第3讲 度量空间的可分性与完备性

第3讲 度量空间的可分性与完备性
第3讲 度量空间的可分性与完备性

泛函分析知识点

泛函分析知识点 知识体系概述 (一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子 1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得?x,y,z ∈X,下列距离公理成立: (1)非负性:d(x,y)≥0,d(x,y)=0?x=y; (2)对称性:d(x,y)=d(y,x); (3)三角不等式:d(x,y)≤d(x,z)+d(z,y); 则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间 例1 离散的度量空间 例2 序列空间S 例3 有界函数空间B(A) 例4 可测函数空M(X) 例5 C[a,b]空间 即连续函数空间 例6 l 2 第二节 度量空间中的极限,稠密集,可分空间 1. 开球 定义 设(X,d )为度量空间,d 是距离,定义 U(x 0, ε)={x ∈X | d(x, x 0) <ε} 为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限 定义 若{x n }?X, ?x ∈X, s.t. ()lim ,0n n d x x →∞ = 则称x 是点列{x n }的极限. 3. 有界集 定义 若()(),sup ,x y A d A d x y ?∈=<∞,则称A 有界 4. 稠密集 定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ?,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。 5. 可分空间 定义 如果X 有一个可数的稠密子集,则称X 是可分空间。 第三节 连续映射 1.定义 设X=(X,d),Y=(Y , ~ d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任 意给定的正数ε,存在正数0δ>,使对X 中一切满足 ()0,d x x δ < 的x ,有 ()~ 0,d Tx Tx ε <,

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

空间统计-空间自相关分析

空间自相关分析 1.1 自相关分析 空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。 空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。 1.1.1 全局空间自相关分析 全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。 Moran's I 系数公式如下: 11 2 11 1 ()()I ()()n n ij i j i j n n n ij i i j i n w x x x x w x x =====--= -∑∑∑∑∑(式 错误!文档中没有指定样式的文字。-1) 其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。 Moran's I 的Z-score 得分检验为:

泛函分析题1.2完备化答案

泛函分析题1_2完备化p13 1.2.1 (空间S) 令S为一切实(或复)数列 x = ( ξ1, ξ2, ..., ξn, ... ) 组成的集合,在S中定义距离为 ρ(x, y) = ∑k ≥ 1 (1/2k) · | ξk -ηk |/(1 + | ξk -ηk | ), 其中x = ( ξ1, ξ2, ..., ξk, ... ),y = ( η1, η2, ..., ηk, ... ).求证S为一个完备的距离空间.证明:(1) 首先证明ρ是S上的距离. ρ的非负性和对称性是显然的; 因为实函数f (t) = t /(1 + t ) = 1 - 1/(1 + t )在[0, +∞)严格单调增, 故对任意a, b∈ ,有 | a |/(1 + | a |) + | b |/(1 + | b |) ≥ | a | /(1 + | a | + | b |) + | b |/(1 + | a | + | b |) = ( | a | + | b | )/(1 + | a | + | b |) ≥ ( | a + b | )/(1 + | a + b |), 由此可立即得知ρ在S上满足三角不等式. 所以,ρ是S上的距离,从而(S, ρ)为距离空间. (2) 设{x n}是S中的一个Cauchy列,记x n = ( ξ1(n), ξ2(n), ..., ξk(n), ... ). 则?k∈ +,(1/2k) · | ξk(n)-ξk(m)|/(1 + | ξk(n)-ξk(m)| ) ≤ρ(x n, x m) → 0 (m, n→∞)., 因此| ξk(n)-ξk(m)| → 0 (m, n→∞). 故{ξk(n)}n ≥ 1是 (或 )中的Cauchy列,因此也是收敛列. 设ξk(n)→ξk ( n→∞),并设x = ( ξ1, ξ2, ..., ξk, ... ),则x∈S. 下面证明ρ(x n, x)→ 0 ( n→∞). ?ε > 0,存在K∈ +,使得∑k > K (1/2k) < ε /2. 又存在N∈ +,使得?n∈ +,当n > N时,?k≤K都有| ξk(n)-ξk | < ε /2. 此时,ρ(x n, x) = ∑k ≥ 1 (1/2k) · | ξk(n)-ξk |/(1 + | ξk(n)-ξk | ) = ∑k ≤K (1/2k)·| ξk(n)-ξk |/(1 + | ξk(n)-ξk | ) + ∑k > K (1/2k)·| ξk(n)-ξk |/(1 + | ξk(n)-ξk | ) ≤∑k ≤K (1/2k)·| ξk(n)-ξk | + ∑k > K (1/2k) < (ε /2) ·∑k ≤K (1/2k) + ε /2 < ε /2 + ε /2 = ε. 所以,x n→x ( n→∞). 因此S中的Cauchy列都是收敛列,故S为完备距离空间. 1.2.2 在一个度量空间(X, ρ)上,求证:基本列是收敛列,当且仅当其中存在一串收敛子列. 证明:必要性是显然的,只证明充分性. 设{x n}是X中的一个Cauchy列,且{x n}有一个收敛子列{x n(k)},记x n(k) →x. ?ε > 0,存在N∈ +,使得?m, n≥N都有ρ(x n, x m) < ε /2.

空间计量经济学分析

空间计量经济学分析 空间依赖、空间异质性 ?传统的统计理论是一种建立在独立观测值假定基础上的理论。然而,在现实世界中,特别是遇到空间数 据问题时,独立观测值在现实生活中并不是普遍存在的(Getis, 1997)。 ?对于具有地理空间属性的数据,一般认为离的近的变量之间比在空间上离的远的变量之间具有更加密切 的关系(Anselin & Getis,1992)。正如著名的Tobler地理学第一定律所说:“任何事物之间均相关,而离的较近事物总比离的较远的事物相关性要高。”(Tobler,1979) ?地区之间的经济地理行为之间一般都存在一定程度的Spatial Interaction,Spatial Effects):Spatial Dependence and Spatial Autocorrelation)。 ?一般而言,分析中涉及的空间单元越小,离的近的单元越有可能在空间上密切关联(Anselin & Getis, 1992)。 ?然而,在现实的经济地理研究中,许多涉及地理空间的数据,由于普遍忽视空间依赖性,其统计与计量 分析的结果值得进一步深入探究(Anselin & Griffin, 1988)。 ?可喜的是,对于这种地理与经济现象中常常表现出的空间效应(特征)问题的识别估计,空间计量经济 学提供了一系列有效的理论和实证分析方法。 ?一般而言,在经济研究中出现不恰当的模型识别和设定所忽略的空间效应主要有两个来源(Anselin, 1988):空间依赖性(Spatial Dependence)和空间异质性(Spatial Heterogeneity)。 空间依赖性 ?空间依赖性(也叫空间自相关性)是空间效应识别的第一个来源,它产生于空间组织观测单元之间缺乏 依赖性的考察(Cliff & Ord, 1973)。 ?Anselin & Rey(1991)区别了真实(Substantial)空间依赖性和干扰(Nuisance)空间依赖性的不同。 ?真实空间依赖性反映现实中存在的空间交互作用(Spatial Interaction Effects), ?比如区域经济要素的流动、创新的扩散、技术溢出等, ?它们是区域间经济或创新差异演变过程中的真实成分,是确确实实存在的空间交互影响, ?如劳动力、资本流动等耦合形成的经济行为在空间上相互影响、相互作用,研发的投入产出行为及政策 在地理空间上的示范作用和激励效应。 ?干扰空间依赖性可能来源于测量问题,比如区域经济发展过程研究中的空间模式与观测单元之间边界的 不匹配,造成了相邻地理空间单元出现了测量误差所导致。 ?测量误差是由于在调查过程中,数据的采集与空间中的单位有关,如数据一般是按照省市县等行政区划 统计的,这种假设的空间单位与研究问题的实际边界可能不一致,这样就很容易产生测量误差。 ?空间依赖不仅意味着空间上的观测值缺乏独立性,而且意味着潜在于这种空间相关中的数据结构,也就 是说空间相关的强度及模式由绝对位置(格局)和相对位置(距离)共同决定。 ?空间相关性表现出的空间效应可以用以下两种模型来表征和刻画:当模型的误差项在空间上相关时,即 为空间误差模型;当变量间的空间依赖性对模型显得非常关键而导致了空间相关时,即为空间滞后模型(Anselin,1988)。 空间异质性 ?空间异质性(空间差异性),是空间计量学模型识别的第二个来源。 ?空间异质性或空间差异性,指地理空间上的区域缺乏均质性,存在发达地区和落后地区、中心(核心) 和外围(边缘)地区等经济地理结构,从而导致经济社会发展和创新行为存在较大的空间上的差异性。 ?空间异质性反映了经济实践中的空间观测单元之间经济行为(如增长或创新)关系的一种普遍存在的不 稳定性。 ?区域创新的企业、大学、研究机构等主体在研发行为上存在不可忽视的个体差异,譬如研发投入的差异 导致产出的技术知识的差异, ?这种创新主体的异质性与技术知识异质性的耦合将导致创新行为在地理空间上具有显著的异质性差异, 进而可能存在创新在地理空间上的相互依赖现象或者创新的局域俱乐部集团。 ?对于空间异质性,只要将空间单元的特性考虑进去,大多可以用经典的计量经济学方法进行估计。 ?但是当空间异质性与空间相关性同时存在时,经典的计量经济学估计方法不再有效,而且在这种情况下,

13 度量空间的可分性与完备性

1.3度量空间的可分性与完备性 在实数空间R中,有理数处处稠密,且全体有理数是可列的,我们称此性质为实数空间R 的可分性.同时,实数空间R还具有完备性,即R中任何基本列必收敛于某实数.现在我们将这些概念推广到一般度量空间. 1.3.1 度量空间的可分性 定义1.3.1设X是度量空间,,A B X ?,如果B中任意点x B ∈的任何邻域(,) O xδ内都含有A的点,则称A在B中稠密.若A B ?,通常称A是B的稠密子集. 注1:A在B中稠密并不意味着有A B ?.例如有理数在无理数中稠密;有理数也在实数中稠密.无理数在有理数中是稠密的,无理数在实数中也是稠密的,说明任何两个不相等的实数之间必有无限多个有理数也有无限多个无理数. 定理1.3.1设(,) X d是度量空间,下列命题等价: (1) A在B中稠密; (2) x B ?∈,{} n x A ??,使得lim(,)0 n n d x x →∞ =; (3) B A ?(其中A A A ' =,A为A的闭包,A'为A的导集(聚点集)); (4) 任取0 δ>,有(,) x A B O xδ ∈ ?.即由以A中每一点为中心δ为半径的开球组成的集合覆盖B. 证明按照稠密、闭包及聚点等相关定义易得. 定理1.3.2稠密集的传递性设X是度量空间,,, A B C X ?,若A在B中稠密,B在C 中稠密,则A在C中稠密. 证明由定理1.1知B A ?,C B ?,而B是包含B的最小闭集,所以B B A ??,于是有C A ?,即A在C中稠密.□ 注2:利用维尔特拉斯定理可证得{定理(Weierstrass多项式逼近定理) 闭区间[,] a b上的每一个连续函数都可以表示成某一多项式序列的一致收敛极限.} (1)多项式函数集[,] P a b在连续函数空间[,] C a b中稠密. 参考其它资料可知:

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d()与之对应,而且这一对 应关系满足下列条件: 1°d()≥0 ,d()=0 ?x=y(非负性) 2°d()= d() (对称性) 3°对?z ,都有d()≤d()() (三点不等式) 则称d()是x、y之间的度量或距离(或),称为 ()度量空间或距离空间()。 (这个定义是证明度量空间常用的方法)

注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(),只要 满足1°、2°、3°都称为度量。这里“度量”这个名 称已由现实生活中的意义引申到一般情况,它用来描 述X 中两个事物接近的程度,而条件1°、2°、3°被 认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个 集合X 上若有两个不同的度量函数1d 和2d ,则我们认为 (X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观 起见,今后称度量空间()中的元素为“点” ,例如若 x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间()时可以省略度量函数d ,而称“度 量空间X ” 。 1.1举例 1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点∈X ,令 ()1x y d x y =0x=y ≠??? ,当,,当,则称(X ,d )为离散度量空间。 1.12 序列空间S :S 表示实数列(或复数列)的全体,d()=1121i i i i i i ?η?η∞=-+-∑; 1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界

泛函分析度量空间知识和不动点的应用

泛函分析度量空间知识和不动点的应用 第七章度量空间和赋范线性空间知识总结 一、度量空间的例子 定义:设X 为一个集合,一个映射d :X ×X →R 。若对于任何x,y,z 属于X ,有 (I )(正定性)d(x,y )≥0,且d(x,y)=0当且仅当 x = y ; (Ⅱ)(对称性)d(x,y)=d(y,x ); (Ⅲ)(三角不等式)d(x,z )≤d(x,y)+d(y,z ) 则称d 为集合X 的一个度量(或距离)。称偶对(X ,d )为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。根据定义引入度量空间有离散的度量空间、序列空间、有界函数空间、可测函数空间、C 【a ,b 】空间、2l 空间,这6个空间是根据度量空间的定义可证它们是度量空间,在后面几节中给出它们相关的性质。 二、度量空间中的极限,抽密集,可分空间: 证明极限有二种方法: 1、定义法:设{}n x 是(X ,d )中点列,如果存在x ∈X ,是lim (,)n x d x x →∞ =0,则称点列{} n x 是(X ,d )中的收敛点列,x 是点列{}n x 的极限。 2、M 是闭集是充要条件是M 中任何收敛点列的极限都在M 中。即若n x M ∈,n=1、,2……, n x x →,则x M ∈。 给出n 维欧氏空间、C[a,b]序列空间、可测函数空间中点列收敛的具体意义,由这些系列例子可以看到,尽管在各个具体空间中各种极限概念不完全一致,所以我们引入度量空间中的稠密子集和可分空间的概念,根据定义可得出n 维欧氏空间n R 是可分空间,坐标为有理数的全体是n R 的可数稠密集,离散度量空间X 可分的充要条件为X 是可数集。l ∞ 是不可分空间。 三、连续映射 证明度量空间的连续映射有四种方法: 1、定义法:设X=(X ,d ),Y=(Y ,d )是两个度量空间,T 是X 到Y 中的映射,0 x X ∈,如果对于任意给定的正数ε,存在正数δ 0,使对X 中一切满足d (x ,0x )δ 的x ,有 (,)d Tx Tx ε ,则称T 在0x 连续。 2、对0Tx 的每个ε-领域U ,必有0x 得某个δ—邻域V 使TV ?U ,其中TV 表示V 在映射T 作用下的像。 3、定理1:设T 是度量空间(X ,d )到度量空间(Y ,d )中的映射,那么T 在0 x X ∈连

拓扑空间与度量空间性质异同浅析论文

拓扑空间与度量空间性质异同浅析摘要:拓扑空间是度量空间的延伸,是用抽象化的语言来阐述相关概念,蕴含着丰富的性质。本文将拓扑空间中一些性质与度量空间中的一些性质做了一些比较,特别是对拓扑空间中相关反例进行了研究。 关键词:拓扑空间,度量空间,可分性 拓扑空间和度量空间是数学专业的最基本内容之一,研究他们的基本定义和相关性质是后续研究的重要基础,下面我们将其相关定义和性质进行梳理。 一、相关定义 拓扑空间的定义如下: 定义1. 设x是一非空集合,x的一个子集族称为x的一个拓扑,如果它满足: (1)都包含在中 (2)中任意多个成员的并集仍在中 (3)中有限多个成员的交集仍在中 度量空间的定义如下: 定义2. 集合x上的一个度量是一个映射:,它满足 (1)正定性. , ,, 当 (2)对称性. , (3)三角不等式. , 当集合x上规定了一个度量后,称为度量空间。从相关定义中看出,若将度量空间中的开子集取作球形邻域,则拓扑空间是度量空间的推广。常见的度量空间有下面的一些例子:

例1:欧氏空间赋予距离拓扑后为度量空间。 例2:空间x赋予如下度量:,则x为度量空间。 例3:对实数上的闭区间上连续函数空间,我们可以赋予如下最大模范数诱导的度量,即任意两个连续函数的的距离为这两函数差的最大模,同样对于可导函数,光滑函数都有类似的定义。 例4:在辛几何中,在哈密顿微分同胚群中hofer曾定义了如下度量: 从其诱导的范数称为hofer范数,该范数是研究辛拓扑、辛嵌入的强有力武器。 二、相关性质 度量空间中许多性质都发源于欧氏空间,它们满足、、、分离公理与、可数公理,但有许多性质到拓扑空间就不再保持。例如可分性就不再保持。 命题1:可分度量空间的子空间也是可分的。 证明:不妨假设x是可分的度量空间,a是x的子空间,b为x的可数稠密子集。下面证明为a的可数稠密子集。 首先证明为a的可数子集。因为b为可数子集,可数集的子集仍为可数集,所以为a的可数子集。 其次证明为a的稠密子集,此时需要在子空间拓扑下讨论,即需证明a中任何开集与的交不空,由子空间拓扑定义,a中开集u为x中开集p与a的交,即.又因为b为x的稠密子集,即x的任何开集与b的交非空。所以,从而得证。 但可分拓扑空间的子空间一般是不可分的,例子参见[1]。

度量空间的可分性与完备性

1.3 度量空间的可分性与完备性 在实数空间R 中,有理数处处稠密,且全体有理数是可列的,我们称此性质为实数空间R 的可分性.同时,实数空间R 还具有完备性,即R 中任何基本列必收敛于某实数.现在我们将这些概念推广到一般度量空间. 1.3.1 度量空间的可分性 定义1.3.1 设X 是度量空间,,A B X ?,如果B 中任意点x B ∈的任何邻域(,)O x δ内都含有A 的点,则称A 在B 中稠密.若A B ?,通常称A 是B 的稠密子集. 注1:A 在B 中稠密并不意味着有A B ?.例如有理数在无理数中稠密;有理数也在实数中稠密.无理数在有理数中是稠密的,无理数在实数中也是稠密的,说明任何两个不相等的实数之间必有无限多个有理数也有无限多个无理数. 定理1.3.1 设(,)X d 是度量空间,下列命题等价: (1) A 在B 中稠密; (2) x B ?∈,{}n x A ??,使得lim (,)0n n d x x →∞ =; (3) B A ?(其中A A A '=U ,A 为A 的闭包,A '为A 的导集(聚点集)); (4) 任取0δ>,有(,)x A B O x δ∈?U .即由以A 中每一点为中心δ为半径的开球组成的集合 覆盖B . 证明 按照稠密、闭包及聚点等相关定义易得. 定理1.3.2 稠密集的传递性 设X 是度量空间,,,A B C X ?,若A 在B 中稠密,B 在C 中稠密,则A 在C 中稠密. 证明 由定理1.1知B A ?,C B ?,而B 是包含B 的最小闭集,所以B B A ??,于是有C A ?,即A 在C 中稠密.□ 注2:利用维尔特拉斯定理可证得{定理(Weierstrass 多项式逼近定理) 闭区间[,]a b 上的每一个连续函数都可以表示成某一多项式序列的一致收敛极限.} (1)多项式函数集[,]P a b 在连续函数空间[,]C a b 中稠密. 参考其它资料可知: (2)连续函数空间[,]C a b 在有界可测函数集[,]B a b 中稠密. (3)有界可测函数集[,]B a b 在p 次幂可积函数空间[,]p L a b 中稠密(1p ≤<+∞). 利用稠密集的传递性定理1.3.2可得: (4)连续函数空间[,]C a b 在p 次幂可积函数空间[,]p L a b 中稠密(1p ≤<+∞). 因此有[,][,][,][,]p P a b C a b B a b L a b ???. 定义1.3.2 设X 是度量空间,A X ?,如果存在点列{}n x A ?,且{}n x 在A 中稠密,则称A 是可分点集(或称可析点集).当X 本身是可分点集时,称X 是可分的度量空间.

[指南]第一章 度量空间-黎永锦

[指南]第一章度量空间-黎永锦 第1章度量空间 在1900年巴黎数学家大会上我曾毫不犹豫 地把十九世纪称为函数论的世纪. V. Volterra(伏尔泰拉) (1860-1940, 意大利数学家) 泛函分析这一名称是由法国数学家P. Levy引进 的. 在十九世纪后期,许多数学家已经认识到数学中许 多领域处理的是作用在函数上的变换或者算子,推动 创立泛函分析的根本思想是这些算子或变换可以看作 某类函数上算子的抽象形式,把这类函数全体看成空 间,而每个函数就是空间的点,算子或变换就把点变成 点,将函数变成实数或复数的算子就称为泛函.泛函的 抽象理论是由V. Volterra(1860-1940)在关于变分法的 P. Levy (1886-1971)

工作中最先研究的,但在建立函数空间和泛函的抽象理论中,第一个卓越的成果是由法国数学家M. Frechet 1906年在他的博士论文中得到的. 1. 1 度量空间 M. Frechet是法国数学家,他1906年获得博士学位. M. Frechet的博士论文 开创了一般拓扑学,G. Cantor, C. Jordan, G. Peano, E. Borel和其他数学家发展了有限维空间的点集理论. V. Volterra, G. ascoli和J. Hadamard等开始把实值函数作为空间的 点来考虑. M. Frechet的博士论文统一了这两种思想,并建立了一个公理结构. 他给出收敛序列的极限的一组公理,然后定义了闭集、内点和完备集等基本概念,还引入了相对列紧性和列紧性,并得到了列紧集的基本性质,在他的博士论文中,M. Frechet第一次给出了度量空间的公理. d:X,X,R定义 1.1.1 若是一个非空集合,是满足下列条件的实值函数,X 对于任意,有 x,y,X (1) 当且仅当; x,yd(x,y),0 (2) d(x,y),d(y,x); (3) . d(x,y),d(x,z),d(y,z) X则称d为上的度量,称为度量空间. (X,d) 明显地,由(3)可知 ,故由(2)可知,d(x,y),d(y,x),d(x,x)d(x,y),0 d因此是一个非负函数. EXX若是一个度量空间,是的非空子集,则明显地也是度量空间,称(E,d) 为的度量子空间. (E,d)(X,d) R例1.1.1 若是实数集,定义,则容易看出是度量空间. d(x,y),|x,y|(R,d) X例1.1.2 对于任意一个非空集,只需定义 ,0,当 x , y 时,d(x,y) = ,,1当 x , y 时.,

泛函分析中的度量空间

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 1、度量空间 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 例:实数带有由绝对值给出的距离函数d(x, y) = |y?x|,和更一般的欧几里得n维空间带有欧几里得距离是完备度量空间 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔

伯特空间。 例:任何赋范向量空间通过定义d(x, y) = ||y?x|| 也是度量空间。 (如果这样一个空间是完备的,我们称之为巴拿赫空间)。例:曼哈顿范数引发曼哈顿距离,这里在任何两点或向量之间的距离是在对应的坐标之间距离的总和。 3、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 4、巴拿赫空间 巴拿赫空间理论(Banach space)是192O年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广。

泛函分析习题1

线性与非线性泛函分析◇ - 1 - 习题1 1.(张燕石淼)设在全体实数R 上,定义两个二元映射2(,)()x y x y ρ=-和 (2) (,)d x y ,证明(1)(,)ρR 不是度量空间;(2)(,)d R 是度量空间. 2.(范彦勤孙文静)设X ρ(,)为度量空间,:f ∞→∞[0,+][0,+]为严格单调函数,且满足 ,x y f ?∈∞[0,+],(0)=0,()()()f x y f x f y +≤+,令(,)((,))d x y f x y ρ=,证明X d (,)为度量空间. 3. (武亚静张丹)设X d (,)为度量空间,证明,,,x y z w X ?∈有 (,)(,)(,)(,)d x z d y w d x y d z w -≤+. 4.(崔伶俐杨冰)设全体实数列组成的集合为{}123(,,,....,...)|,1,2,...n i X x x x x x R i =∈=,对于 123(,,,....,...)n x x x x x =及12(,,...,...)n y y y y =∈X ,定义11(,)12k k k k k k x y d x y x y ∞ =-=+-∑ .证明 X d (,)为度量空间. 5.设()X n 为0和1组成的n 维有序数组,例如(3){000,001,010,011,100,101,110,111}X =,对于任意的,()x y X n ∈,定义(,)d x y 为x 和y 中取值不同的个数,例如在(3)X 中,(110,111)1d =, (010,010)0d =(010,101)3d =.证明((),)X n d 为度量空间. 6.(苏艳丁亚男)设X d (,)为度量空间, A X ?且A ≠φ.证明A 是开集当且仅当A 为开球的并. 7.(张振山赵扬扬)设X d (,)和Y ρ(,)是两个度量空间.那么映射:f X Y →是连续映射当且仅当Y 的任意闭子集F 的原象1()f F -是X 中的闭集. 8.(王林何超)设{}n x 与{}n y 是度量空间X d (,)的两个Cauchy 列.证明(),n n n a d x y =是收敛列. 9.(李敬华孙良帅)设X d (,)和Y ρ(,)是两个度量空间,在X Y ?上定义度量 112212121 ((,),(,)){[(,)][(,)]}p p p x y x y d x x d y y γ=+,其中1122(,),(,)x y x y X Y ∈?,1p ≥为正数.证明 X Y ?是完备空间当且仅当X d (,)和Y ρ(,)均是完备空间. 10.(李秀峰钱慧敏)设X d (,)是完备的度量空间,{}11n G x G ∈是X 中的一列稠密的开子集,证明1n n G ∞ = 也是X 中的稠密子集. 11.(王胜训闫小艳)设n A ?R ,证明A 是列紧集当且仅当A 是有界集. 12 (冯岩盛谢星星)设X d (,)为度量空间,A X ?且A φ≠.证明 (1){|,(,)}x x X d x A ε∈<是X 的开集. (2){|,(,)}x x X d x A ε∈≤是X 的闭集,其中0ε>.

泛函分析第七章 习题解答125

第七章习题解答 1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2.设],[b a C ∞ 是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明(1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 21 ),()()()()(0 t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞ 按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞ =1。 证明令n n n o n n B x d Bo o .2,1},1 ),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1 ),(10< 。设,0),(110>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是开集 显然B o n n ??∞ =1 。若n n o x ∞ =?∈1则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此)(∞?→??→? n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞ =1 。 4.设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d += 是X 上的距离。 证明(1)若0),(___ =y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而 t t +1在),[∞o 上是单增函数,于是) ,(),(1) ,(),(),(),(1),(),(___ ___ z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+=

完备空间

完备空间 完备空间或者完备度量空间是具有下述性质的空间:空间中的任何柯西序列都收敛在该空间之内。 例子 ?有理数空间不是完备的,因为的有限位小数表示是一个柯西序列,但是其极限不在有理数空间内。 ?实数空间是完备的 ?开区间(0,1)不是完备的。序列(1/2, 1/3, 1/4, 1/5, ...)是柯西序列但其不收敛到任何(0, 1)中的点。 ?令S为任一集合,S N为S中的所有序列,定义S N上序列(x n)和(y n)的距离为1/N,其中若的最小索引存在则N为该索引否则N为0。按此方式定义的度量空间是完备的。该空间同胚于离散空间S的可数个副本的积。 [编辑]直观理解 直观上讲,一个空间完备就是指“没有孔”且“不缺皮”,两者都是某种“不缺点”。没有孔是指内部不缺点,不缺皮是指边界上不缺点。从这一点上讲,一个空间完备同一个集合的闭包是类似的。这一类似还体现在以下定理中:完备空间的闭子集是完备的。 [编辑]相关定理 ?任一紧致度量空间都是完备的。实际上,一个度量空间是紧致的当且仅当该空间是完备且完全有界的。 ?完备空间的任一子空间是完备的当且仅当它是一个闭子集。 ?若X为一集合,M是一个完备度量空间,则所有从X映射到M的有界函数f的集合B(X, M)是一个完备度量空间,其中集合B(X, M)中的距离定义为:

?若X为一拓扑空间,M是一个完备度量空间,则所有从X映射到M的连续有界函数f的集合C b(X,M)是B(X, M)(按上一条目的定义)中的闭子集,因而也是完备的。 ?贝尔纲定理:任一完备度量空间为一贝尔空间。就是说,该空间的可数个无处稠密子集的并集无内点。 [编辑]完备化 [编辑]定义 对任一度量空间M,我们可以构造相应的完备度量空间M'(或者表示为),使得原度量空间成为新的完备度量空间的稠密子空间。M'具备以下普适性质:若N为任一完备度量空间,f为任一从M到N的一致连续函数,则存在唯一的从M'到N的一致连续函数f'使得该函数为f的扩展。新构造的完备度量空间M'在等距同构意义下由该性质所唯一决定,称为M的完备化空间。 以上定义是基于M是M'的稠密子空间的概念。我们还可以将完备化空间定义为包含M的最小完备度量空间。可以证明,这样定义的完备化空间存在,唯一(在等距同构意义下),且与上述定义等价。 对于交换环及于其上的模,同样可以定义相对于一个理想的完备性及完备化。详见条目完备化 (环论)。 [编辑]构造 类似于从有理数域出发定义无理数的方法,我们可以通过柯西序列给原空间添加元素使其完备。 对M中的任意两个柯西序列x=(x n) 和y=(y n),我们可以定义它们间的距离: d(x,y) = lim n d(x n,y n)(实数域完备所以该极限存在)。按此方式定义的度量还只是伪度量,这是因为不同的柯西序列均可收敛到0。但我们可以象很多情况中所做的一样(比如从L p到),将新的度量空间定义为所有柯西序列的集合上的等价类的集合,其中等价类是基于距离为0的关系(易于验证该关系是等价 关系)。这样,令ξx= {y是M上的柯西序列:},M'={ξx:x ∈ M},原空间M就以xξx的映射方式嵌入到新的完备度量空间M'中。易于验证,M 等距同构于M'的稠密子空间。 康托法构造实数是该完备化方法的一个特例:实数域是有理数域作为以通常的差的绝对值为距离的度量空间的完备化空间。

浅谈度量空间资料

度 量 空 间 摘要:度量空间是一类特殊的拓扑空间,并且它是理解拓扑空间的一个重要过 程. 因此,本文通过度量空间的基本概念,力图给出度量空间的一些重要性质. 并且引入一些度量空间的其它性质. 关键词: 度量空间 导集 闭集 正文:度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的 抽象空间.19世纪末叶,德国数学家G .康托尔创立了集合论,为各种抽象空间的建立奠定了基础.20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念. 1.度量空间的定义 度量空间是一类特殊的拓扑空间,它对于拓扑空间的理解起着非常重要的作用.因此,研究度量空间的一些性质是必要的.为了证明这些性质,首先介绍以下定义. 定义1.1 设X 是一个集合,若对于X 中任意两个元素y x ,都有唯一确定的实数()y x p ,与之对应,而且这一对应关系满足下列条件: (1)正定性 ()0,≥y x p ,并且()y x p ,0=当且仅当y x =; (2)对称性 ()y x p , =()y x p ,; (3)三角不等式 ()()()z y p y x p z x p ,,,+≤.则称p 是集合X 的一个度量,同时将()p X ,称为度量空间或距离空间. X 中的元素称为点,条件(3)称为三点不等式. 定义1.2 设()p X ,是一个度量空间,∈x X .对于任意给定的实数0>ε,集合(){}ε<∈y x p X y ,,记作()ε,x B ,称为一个以x 为中心,以ε为半径的球形邻域,简称为x 的一个球形邻域.

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、 度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (非负性) 2°d(x,y)= d(y,x) (对称性) 3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式) 则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空 间或距离空间(metric space )。 (这个定义是证明度量空间常用的方法) 注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为 度量。这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。 1.1举例

相关文档
最新文档