S 102=

类型二、勾股定理的证明

2、如图所示,在 △R t ABC 中,∠C =90°,AM 是中线,MN ⊥AB ,垂足为 N ,

( (

试说明 AN 2 - BN 2 = AC 2 .

【答案与解析】

解:因为 MN ⊥AB ,所以 AN 2 + MN 2 = AM 2 , BN 2 + MN 2 = MB 2 ,

所以 AN 2 - BN 2 = AM 2 - BM 2 .

因为 AM 是中线,所以 MC =MB .

又因为∠C =90°,所以在 △R t AMC 中, AM 2 - MC 2 = AC 2 ,

所以 AN 2 - BN 2 = AC 2 .

【总结升华】证明带有平方的问题,主要思想是找到直角三角形,利用勾股定理进行转化.若 没有直角三角形,常常通过作垂线构造直角三角形,再用勾股定理证明.

类型三、利用勾股定理作长度为 n 的线段

3、作长为

、 、 的线段.

【思路点拨】由勾股定理得,直角边为 1 的等腰直角三角形,斜边长就等于

,直角边为

和 1 的直角三角形斜边长就是

【答案与解析】 作法:如图所示

,类似地可作 .

(1)作直角边为 △1(单位长度)的等腰直角 ACB ,使 AB 为斜边;

(2)作以 AB 为一条直角边,另一直角边为 1 的 Rt

,斜边为

(3)顺次这样做下去,最后做到直角三角形

,这样斜边 、

、 、

的长度就是

、 、 、 .

【总结升华】 1)以上作法根据勾股定理均可证明是正确的; 2)取单位长度时可自定,一 般习惯用国际标准的单位,如 1 cm 、1 m 等,我们作图时只要取定一个长为单位即可. 类型四、利用勾股定理解决实际问题

4、(2015春?遵义期末)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)

【思路点拨】本题求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度,然后再判断是否超速了.

【答案与解析】

解:在Rt△ABC中,AC=30m,AB=50m;

据勾股定理可得:

(m)

∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);

∵72(km/h)>70(km/h);

∴这辆小汽车超速行驶.

答:这辆小汽车超速了.

【总结升华】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意题目中单位的统一.

举一反三:

【变式】如图所示,一旗杆在离地面5m处断裂,旗杆顶部落在离底部12m处,则旗杆折断前有多高?

【答案】

解:因为旗杆是垂直于地面的,所以∠C=90°,BC=5m,AC=12m,

∴AB2=BC2+AC2=52+122=169.

∴AB=169=13(m).

∴BC+AB=5+13=18(m).

∴旗杆折断前的高度为18m.

【高清课堂勾股定理例3】

5、如图,长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B

落在点F处,折痕为AE,且EF=3,则AB的长为()

A.3B.4C.5D.6

【答案】D;

【解析】

解:设AB=x,则AF=x,

∵△ABE折叠后的图形为△AFE,

∴△ABE≌△AFE.BE=EF,

EC=BC-BE=8-3=5,

在△R t EFC中,

由勾股定理解得FC=4,

在△R t ABC中,x2+82=(x+4)2,解得x=6.

【总结升华】折叠问题包括“全等形”、“勾股定理”两大问题,最后通过勾股定理求解.

勾股定理知识点总结

第18章 勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

a b c c b a E D C B A 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边 在ABC ?中,90C ∠=? ,则c ,b = ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5 、利用勾股定理作长为 的线段 作长为 、 、 的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为 和1的直 角三角形斜边长就是,类似地可作 。 作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三 【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, , 为了有利于画图让其他两边的长为整数, 而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理知识点

1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方. 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为2 2 2 ()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+?+梯形,211 2S 222ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于 直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形. 4.勾股定理的应用 ①已知直角三角形的任意两边长,求第三边在ABC ?中,90 C ∠=?,则c =,b ,a ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理:如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边. ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b , c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>, 时,以a ,b ,c 为三边的三角形是锐角三角形; ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理知识点与常见题型总结

勾股定理知识点与常见题型总结

————————————————————————————————作者:————————————————————————————————日期: ?

勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A 方法二: b a c b a c c a b c a b 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证

勾股定理知识点总结

第十七章勾股定理知识点总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在ABC ?中,90 ∠=?,则c, C b,a=) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c; (2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形 (若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2

区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. c b a H G F E D C B A

2020年八年级数学 勾股定理(基础)知识讲解

勾股定理(基础) 【学习目标】 1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想; 2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数); 3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题. 【要点梳理】 【高清课堂勾股定理知识要点】 要点一、勾股定理 直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222 a b c +=. 要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系. (2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长 可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的 目的. (3)理解勾股定理的一些变式:222a c b =-,222b c a =-,()2 22c a b ab =+-.要点二、勾股定理的证明 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以. 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形. 图(2)中,所以. 方法三:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以 . 要点三、勾股定理的作用 1.已知直角三角形的任意两条边长,求第三边; 2.用于解决带有平方关系的证明问题; 3.与勾股定理有关的面积计算; 4.勾股定理在实际生活中的应用. 【典型例题】类型一、勾股定理的直接应用1、在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c . (1)若a =5,b =12,求c ; (2)若c =26,b =24,求a . 【思路点拨】利用勾股定理222a b c +=来求未知边长. 【答案与解析】 解:(1)因为△ABC 中,∠C=90°,222a b c +=,a =5,b =12, 所以2222251225144169c a b =+=+=+=.所以c =13. (2)因为△ABC 中,∠C=90°,222a b c +=,c =26,b =24, 所以222222624676576100a c b =-=-=-=.所以a =10. 【总结升华】已知直角三角形的两边长,求第三边长,关键是先弄清楚所求边是直角边还是斜边,再决定用勾股原式还是变式. 举一反三: 【变式】在△ABC 中,∠C=90°,∠A、∠B、∠C 的对边分别为a 、b 、c . (1)已知b =6,c =10,求a ; (2)已知:3:5a c =,b =32,求a 、c . 【答案】 解:(1)∵ ∠C=90°,b =6,c =10,∴ 2222210664a c b =-=-=,∴a =8. (2)设3a k =,5c k =, ∵∠C=90°,b =32, ∴222a b c +=. 即222(3)32(5)k k +=. 解得k =8. ∴33824a k ==?=,55840c k ==?=. 类型二、与勾股定理有关的证明

勾股定理知识点总结及练习

第 课时 第十八章 勾股定理 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2 +b 2 =c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=?,则 2 2 c a b = +,22 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,22 14()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为2 2 1422 S ab c ab c =? +=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2 S a b a b = +?+梯形,2 112S 22 2 ADE ABE S S ab c ??=+=? + 梯形,化简得证 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数); 2 2 21,22,221n n n n n ++++(n 为正整数)2 2 2 2 ,2,m n mn m n -+(,m n >m ,n 为正整数) 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 c b a H G F E D C B A a b c c b a E D C B A c b a H G F E D C B A b a c b a c c a b c a b

勾股定理全章知识点归纳总结

全国中考信息资源门户网站 https://www.360docs.net/doc/fd16659776.html, 勾股定理全章知识点归纳总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2) 要点诠释: 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(在A B C ?中,90C ∠=? ,则22 c a b = +, 2 2 b c a = -,22 a c b = -) (2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2+b 2=c 2,那么这个三角形是直角三角形。 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

全国中考信息资源门户网站 https://www.360docs.net/doc/fd16659776.html, 3:勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4:互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。 2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。 3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。 4. 勾股定理的逆定理:如果三角形的三条边长a ,b ,c 有下列关系:a 2+b 2=c 2,?那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法. 5.?应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解. 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 5:勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ? +=正方形正方形ABCD ,22 14()2 ab b a c ? +-=,化简可证. c b a H G F E D C B A

中考数学勾股定理知识点-+典型题及解析

中考数学勾股定理知识点-+典型题及解析 一、选择题 1.图中不能证明勾股定理的是( ) A . B . C . D . 2.勾股定理是几何中的一个重要定理,在我国算书《网醉算经》中就有“若勾三,股四,则弦五”的记载.如图1,是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,BC=5,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( ) A .121 B .110 C .100 D .90 3.如图,在ABC 中,90A ∠=?,6AB =,8AC =,ABC ∠与ACB ∠的平分线交于点O ,过点O 作⊥OD AB 于点D ,若则AD 的长为( )

A .2 B .2 C .3 D .4 4.已知△ABC 是腰长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的面积是( ) A .2n ﹣2 B .2n ﹣1 C .2n D .2n+1 5.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( ) A .0个 B .1个 C .2个 D .3个 6.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2 a b +值为( ) A .25 B .9 C .13 D .169 7.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=?正方形ADOF 的边长是2,4BD =,则CF 的长为( ) A .6 B .2 C .8 D .10 8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是( )

勾股定理知识讲解

勾股定理知识点 学习要求: 学习重点是利用计算面积和拼图的方法探索并验证勾股定理借助三角形三边关系来 判断一个三角 形是否是直角三角形。难点是各种拼图的理解和勾股定理的应用。 中考执占: I <7 八、、八\、? 主要考查勾股定理及直角三角形判定条件的应用和勾股数常与三角形其他知识结合 考查。 一、探索勾股定理: 1?勾股定理(重点) 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为c ,那么a 2 b 2 c 2 即:直角三角形的三边关系为:两直角边的平方和等于斜边的平方 注:勾股定理揭示的是直角三角形三边关系的定理, 只使用与直角三角形。 使用勾股定理时 首先确定最长边即斜边。 2 ?勾股定理的证明(难点) 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法二:见右图 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为 S 4 — ab c 2 2ab c 2 2 _ 2 2 2 大正方形面积为 S (a b ) a 2ab b 所以a 2 b 2 c 2 1 11 方法三:S 梯形 (a b ) (a b ) , S 梯形2S ADE S ABE 2 2 2 得证 方法一:4S S 正方形EFGH St 方形 ABCD , 1 4 ab 2 (b a)2 c 2,化简可证. b a

人教版勾股定理知识要点--总结及练习

勾股定理知识总结 一.基础知识点: 1:勾股定理 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2+b 2=c 2 ) 2:勾股定理的逆定理 如果三角形的三边长:a 、b 、c ,则有关系a 2 +b 2 =c 2 ,那么这个三角形是直角三角形。 3:勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 二、经典例题精讲: 题型一:直接考查勾股定理: 例1.在ABC ?中,90C ∠=?. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c += 题型二:利用勾股定理测量长度: 例题1 如梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米? 例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸 边,它的顶端B 恰好落到D 点,并求水池的深度AC. 题型三:勾股定理和逆定理并用— 例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 4 1 = 那么△DEF 是直角三角形吗?为什么? 题型四:关于翻折问题: 例1、 如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在CD 边上

的点G 处,求BE 的长. 勾股定理练习(随堂练) 一.填空题: 1. 在Rt △ABC 中,∠C=90° (1)若a=5,b=12,则c=________________________; (2)b=8,c=17,则S △ ABC =________。 2.若一个三角形的三边之比为5∶12∶13,则这个三角形是________(按角分类)。 3. 直角三角形的三边长为连续自然数,则其周长为____________________。 4.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A 点沿纸箱爬到B 点,那么它所 行的最短路线的长是_______________________。 二.选择题: 5.观察下列几组数据 :(1) 8, 15, 17; (2) 7, 12, 15; (3)12, 15, 20; (4) 7, 24, 25. 其中能作为直角三角形的三边长的有( )组 A. 1 B. 2 C. 3 D. 4 6.三个正方形的面积如图,正方形A 的面积为( ) A. 6 B.4 C. 64 D. 8 7.已知直角三角形的两条边长分别是5和12,则第三边为 ( ) A.13 B.119 C.13或119 D. 不能确定 8.下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是5、12,那么斜边必是13;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2 ∶b 2 ∶c 2 =2∶1∶1。其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 9.三角形的三边长为(a+b )2 =c 2+2ab,则这个三角形是( ) A. 等边三角形; B. 钝角三角形; C. 直角三角形; D. 锐角三角形. A B 第8题图 A 10 6

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题 一、基础知识点: 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD , ,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形 的面积与小正方形面积的和为221 422 S ab c ab c =?+=+ 大正方形面积为 2 22() 2S a b a a b b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ?中,90C ∠ =?,则c =,b ,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5.勾股定理的逆定理 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17等 ③用含字母的代数式表示n 组勾股数: c b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理知识点总结、经典例题

知识点及例题 知识点一:勾股定理 如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方. 要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。 (2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。 (3)理解勾股定理的一些变式: c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab 知识点二:用面积证明勾股定理 方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。 图(1)中,所以。 方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。 图(2)中,所以。 方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。 在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积), 在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积), 所以,甲的面积=乙和丙的面积和,即:. 方法四:如图(4)所示,将两个直角三角形拼成直角梯形。 ,所以。

知识点三:勾股定理的作用 1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系; 3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。 2. 在理解的基础上熟悉下列勾股数 满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。 熟悉下列勾股数,对解题是会有帮助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41. 如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。 经典例题透析类型一:勾股定理的直接用法 1、在Rt△ABC中,∠C=90° (1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b= (2) 在△ABC中,∠C=90°,a=40,b=9,c= (3) 在△ABC中,∠C=90°,c=25,b=15,a= 总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。 举一反三 【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少? 【答案】∵∠ACD=90° AD=13, CD=12 ∴AC2 =AD2-CD2 =132-122 =25 ∴AC=5 又∵∠ABC=90°且BC=3 ∴由勾股定理可得 AB2=AC2-BC2 =52-32 =16 ∴AB= 4 ∴AB的长是4. 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC的长. 思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有 ,,再由勾股定理计算出AD、DC的长,进而求出BC的 长. 解析:作于D,则因,

勾股定理知识点总结归纳

精心整理 第18章勾股定理复习 一.知识归纳 1.勾股定理 内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222 a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ① ② 定理 常见方法如下: 方法一:4 EFGH S S S ? += 正方形正方形ABCD ,1 4( 2 ab b ?+- 方法二: 四个直角三角形的面积与小正方形面积的和为S= 大正方形面积为22 () S a b a =+=+ 所以222 a b c += 方法三:1()() 2 S a b a b =+?+ 梯形 ,2 2 22 ab c ?+,化简得 证 3. 它只适用于直角三角形,对于锐角三角 因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4. ① 在ABC ?中,90 C ∠=?,则c,b=,a= ②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5、利用勾股定理作长为的线段 作长为、、的线段。 思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。 b a

作法:如图所示 (1)作直角边为1(单位长)的等腰直角△ACB ,使AB 为斜边; (2)以AB 为一条直角边,作另一直角边为1的直角。斜边为 ; (3)顺次这样做下去,最后做到直角三角形 ,这样斜边 、 、 、 的长度就是 、 、 、 。 举一反三【变式】在数轴上表示的点。 解析:可以把 看作是直角三角形的斜边, 为了有利于画图让其他两边的长为整数, 而10又是9和1 作法:如图所示在数轴上找到A 点,使OA=3,作以O 为圆心做弧,弧与数轴的交点B 即为 。 注:逆命题与勾股定理逆定理 可以判断真假的陈述句叫做命题, 写出下列原命题的逆命题并判断是否正确 1.原命题:猫有四只脚. 23(正确) 4(正确) 思路点拨:解析:1. 2. 3.?(正确) 4.(正确) 总结升华: 6.74页 如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 要点诠释: 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意: (1)首先确定最大边,不妨设最长边长为:c ; (2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形 (若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2

勾股定理知识点总结(经典、实用)

第三章、勾股定理 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a 、b ,斜边为c ,那么 a 2 + b 2= c 2。 公式的变形:a 2 = c 2- b 2, b 2= c 2-a 2 。 符号语言: 注意:前提一定是直角三角形. a , b 也可能是斜边,分清斜边直角边. 勾股定理的证明 :勾股定理的证明方法很多,常见的的方法是面积相等---根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 勾股定理的证明方法很多,常见的是拼图的方法 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,221 4()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221 422S ab c ab c =?+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,211 2S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 勾股定理的适用范围 : 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。 2、勾股定理的逆定理 如果三角形ABC 的三边长分别是a ,b ,c ,且满足a 2 + b 2= c 2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ① 已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 b a H G F E D C B A b a c b a c c a b c a b a b c c b a E D C B A

勾股定理知识点梳理

勾股定理知识点梳理Revised on November 25, 2020

勾股定理知识点梳理 1.直角三角型有哪些特殊的性质;①角,直角三角型的两锐角互余;②边,直角三角形两直角边的平方和等于斜边的平方,用符号表示:在Rt △ABC 中, c b a 2 22=+;③面积,两种计算面积的方法。 2.如何判定一个三角形是直角三角形呢 ①有一个内角为直角的三角形是直角三角形;②两个内角互余的三角形是直角三角形;③如果三角形的三边长为a 、b 、c 满足c b a 222=+,那么这个三角形是直角三角形 3.勾股定理与勾股定理逆定理的区别与联系 区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。 4.互逆命题的概念 如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。 5.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中, a , b , c 为正整数时,称a ,b ,c 为一组勾股数 ②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25,8,15,17;9,40,41等 6.勾股定理的证明 c b a H G F E D C B A

勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是 ①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ?+=正方形正方形ABCD ,2214()2 ab b a c ?+-=,化简可证. 方法二: 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422 S ab c ab c =?+=+ 大正方形面积为2 2 2 ()2S a b a ab b =+=++ 所以222a b c += 方法三:1()()2S a b a b =+?+梯形,2112S 222 ADE ABE S S ab c ??=+=?+梯形,化简得证 一. 典型例题 类型一:勾股定理的直接用法 1、在Rt △ABC 中,∠C=90° (1)已知a=6, c=10,求b , (2)已知a=40,b=9,求c ; (3)已知c=25,b=15,求a. 思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。 举一反三 【变式】:如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少 类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC 的长. b a c b a c c a b c a b a b c c b a E D C B A

数学勾股定理知识点总结及解析

一、选择题 1.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =6,DC =2,点P 是AB 上的动点,则PC +PD 的最小值为( ) A .8 B .10 C .12 D .14 2.如图,ABC 中,有一点P 在AC 上移动.若56AB AC BC ===,,则AP BP CP ++的最小值为( ) A .8 B .8.8 C .9.8 D .10 3.如图,等边ABC ?的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ?沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ?外部,则阴影部分图形的周长为( ) A .1cm B .1.5cm C .2cm D .3cm 4.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( ) A .36 B .9 C .6 D .18 5.在Rt△ABC 中,∠C=90°,AC=3,BC=4,则点C 到AB 的距离是( )

A.3 4 B. 3 5 C. 4 5 D. 12 5 6.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为() A.12cm B.14cm C.20cm D.24cm 7.如图,已知AB是线段MN上的两点,MN=12,MA=3,MB>3,以A为中心顺时针旋转点M,以点B为中心顺时针旋转点N,使M、N两点重合成一点C,构成△ABC,当△ABC为直角三角形时AB的长是() A.3 B.5 C.4或5 D.3或51 8.如图,正方体的棱长为4cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是() A.9 B.210C.326 D.12 9.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点B落在点B′处,则重叠部分△AFC的面积为() A.12 B.10 C.8 D.6 10.已知三角形的两边分别为3、4,要使该三角形为直角三角形,则第三边的长为

相关文档
最新文档