第一章负荷计算和无功功率补偿

第一章负荷计算和无功功率补偿
第一章负荷计算和无功功率补偿

第一章 负荷计算和无功功率补偿 负荷计算:

负荷计算的方法有需要系数法、二项式等几种,本设计采用需要系数法确定 主要计算公式有:

有功功率:R 二K d F e

(1.1)

无功功率:Q c 二巳 tan 「 或(tan 二 tan arccos 「) (1.2)

所有校园生活区总的计算负荷:取 K D =0.95,K& =0.95

视在功率:s 存或

Sc = Pc 2 Qc 2

计算电流:l c

S c_ 3u N

注:由校园生活区计算负荷直接相加来计算时,取

,K^q = 0.93 ~ 0.97

总的有功计算负荷为: F C =K, p' p c 」

总的无功计算负荷为: 总的视在计算负荷为: S c 「P c 2 Q ;

总的计算电流为:

I c

S c 3U N

(1.3)

(1.4)

(1.5) (1.6) (1.7)

(1.8) (1.9)

p c =K/' P.i =0.95(380+270+100+130+10V25869.25W Q 送 Qj =0.95(210+120+100+98+1kVa )>521.55var S C 7869.25 521.55

1.2确定补偿容量

由资料可知,该学校生活区 380V 侧最大负荷时的功率因素只有 0.8575。而现要求变电

所最大负荷时功率因数不低于

0.9。考虑到主变压器的无功损耗远大于有功损耗,

因此380V

侧最大负荷时的功率因素应稍大于

0.90,暂取0.92来计算380V 侧所需无功功率补偿容量。

主要公式有:

Q.cu

F CU tan?1—tan?2)

( 1.23)

根据公式(1.23 )计算补偿容量:

Q c

.c =巳"tan?1 —tan?2)=869.25(tan(arccos0.8575)—tan(arccos0.92)Kvar

= 869.25 (0.426-0.600) = 151.25

(1.24)

查书表A-2-2并联电容器的技术数据,选用

BW0.4-14-3电容进行补偿,需要的数量为:

(1.25)

实际补偿容量为:

1.3补偿后的计算负荷和功率因数

补偿后的计算负荷和功率因数:

1013.7KV.A

,3 0.38CV =1540.2A

cos =P c

869.25

1013.711

=0.835

Q c.c

n =

Q N .C

151.25 14

= 10.802 : 12

Q c.c =12 汉 14 =168kvar

(1.26)

巳=P c =869.25kW

Q c1=Q c-Q c.c = 521.55 -168 =353.55k var

S ci =£Pci Q ci〉938.40kVA, (1.27)

I c1 :r Sl

?0.38

938.40

、3 0.38

= 1425.75A

cos 1 =0.92

变压器的功率损耗为:

F T =0.015S c1

=14.076kW

L Q T = 0.06足=56.304k var

(1.28 )

变压器高压侧的计算负荷为:

P'c 二巳 R =869.25 14.076 = 883.326kW Q'c

=Q

c1

Q T =353.55 56.304 = 409.854k var

S'c 二,P'c

2 Q'

c 2 =

. 883.32$ 409.8642 二 973.78kVA (1.29)

S'c 3 10 973.78

3 10 -56.22A P'c S'c

883.326

973.78

=0.907

第二章主变压器台数、容量和类型的选择

2.1 变电所的容量

因变电所中有二级负荷,所以变电所中选用 2 台变压器,选择明备用接线方式,一台

变压器为主变压器,另一台为备用变压器,每台变压器单独运行,其额定容量S N 满足全部用电设备计算负荷S c,考虑负荷发展应留有一定的容量裕度,并考虑变压器的经济运行,

即:S N > (1.15 ?1.4) S c (2.1)

S c=(1.15 ?1.4) S N=(1.15 ?1.4) X 973.78kVA=1119.847 ?1363.292kVA (2.2)

因此选用容量为1600kVA的三相油浸式自冷变压器,具体型号S9-1600/10

第三章变电所主接线方案的设计10kV

1QS

1QF V

----- I 亍3QS V 4QS \ ] 2QS

3QF J 4QF * \ 2QF

5QS \\ 6QS

图i变电所主接线

di

£_ 100MVA

-3U di 3 10.5kV

= 5.5kV (4.1) 第四章短路计算

4.1绘制计算电路

架空线路

L二I"」V A

10/0/40/

L I '…= J.J

1 丨‘ ?'

图2供电系统图

ITT

K-l

j ¥ > Y

1/0.2 2/3.12 3/3.75

图3短路计算等效电路图

4.2确定基准值

设S d=100MVA U di=10.5kV,低压侧Uh=0.4kV,则

无功补偿容量计算

无功补偿容量计算 Prepared on 22 November 2020

一、无功补偿装置介绍 现在市场上的无功补偿装置主要分为固定电容器组、分组投切电容器组、有载调压式电容器组、SVC和SVG。下面介绍下各种补偿装置的特点。 1)固定电容器组。其特点是价格便宜,运行方式简单,投切间隔时间长。但它对于补偿变化的无功功率效果不好,因为它只能选择全部无功补偿投入或全部无功补偿切出,从而可能造成从补偿不足直接补偿到过补偿,且投切间隔时间长无法满足对电压稳定的要求。而由于光照强度是不停变化的,利用光伏发电的光伏场发出的电能也跟着光伏能力的变化而不断变化,因此固定电容器组不适应光伏场的要求,不建议光伏项目中的无功补偿选用固定电容器组。 2)分组投切电容器组。分组投切电容器组和固定电容器组的区别主要是将电容器组分为几组,在需要时逐组投入或切出电容器。但它仍然存在投切间隔时间长的问题,且分的组数较少,一般为2~3组(分的组数多了,投资和占地太大),仍有过补偿的可能。因此分组投切电容器组适用于电力系统较坚强、对相应速度要求较低的场所。 3)有载调压式电容器组。有载调压式电容器组和固定电容器组的区别主要是在电容器组前加上了一台有载调压主变。根据公式Q=2πfCU2可知,电容器组产生的无功功率和端电压的平方成正比,故调节电容器组端电压可以调节电容器组产生的无功功率。有载调压式电容器组的投切间隔时间大大缩短,由原来的几分钟缩短为几秒钟。且有载调压主变档位较多,一般为8~10档,每档的补偿无功功率不大,过补偿的可能性较小。因此分组投切电容器组适用于电力系统对光伏场要求一般的场所。

负荷计算及无功补偿

第三章 负荷计算及无功补偿 广东省唯美建筑陶瓷有限公司 刘建川 3.1 负荷曲线与计算负荷 负荷曲线(load curve )是指用于表达电力负荷随时间变化情况的函数曲线。在直角坐标糸中,纵坐标表示负荷(有功功率和无功功率)值,横坐标表示对应的时间(一般以小时为单位) 日负荷曲线 年负荷曲线 年每日最大负荷曲线 年最大负荷和年最大负荷利用小时数 3.1.2 计算负荷 计算负荷是按发热条件选择电气设备的一个假定负荷,其物理量含义是计算负荷所产生的恒定温升等于实际变化负荷所产生的最高温升。通常将以半小时平均负荷依据所绘制的负荷曲线上的“最大负荷”称为计算负荷,并把它作为按发热条件选择电气设备的依据。 3.2 用电设备额定容量的确定 3.2.1 用电设备的一作方式 (1)连续工作方式 在规定的环境温度下连续运行,设备任何部份温升不超过最高允许值,负荷比较稳定。 (2)短时运行工作制 (3)断续工作制 用电设备以断续方式反复进行工作,其工作时间与停歇时间相互交替。取一个工作时间内的工作时间与工作周期的百分比值,称为暂载率,即 *100%%100%0 t t T t t ε==+ 暂载率亦称为负荷持续率或接电率。根据国家技术标准规定,重复短暂负荷下电气设备的额定工作周期为10min 。吊车电动机的标准暂载率为15%、25%、40%、60%四种,电焊设备的标准暂载率为50%、65%、75%、100%,其中草药100%为自动焊机的暂载率。 3.2.2 用电设备额定容量的计算 (1)长期工作和短时工作制的设备容量 等于其铭牌一的额定功率,在实际的计算中,少量的短时工作制负荷可忽略不计。 (2)重复短时工作制的设备容量 ○ 1吊车机组用电动机的设备容量统一换算到暂载率为ε=25%时的额定功 率,若不等于25%,要进行换算,公式为:2Pe Pn ==Pe 为换算到ε=25%时的电动机的设备容量 εN 为铭牌暂载率

无功补偿及电能计算

北极星主页 | 旧版 | 电力运营 | 电信运营 | 工业控制 | 电子技术 | 仪器仪表 | 大学院校 | 科研院所 | 协会学会新闻中心| 技术天地| 企业搜索| 产品中心| 商务信息| 人才招聘| 期刊媒体| 行业展会| 热点专题| 论坛| 博客| 高级搜索 帐号 密码 个人用户注册企业免费注册 能源工程 ENERGY ENGINEERING 2003年第1卷第1期 工矿企业无功补偿技术及其管理要求 方云翔 (浙江信息工程学校,湖州 313000)

摘要:分析了工矿企业采用无功补偿技术的必要性,介绍了无功补偿方式的确定及补偿容量的计算方法,并论述了加强无功补偿装置管理、提高运行效率应注意的问题。 关键词:无功补偿;技术管理;工矿企业 1 前言 供电部门在向用电单位(以下简称用户)输送的三相交流功率中,包括有功功率和无功功率两部分。将电能转换成机械能、热能、光能等那一部分功率叫有功功率,用户应按期向供电部门交纳所用有功电度的电费;无功功率为建立磁场而存在并未做功,所以供电部门不能向用户收取无功电度电费,但无功功率在输变电过程中要造成大量线路损耗和电压损失,占用输变电设备的容量,降低了设备利用率。因此,供电部门对输送给用户的无功功率实行限制,制订了功率因数标准,采用经济手段———功率因数调整电费对用户进行考核。用户功率因数低于考核标准,调整电费是正值,用户除了交纳正常电费之外,还要增加支付调整电费(功率因数罚款);用户功率因数高于考核标准,调整电费是负值,用户可以从正常电费中减去调整电费(功率因数奖励)。 用电设备如变压器、交流电动机、荧光灯电感式镇流器等均是电感性负荷,绝大多数用户的自然功率因数低于考核标准,都要采取一些措施进行无功补偿来提高功率因数。安装移相电力电容器是广大用户无功补偿的首选方案。 2 无功补偿的经济意义 2.1 提高输变电设备的利用率 有功功率

电网无功功率计算.docx

电网中的许多用电设备是根据电磁感应原理工作的。它们在能量转换过程中建立交变磁场,在一个周期内吸收的功率和释放的功率相等,这种功率叫无功功率。电力系统中,不但有功功率平衡,无功功率也要平衡。 有功功率、无功功率、视在功率之间的关系如图1所示 式中 S——视在功率,kVA P——有功功率,kW Q——无功功率,kvar φ角为功率因数角,它的余弦(cosφ)是有功功率与视在功率之比即cosφ=P/S称作功率因数。 由功率三角形可以看出,在一定的有功功率下,用电企业功率因数cosφ越小,则所需的无功功率越大。如果无功功率不是由电容器提供,则必须由输电系统供给,为满足用电的要求,供电线路和变压器的容量需增大。这样,不仅增加供电投资、降低设备利用率,也将增加线路损耗。为此,国家供用电规则规定:无功电力应就地平衡,用户应在提高用电自然功率因数的基础上,设计和装置无功补偿设备,并做到随其负荷和电压变动及时投入或切除,防止无功倒送。还规定用户的功率因数应达到相应的标准,否则供电部门可以拒绝供电。因此,无论对供电部门还是用电部门,对无功功率进行自动补偿以提高功率因数,防止无功倒送,从而节约电能,提高运行质量都具有非常重要的意义。 无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。 当前,国内外广泛采用并联电容器作为无功补偿装置。这种方法安装方便、建设周期短、造价低、运行维护简便、自身损耗小。 采用并联电容器进行无功补偿的主要作用: 1、提高功率因数 如图2所示图中

P——有功功率 S1——补偿前的视在功率 S2——补偿后的视在功率 Q1——补偿前的无功功率 Q2——补偿后的无功功率 φ1——补偿前的功率因数角 φ2——补偿后的功率因数角 由图示可以看出,在有功功率P一定的前提下,无功功率补偿以后(补偿量Qc=Q1-Q2),功率因数角由φ1减小到φ2,则cosφ2>cosφ1提高了功率因数。 2、降低输电线路及变压器的损耗 三相电路中,功率损耗ΔP的计算公式为 式中 P——有功功率,kW; U——额定电压,kV; R——线路总电阻,Ω。 由此可见,当功率因数cosφ提高以后,线路中功率损耗大大下降。 由于进行了无功补偿,可使补偿点以前的线路中通过的无功电流减小,从而使线路的供电能力增加,减小损耗。 例:某县电力公司某配电所,2005年1月~2月份按实际供售电量情况进行分析。该站1~2月份,有功供电量152.6万kW·h,无功供电量168.42万kvar·h,售电量133.29万kW·h,功率因数0.67,损耗电量19.31万kW·h,线损率12.654%。装设电容器进行无功补偿后,如功率因数由原来的0.67提高到0.95 时, (1)可降低的线路损耗

无功补偿节电计算案例中英文版

Plans for saving electricity 节电方案计划 Today's companies face a wide range of competition, and constantly reduce the power consumption is not only an important way to reduce costs to improve competitiveness over a long period of time, and is the realization of their own is the effective means to make contributions to reduce emissions 当今企业面临广泛的竞争,不断降低电力能耗不仅是长期降低成本提高竞争力的重要途径,而且是实现自身为降低排放作贡献的有效手段。 The way of energy saving of enterprises 企业电力节能的途径 First, because of the power efficiency of the electric power sector, the improvement of power factor can make no work penalty. 一是由于电力部门考核的电力效能,即功率因素提高方面,可使无功罚款转变为无功奖励。 Second,The energy saving effect can be about 8 ~ 15% of the compensation of the load on the side of the load 二是自身负载侧的无功修正及线损补偿,其节能效果可以达到8~15%左右。 Third,Electric power special aspects: such as load management, may reduce power load peak power 5 ~ 30%, for a lot of electricity companies such as steel mills, a year can save electricity cost millions 三是电力能源的特殊方面:比如负荷管理,可能使电力负荷高峰功率降低5~30%,对一个大量用电企业如钢厂,每年可节约用电费用几百万之巨! Fourth,Clean energy saving on electricity, with a focus on the possible power grid harmonic filter, on the basis of conventional energy saving effect, improve skills 3 ~ 50%, especially can improve the reliability of the system 四是着力于电力清洁节能,重点是滤除可能存在的电网谐波,可在常规节能效果的基础上,提高技能率3~50%,特别是可以提高系统的可靠性。 Fifth,Comprehensive energy management, comprehensive, scientific and efficient management of electricity, water and gas can increase comprehensive energy efficiency to about 10-20% 五是综合性的能源管理,对电、水、气等实行综合、科学、高效的管理,可将综合能源利用率提高到10~20%左右。 The enterprise is reactive power and harm 企业无功功率及危害 The reverse of the magnetic field generated by the current hysteresis of a transformer,

调整不平衡电流无功补偿装置原理

分相补偿装置可以补偿不平衡的无功电流,但是对于不平衡的有功电流无能为力。实际上,经过恰当设计的无功补偿装置,不但可以将三相的功率因数均补偿至1,而且可以将三相间的不平衡有功电流调整至平衡。 1,怎样调整不平衡电流 在很久以前,电学奇才斯坦因梅茨(C.P.Steinmetz)就已经找到了利用无功补偿来平衡三相电流的解决办法。在《电力系统无功功率控制》一书中有比较详细的介绍,有兴趣的读者不妨一读。 斯坦因梅茨的办法有两个缺点:其一是计算过程比较繁复,读者很难从计算过程中领会这种调整不平衡电流方法的物理意义。其二是只能适用于三相三线系统,当应用于三相四线系统时,如果零线电流不为零,就会出现较大的误差。 笔者在多年研究无功补偿技术的基础上,总结出了一套简明易懂的调整不平衡电流理论与计算方法,下面就进行介绍。 2,调整不平衡电流的基本原理 要了解首调整不平衡电流的基本原理,首先要了解wangs定理,读者可以参见本博客中的Wangs定理一文。 在了解wangs定理的前提下,这里具体介绍一下怎样调整不平衡有功电流。 设有一个电阻连接在A相与B相两端,这是一个典型的不平衡负荷,调整不平衡电流的目标就是将这个电阻的电流平均分配到三相当中去,具体的方法如图1所示:

图1 利用wangs定理的基本概念,在A相与C相之间接入一个适当的电感L将A相有功电流的1/3转移到C相,这时电感L在A相产生的感性无功电流恰好将电阻在A相产生的容性无功电流抵消掉。在B相与C相之间接入一个适当的电容C将B相有功电流的1/3转移到C相,这时电容C在B相产生的容性无功电流恰好将电阻在B相产生的感性无功电流抵消掉。电感L在C相产生的感性无功电流恰好将电容C 在C相产生的容性无功电流抵消掉。这样三相电流完全平衡,并且三相的功率因数全等于1。 设有一个电阻连接在A相与零线之间,这是另一个典型的不平衡负荷,调整不平衡电流的目标就是将这个电阻的电流平均分配到三相当中去,具体的方法如图2所示: 图2

无功补偿常用计算方法

按照不同的补偿对象,无功补偿容量有不同的计算方法。 (1)按照功率因数的提高计算 对需要补偿的负载,补偿前后的电压、负载从电网取用的电流矢量关系图如图3.7所示: I 2r I 1 补偿前功率因数1cos ?,补偿后功率因数2cos ?,补偿前后的平均有功功率为 P ,则需要补偿的无功功率容量 )t a n (t a n 21? ?-=P Q 补偿 (3.1) 由于负载功率因数的增加,会使电网给负载供电的线路上的损耗下降, 线损的下降率 %100)cos (3)cos (3)cos ( 3%21 122 2211?-= ?R I R I R I P a a a ???线损 %100)c o s c o s (1221??? ? ???-=?? (3.2) 式中R 为负载侧等值系统阻抗的电阻值。 (2)按母线运行电压的提高计算 ①高压侧无功补偿 无功补偿装置直接在高压侧母线补偿,系统等值示意图如图3.8所示: 图3.7 电流矢量图

P+jQ 补偿 图中, S U、U分别是系统电压和负载侧电压;jX R+是系统等值阻抗(不 含主变压器高低压绕组阻抗);jQ P+是负载功率, 补偿 jQ是高压侧无功补偿容 量; 1 U、 2 U分别是补偿装置投入前后的母线电压。 无功补偿装置投入前后,系统电压、母线电压的量值存在如下关系: 无功补偿装置投入前 1 1U QX PR U U S + + ≈ 无功补偿装置投入后 2 2 ) ( U X Q Q PR U U S 补偿 - + + ≈ 所以 2 1 2U X Q U U补偿 ≈ -(3.3) 所以母线高压侧无功补偿容量 ) ( 1 2 2U U X U Q- = 补偿 (3.4) ②主变压器低压侧无功补偿 无功补偿装置在主变压器的低压侧进行无功补偿,系统等值示意图如图3.9所示: P+jQ 补偿 图3.8 系统等值示意图

无功补偿计算公式

1、无功补偿需求量计算公式: 补偿前:有功功率:P 1= S 1 *COS 1 ? 有功功率:Q 1= S 1 *SIN 1 ? 补偿后:有功功率不变,功率因数提升至COS 2 ?, 则补偿后视在功率为:S 2= P 1 /COS 2 ?= S 1 *COS 1 ?/COS 2 ? 补偿后的无功功率为:Q 2= S 2 *SIN 2 ? = S 1 *COS 1 ?*SIN 2 ?/COS 2 ? 补偿前后的无功差值即为补偿容量,则需求的补偿容量为: Q=Q 1- Q 2 = S 1*( SIN 1 ?-COS 1 ?*SIN 2 ?/COS 2 ?) = S 1*COS 1 ?*(1 1 1 2 - ? COS —1 1 2 2 - ? COS ) 其中:S 1-----补偿前视在功率;P 1 -----补偿前有功功率 Q 1-----补偿前无功功率;COS 1 ?-----补偿前功率因数 S 2-----补偿后视在功率;P 2 -----补偿后有功功率 Q 2-----补偿后无功功率;COS 2 ?-----补偿后功率因数

2、据此公式计算,如果需要将功率因数提升至0.9,在30%无功补偿情况下,起始功率因数为: Q=S*COS 1?*(1112-?COS —112 2-?COS ) 其中Q=S*30%,则: 0.3= COS 1?* (111 2-?COS —19.012-) COS 1?=0.749 即:当起始功率因数为0.749时,在补偿量为30%的情况下,可以将功率因数正好提升至0.9。 3、据此公式计算,如果需要将功率因数提升至0.9,在40%无功补偿情况下,起始功率因数为: Q=S*COS 1?*(1112-?COS —112 2-?COS ) 其中Q=S*40%,则: 0.4= COS 1?* (111 2-?COS —19.012-) COS 1?=0.683 即:当起始功率因数为0.683时,在补偿量为40%的情况下,可以将功率因数正好提升至0.9。

无功补偿怎么计算

没目标数值怎么计算? 若以有功负载1KW,功率因数从0.7提高到0.95时,无功补偿电容量: 功率因数从0.7提高到0.95时: 总功率为1KW,视在功率: S=P/cosφ=1/0.7≈1.4(KVA) cosφ1=0.7 sinφ1=0.71(查函数表得) cosφ2=0.95 sinφ2=0.32(查函数表得) tanφ=0.35(查函数表得) Qc=S(sinφ1-cosφ1×tanφ)=1.4×(0.71-0.7×0.35)≈0.65(千乏) 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 计算示例 例如:某配电的一台1000KVA/400V的变压器,当前变压器满负荷运行时的功率因数cosφ =0.75, 现在需要安装动补装置,要求将功率因数提高到0.95,那么补偿装置的容量值多大?在负荷不变的前提下安装动补装置后的增容量为多少?若电网传输及负载压降按5%计算,其每小时的节电量为多少? 补偿前补偿装置容量= [sin〔1/cos0.75〕-sin〔1/cos0.95〕]×1000=350〔KVAR〕安装动补装置前的视在电流= 1000/〔0.4×√3〕=1443〔A〕 安装动补装置前的有功电流= 1443×0.75=1082〔A〕 安装动补装置后视在电流降低=1443-1082/0.92=304 〔A〕 安装动补装置后的增容量= 304×√3×0.4=211〔KVA〕 增容比= 211/1000×100%=21% 每小时的节电量〔304 ×400 ×5% ×√3 ×1 〕 /1000=11 (度) 每小时的节电量(度)

设备功率-负荷计算公式

专 设备功率确定 负荷计算公式 一、计算 设备功率的确定 进行负荷计算时,需将用电设备按其性质分为不同的用电设备组,然后确定设备功率。 用电设备的额定功率r P 或额定容量r S 是指铭牌上的数据。对于不同负载持续率下的额定功率或额定容量,应换算为统一负载持续率下的有功功率,即设备功率 N P 。 (1)连续工作制电动机的设备功率等于额定功率。 (2)短时或周期工作制电动机(如起重机用电动机等)的设备功率是指将额定功率换算为统一负载持续率下的有功功率。 当采用需要系数法和二项式法计算负荷时,应统一换算到负载持续率ε为25%下的有功功率。 ,225 .0r r r r N P P P εε==kW (5-2-1) 当采用利用系数法计算负荷时,应统一换算到负载持续率ε为100%下的有功功率。 r r N P P ε= (5-2-2) 式中 r P ——电动机额定功率,kW ; r ε——电动机额定负载持续率。 (3)电焊机的设备功率是将额定容量换算到负载持续率ε为100%时的有功功率。 ,cos ?εr r N S P = kW (5-2-3) 式中 r S ——电焊机的额定容量,kV A ; ?cos ——功率因数。 (4)电炉变压器的设备功率是指额定功率因数时的有功功率。 ,cos ?r N S P = kW (5-2-4) 式中 r S ——电炉变压器的额定容量,kV A 。 (5)整流器的设备功率是指额定直流功率。 (6)成组用电设备的设备功率是指不包括备用设备在内的所有单个用电设备的设备功率之和。 (7)白炽灯的设备功率为灯泡额定功率。气体放电灯的设备功率为灯管额定功

负荷计算及无功补偿.

负荷计算及无功补偿 第3章负荷计算及无功补偿 供配电技术 南京师范大学电气工程系 第3章负荷计算及无功补偿 3.1 负荷曲线与计算负荷 3.2 用电设备额定容量的确定 3.3 负荷计算的方法 3.4 功率损耗与电能损耗 3.5 变电所中变压器台数与容量的选择 3.6 功率因数与无功功率补偿 3.1 负荷曲线与计算负荷 3.1.1 负荷曲线 负荷曲线(load curve)是指用于表达可分为有功负荷曲线和无功负荷曲线; 按所表示的负荷变动的时间分: 可分为日负荷,月负荷和年负荷曲线. 2.年最大负荷和年最大负荷利用小时数 (1)年最大负荷Pmax 年最大负荷Pmax就是全年中负荷最大的工作班内消耗电能最大的半小时的平均功率,因此年最大负荷也称为半小时最大负荷P30. (2)年最大负荷利用小时数Tmax 年最大负荷利用小时数又称为年最大负荷使用时间Tmax,它是一个假想时间,在此时间内,电力负荷按年最大负荷Pmax (或P30)持续运行所消耗的电能,恰好等于该电力负荷全年实际消耗的电能. 下图为某厂年有功负荷曲线,此曲线上最大负荷Pmax就是年最大负荷,Tmax为年最大负荷利用小时数. 3.平均负荷Pav 平均负荷Pav,就是电力负荷在一定时间t内平均消耗的功率,也就是电力负荷在该时间内消耗的电能W除以时间t的值,即Pav=W/t 年平均负荷为Pav=Wa/8760 3.1.2 计算负荷(calculated load) 通常将以半小时平均负荷为依据所绘制的负荷曲线上的"最大负荷"称为计算负荷,并把它作为按发热条件选择电气设备的依据,用Pca(Qca,Sca,Ica)或 P30(Q30,S30,I30)表示. 规定取"半小时平均负荷"的原因: 一般中小截面导体的发热时间常数τ为10min以上,根据经验表明,中小截面导线达到稳定温升所需时间约为 3τ=3×10=30(min),如果导线负载为短暂尖峰负荷,显然不可能使导线温升达到最高值,只有持续时间在30min以上的负荷时,才有可能构成导线的最高温升. 3.1.3 计算负荷的意义和计算目的 负荷计算主要是确定计算负荷,如前所述,若根据计算负荷选择导体及计算负荷

补偿的计算方法

两种无功功率补偿的计算方法 王前虹韩志树赵建玉 摘要:介绍了最大负荷补偿计算法和平均负荷补偿计算法两种无功功率补偿的计算方法,对两种补偿计算方法进行了理论分析,并通过实例进行对比分析。关键词:功率因数;无功功率;补偿;容量 各工业企业用电系统功率因数的高低,直接影响整个电网的供电质量和发电系统的电能利用率。过低的功率因数,不仅使电力系统内的供电设备容量得不到充分利用,增加电力电网中输电线路上的电能损耗,还会使线路的电压损失增大,有时使得负荷端的电压低于允许值,严重影响异步电动机及其它用电设备的正常运行,甚至损坏。电力系统功率因数的高低,已经成为电力系统一项重要经济指标。因此,要求在电力系统的各级都要根据分级就地平衡的原则,采取措施补偿无功功率,提高功率因数。根据对电网分布的分析,为了降低无功功率提高功率因数,一般从两方面采取措施:一是提高自然功率因数;二是采用供应无功功率的设备来补偿用电设备所需的无功功率,以提高其功率因数。称为提高功率因数补偿法,这种方法通常有3种:(1)采用同步电机补偿;(2)采用同步调相机;(3)采用移相电容器补偿。由于移相电容器是一种投资省、见效快、维护方便的无功电源,工矿企业常常选用移相电容器来提高功率因数。因此,如何进行补偿计算,正确选择补偿力度是电力工业中的一个重要课题。 1 无功功率补偿计算方法 在进行新厂矿的电气设计时,首先要对用电网络进行负荷计算,然后根据负荷计算情况,进行无功功率补偿,选择相应的补偿方法,选择补偿器。 1.1 最大负荷补偿计算法 所谓最大负荷补偿计算法就是利用需要系数法,计算最大负荷时的有功功率、无功功率和视在功率、补偿前最大功率因数和补偿后最大功率因数,选定补偿设备。如图1所示。 图1 具体计算公式如下: 补偿前最大负荷功率因数

无功补偿的计算

无功补偿的计算 一、系统基本情况 XX钢丝绳有限公司35kV变电所目前采用二台SZ11-35±3×2.5%/0.4,1600kVA(Dyn11、U%=6.5)变压器,预留一台SZ11-35±3×2.5%/0.4,1600kVA变压器,电力供电系统经35kV变压器直接降压为0.4kV低压配电系统向热处理车间、拉丝车间、捻股合绳车间和工厂照明等供电。主要负荷为电动机。全厂总供电负荷4800kVA(包括预留),总用电负荷3200kW。 系统容量一般由当地供电部门提供,也可将供电电源出线开关的开断容量作为系统容量。根据设计院图纸,每台35kV变压器额定电流为2309.5A,额定分断电流为20kA,三台35kV变压器的总分断电流为60kA,则可认为系统容量S=3×(1.73×20(kA)×35000(V))=3×1211MVA ≈3600 MVA。实际可将上一级110kV系统设为无穷大。 二、用电设备基本情况 1.用电负荷 XX钢丝绳有限公司的主要用电负荷,拉丝车间的用电负荷为2720 kW,热处理车间负荷为240 kW,捻股合绳车间负荷为903kW等。主要设备为拉丝机,捻绳机等用电动机,全厂共拥用70台不同容量的电动机,总容量为3909kW。电动机的容量、数量(由设计院提供)见表1。 表1:电动机的容量、数量

2.用电负荷的谐波 根据我们分析,用电负荷的谐波主要来自以下几方面: (1)拉丝机的动力采用电磁调速电动机 拉丝机的动力采用电磁调速电动机,电磁调速电动机普遍采用YCT系列调速电动机,该系列调速电动机由鼠笼式异步电动机、电磁转差离合器和控制器三部分组成,能在规定的调速范围均匀地、连续地无级调速,并输出额定转矩。 控制器是将速度指令信号电压和调速电动机速度负反馈信号电压比较后,经放大电路及移相触发电路,从而控制了晶闸的开放角,改变了转差离合器的励磁电流,使调速电动机转速保持恒定。调节励磁电流即能使电动机在规定的调速范围内实现无级调速。 控制器的控制电机功率、最大输出(直流)见表2。 表2:控制器控制电机功率、最大输出(直流) (2)变频整流调速电动机 全厂有110、137kW 变频调速三相异步电机10台,总负荷1316kW,占全部电动机容量的34%。。该电机由变频整流调速装置来调速,一般采用6脉动交-直-交电流型变频器。电网通过可控硅三相全控桥给变频器供电,功率因数角约等于控制角a。供电电流包含6±1次谐波(K=1、2、3…),并且在直流电流无脉动的理想情况下,n次谐波电流含量是基波电流的1/n。实际上,直流电流脉动导致五次谐波和七次谐波含量增加,大于七次谐波的高次谐波含量减少。 (3)无功补偿装置 变频器用量较大的用户,用电容器进行无功力率补偿虽然可以大副度降低基波无功电流,但是必然出现谐波放大现象。这时,供电电流和电容器电流中谐波和间谐波电流大副度增加。(4)热处理设备 热处理设备一般采用工频感应加热整流装置,小型换流装置采用6脉冲,其运行时产生大量谐

无功补偿怎么计算

没目标数值怎么计算 若以有功负载1KW,功率因数从提高到时,无功补偿电容量: 功率因数从提高到时: 总功率为1KW,视在功率: S=P/cosφ=1/≈(KVA) cosφ1= sinφ1=(查函数表得) cosφ2= sinφ2=(查函数表得) tanφ=(查函数表得) Qc=S(sinφ1-cosφ1×tanφ)=×-×≈(千乏) 电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 计算示例 例如:某配电的一台1000KVA/400V的变压器,当前变压器满负荷运行时的功率因数cosφ =, 现在需要安装动补装置,要求将功率因数提高到,那么补偿装置的容量值多大在负荷不变的前提下安装动补装置后的增容量为多少若电网传输及负载压降按5%计算,其每小时的节电量为多少 补偿前补偿装置容量= [sin〔1/〕-sin〔1/〕]×1000=350〔KVAR〕 安装动补装置前的视在电流= 1000/〔×√3〕=1443〔A〕 安装动补装置前的有功电流= 1443×=1082〔A〕 安装动补装置后视在电流降低=1443-1082/=304 〔A〕 安装动补装置后的增容量= 304×√3×=211〔KVA〕

无功补偿容量计算

一、无功补偿装置介绍 现在市场上的无功补偿装置主要分为固定电容器组、分组投切电容器组、有载调压式电容器组、SVC与SVG。下面介绍下各种补偿装置的特点。 1) 固定电容器组。其特点就是价格便宜,运行方式简单,投切间隔时间长。但它对于补偿变化的无功功率效果不好,因为它只能选择全部无功补偿投入或全部无功补偿切出,从而可能造成从补偿不足直接补偿到过补偿,且投切间隔时间长无法满足对电压稳定的要求。而由于光照强度就是不停变化的,利用光伏发电的光伏场发出的电能也跟着光伏能力的变化而不断变化,因此固定电容器组不适应光伏场的要求,不建议光伏项目中的无功补偿选用固定电容器组。 2) 分组投切电容器组。分组投切电容器组与固定电容器组的区别主要就是将电容器组分为几组,在需要时逐组投入或切出电容器。但它仍然存在投切间隔时间长的问题,且分的组数较少,一般为2~3组(分的组数多了,投资与占地太大),仍有过补偿的可能。因此分组投切电容器组适用于电力系统较坚强、对相应速度要求较低的场所。 3) 有载调压式电容器组。有载调压式电容器组与固定电容器组的区别主要就是在电容器组前加上了一台有载调压主变。根据公式Q=2πfCU2可知,电容器组产生的无功功率与端电压的平方成正比,故调节电容器组端电压可以调节电容器组产生的无功功率。有载调压式电容器组的投切间隔时间大大缩短,由原来的几分钟缩短为几秒钟。且有载调压主变档位较多,一般为8~10档,每档的补偿无功功率不大,过补偿的可能性较小。因此分组投切电容器组适用于电力系统对光伏场要求一般的场所。 4) SVC。SVC全称为Static Var Compensator,即静态无功补偿装置。 SVC如上图所示接入系统中,电容器提供固定的容性无功Qc。电抗器提供滞后的无功,大小连续可调。可以通过控制电抗器L上串联的两只反并联可控硅的触发角α来控制电抗器吸收的

电容补偿柜的电容容量如何计算

电容补偿柜的电容容量如何计算 无功功率单位为kvar(千乏) 电网中由于有大功率电机的存在,使得其总体呈感性,所以常常在电网中引入大功率无功补偿器(其实就是大电容),使电网近似于纯阻性,Kvar就常用在这作为无功补偿电容器的容量的单位。 kvar(千乏)和电容器容量的换算公式为(指三相补偿电容器): Q=√3×U×I I=0.314×C×U/√3 C=Q/(0.314×U×U) 上式中Q为补偿容量,单位为Kvar,U为额定运行电压,单位为KV,I为补偿电流,单位为A,C为电容值,单位为F。式中0.314=2πf/1000。 例如:一补偿电容铭牌如下: 型号:BZMJ0.4-10-3 (3三相补偿电容器)。 额定电压:0.4KV 额定容量:10Kvar 额定频率:50Hz 额定电容:199uF (指总电容器量,即相当于3个电容器的容量)。 额定电流:14.4A 代入上面的公式,计算,结果相符合。 补偿电容器:主要用于低压电网提高功率因数,减少线路损耗,改善电能质量 200千瓦变压器无功补偿柜匹配电容多少最合理 一般来说,对于电动机类型的功率负荷,补偿量约为40%,对于综合配变,补偿量约为20%. 如果知道未补偿前的功率因数,那么根据公式即可以算出具体的补偿量。 可是我现在有7.5电机12台,5.5的4台,11的2台,500型电焊机15台,由于有用电高峰和低谷,在低谷时动力可下降30%,我现在用无功补偿柜里的电容器有4块14Kvar的,6块40Kvar的。据说匹配不合理,怎么样才能匹配合理。另外补偿器的读数在多少时最合适时没有罚款有奖励。

一般来说,配电变压器的无功补偿容量约为变压器容量的20%~40%,对于200KVA的配电变压器,补偿量约为40Kvar~80Kvar。准确计算无功补偿容量比较复杂,且负荷多经常变化,计算出来也无太大意义。一般设计人员以30%来估算,即选取60Kvar为最大补偿容量,也就是安装容量。 电容器补的太少,起不到多大作用,需要从网上吸收无功,功率因数会很低,计费的无功电能表要“走字”,记录正向无功;电容器补的太多,要向网上送无功,网上也是不需要的,计费的无功电能表也要“走字”,记录反向无功;供电企业在月底计算电费时,是将正向无功和反向无功加起来算作总的无功的。 供电企业一般将功率因数调整电费的标准定为0.9。若月度平均功率因数在0.9以下,就要罚款,多支出电费;若月度平均功率因数在0.9以上,就受奖励,少支出电费; 你现的无功补偿柜里的电容器有4块14Kvar的,6块40Kvar的。总补偿容量为:Q=4*14+6*40=56+240=296Kvar,远远大于最大补偿量80Kvar,全投入时用不了,反向无功会很多,不投入时又没有用途,长期带电又多个事故点,故说它匹配不合理。以30%补偿量估算,你应安装60Kvar的电容,因你已有电容器了,建议只用4台14Kvar的电容,其它的就不要了,总补偿量为56Kvar,也就近似了,能够满足要求。 要想提高功率因数,就要使电能表的“正向”和“反向”无功均不走,或少走。因而,你的电容就要根据负荷情况进行调整,你可将4台14Kvar电容器分为4组,功率因数低于0.9时,就多投入一组,功率因数高于0.98时,就少投入一组。 由于值班电工不可能长期盯着功率因数表,建议你安装“功率因数自动控制装置”,厂家很多,你可以在网上查,由“功率因数自动控制装置”自动投切4组电容,保证你的功率因数在0.9以上,就能受到奖励了。 请问如何计算无功补偿电容器的额定电流, 如40Kvar的电容器.另外10KV与0.4KV下计算有何不同? 公式:I=P/(根3×U),I表示电流,单位“安培”(A);P表示功率,单位:无功“千乏”(Kvar),有功“千瓦”(KW);根3约等于1.732;U表示电压,单位“千伏”(KV)。 I=40/(1.732×10)…………(10KV的电容) I=2.3(A) I=40/(1.732*0.4)…………(0.4KV的电容) I=57.7(A)。 例如:某工地上有1台空压机,功率为132KW,额定电流为258.6A,测到的功率因数为0.76,现在要想把功率因数提高到0.95,该补偿多大的电容。

110KV电力网最大负荷下的无功补偿和调压计算

学号1350803111 《电力系统稳态分析》 课程设计 题目:110kv电力网最大负荷下的无功补偿和调压计算系院:物理与机电工程学院 专业:电气工程及其自动化131班 作者:伟 指导教师:永科职称:副教授 完成日期: 2 0 1 6 年06 月12

河西学院本科生课程设计任务书

目录 摘要 (1) 第1章原始数据及设计要求 (2) 1.1节点负荷与电力网接线图 (2) 1.2 设计容及要求 (2) 第2章无功补偿原理及方法 (3) 2.1无功补偿设计原理 (3) 2.2无功补偿的一般方法 (4) 2.3无功补偿装置的分类 (5) 2.3.3静止无功补偿器 (6) 2.4 无功功率与电压的调整 (7) 第3章电力系统的参数计算 (9) 3.1已知的系统参数 (9) 3.2各系统元件参数计算 (9) 第4章负荷节点的无功补偿 (10) 4.1无功补偿的相关计算 (11) 4.2电容组的选择 (11) 第5章无功补偿后电网的潮流计算 (11) 5.1变电所T-2的功率损耗和潮流计算 (11) 5.2线路L耗和潮流计算-2的功率损 (13) 5.3变电所T-3的功率损耗和潮流计算 (13) 5.4线路L-1的功率损耗和潮流计算 (14) 5.5变电所T-1的功率损耗和潮流计算 (15) 第6章电路系统的调压计算 (16) 6.1调整电压的必要性 (16) 总结 (17)

摘要 随着我国经济建设的不断发展,电网的工作运行收到极大的考验,目前许多变电站普遍存在负荷过重的情况,需要假装无功补偿装置来提高电网输送能力。本文根据电网变压器线路无功损耗产生机理,详细阐述了220KV变电站电力变压器无功补偿计算方法,以提高输电设备的利用率,降低电力系统设备的损耗和有功网损,减少能耗和发电费用,最后对最优方案进行调压计算。 关键字:电力网无功补偿调压计算

补偿的容量的计算方法如下

补偿的容量的计算方法如下:首先需要计算有功。P=560*0.33=185KW ,无功为Q=185*tg(arccos0.33)=528Kvr,补偿后有功不变,设补偿后的功率因数为:0.92, 补偿后无功Q=P*tg(arccos0.92)=78Kvar 二者相减即为需要补偿的量:528-78=450Kvar,以上是安装变压器的最大负荷计算的,如果你的视在功率没有那么大,那么同等按照S=1.732*U*I得出视在功率,带入上市即可计算。 变压器空载状态下电流很小,S9系列的变压器空载电流约为额定电流的1.6~2%,空载电流可以近似全部等效为无功电流。 如果变压器的容量较小,空载变压器的无功消耗也很小,可以不加补偿,如果变压器容量较大,可以考虑加电容器补偿。应注意,补偿变压器自身的无功损耗应该在高压侧补偿 月平均功率因数为0.3是用电量过少导致的,一般负载的平均功率因数约0.7 附近,若从0.7提高到0.9(补偿略高于标准0.85)时,每KW负载需电容补偿量为0.536KVra,需总电容量: 160×0.8×0.536≈69(KVra) 以每个电容为16KVra,按5个组成一个自动投切电容补偿柜计,价格约6000元附近。 因月用电量过少,变压器无功损耗最低限额约3460度(不用电也是该数),这部分在低压计量时是以无功电表度数相加后计算的,尽管视在功率因数补偿接近0.9也是不能达标的,若有功月电量越过1.5万度才有可能达标。用电量过少最好是变压器降容,小于100KVA不考核功率因数。 参考月平均功率因数公式就会明白其中关系的。 我们单位现在用的是315KVA的三项变压器,现在2次侧的每项电流是100A,应时下社会的节能要求,我想把它换成160KVA的,容量是否可以?冗余多少容量?还想问的是我换成160KVA的以后,相比原来的315KVA的,每年能为单位节省多少电量,请给出答案并列出计算依据。谢谢。 最佳答案 以下只是估算: 1》315KVA变压器的二次侧电流才100A附近,显然有功变损是以固定(底额)电度额结算的,每月有功变损电量约1380度;而160KVA二次侧电流额定电流约231A,有功变损基本上也是以固定(底额)电度额结算的,每月有功变损电量约705度,每年能节省电量: 1380-705×12=8100(度) 2》315KVA变压器无功变损电量约6600度,因用电量过小,月结功率因数应很低,约≤0.5,因不达标的(标准为0.9)要求每月被罚款≥5000元。

负荷计算方法无功功率补偿

第二章 高压供电系统设计 2.1负荷计算 为了确定供电系统中各个环节的电力负荷的大小,以便正确地选择供电系统中的各个元件(包括电力变压器、导线、电缆等)。对电力负荷进行统计计算成为必要。 通过负荷的统计计算求出的用来按发热条件选择供电系统中组成元件的负荷值称为计算负荷。计算负荷是供电设计计算的基本依据,计算负荷确定的是否正确合理,将直接影响到电器和导线选择是否经济合理。如计算负荷确定过大,将使电器和导线选得过大,造成投资和有色金属的浪费。反之,又将使电器和导线运行时增加电能损耗,并产生过热引起绝缘过早老化、甚至烧毁现象,以致发生事故。同样给国家财产造成损失。由此可见,正确确定负荷具有重要意义。 2.1.1确定计算负荷的方法 我国目前采用的确定计算负荷的方法有:需要系数法、二项式法、以概率论为理论基础的利用系数法、和我国设计部门提出的“ABC ”等。下面简单介绍各种方法的特点。 1、按需要系数法确定计算负荷 需要系数30fZ t X e l Sb K K P K P ηη∑?==?;它与用电设备组的平均加权负荷系数fZ K 、同时运行系数t K 、电动机的平均加权效率Sb η以及网路供电效率l η等系数有关,且X K 值恒小于1。 (1)单台用电设备计算负荷: ηed jS P P = ; jS P --------- 计算负荷,ed P ---------- 电动机的额定容量, η--------- 电动机额定负荷时的效率 对于单个设备如白炽灯、电热器、电炉等。设备容量P sb : P js =P sb (2)成组用电设备的负荷计算 计算负荷表达式: e x jS P K P = ; jS jS Q P tg ?= jS P ----计算负荷有功功率 jS Q ------------ 无功功率 K x --------需要系数 tg ?-------- 功率因数角对应的正切值 (3)多组用电设备的负荷计算

相关文档
最新文档