空间关联性分析

空间关联性分析

空间关联性分析:

根本出发点是基于地理学第一定律,指一个区域分布的地理事物的某一属性和其它所有事物的同种属性之间的关系。空间自相关的基本度量是空间自相关系数,由空间自相关系数来测量和检验空间物体及其某一属性是否高高相邻分布或高低相错分布,即空间正相关性是指空间上分布临近的事物其属性也具有相似的趋势和取值,空间负相关性指空间上分布临近的 事物其属性具有相反的趋势和取值。

用Moran ’I 系数来表示空间相关性.Moran ’I 系数是用来衡量相邻的空间分布对象及其属性取值之间关系的参考参数。系数取值范围在-1~1之间,正值表示该空间事物的属性分布具有正相关性,负值表示该空间事物的属性分布具有负相关性,0表示该空间事物的属性分布不存在相关性。其计算公式如下:

()()()∑∑∑∑∑---???=n i n i i n

j ij n i j i n j ij y y w y

y y y W n I Moran 2

'

为了检验Moran'I是否显著,在GeoDA中采用蒙特卡罗模拟的方法来检验 (图6)。P-value值等于0.006 0,说明在99.4%置信度下空间自相关是显著的。

实验一信号与系统的傅立叶分析.

实验一 信号与系统的傅立叶分析 一. 实验目的 用傅立叶变换对信号和系统进行频域分析。 二.实验仪器 装有matlab 软件的计算机 三.实验内容及步骤 (1)已知系统用下面差分方程描述: )1()()(-+=n ay n x n y 试在95.0=a 和5.0=a 两种情况下用傅立叶变换分析系统的频率特性。要求写出系统的传输函数,并打印w e H jw ~)(曲线。、 当a=0.95 B=1; A=[1,0.95]; subplot(1,3,1); zplane(B,A); xlabel('实部Re');ylabel('虚部Im'); title('y(n)=x(n)+0.95y(n-1)传输函数零、极点分布'); grid on ; [H,w]=freqz(B,A,'whole'); subplot(1,3,2); plot(w/pi,abs(H),'linewidth',2); grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|'); title('幅频响应特性'); axis([0,2,0,2.5]); subplot(1,3,3); plot(w/pi,angle(H),'linewidth',2); grid on; xlabel('\omega/\pi');ylabel('\phi(\omega)'); title('相频响应特性'); axis([-0.1,2.1,-1.5,1.5]); a=0.5程序如上,图如下

(2)已知两系统分别用下面差分方程描述: )1()()(1-+=n x n x n y )1()()(2--=n x n x n y 试分别写出它们的传输函数,并分别打印w e H jw ~)(曲线。 当方程为)1()()(1-+=n x n x n y 的程序代码: B=[1,1];A=1; subplot(2,3,1);zplane(B,A); xlabel('实部Re'); ylabel('虚部Im'); title('y(n)=x(n)+x(n-1)传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(2,3,2); plot(w/pi,abs(H),'linewidth',2); grid on;

浅析空间自相关的内容及意义.

浅析空间自相关的内容及意义摘要:本文主要介绍了空间自相关的含义、测度指标及研究空间自相关的意义。首先,明确空间自相关是检验某一要素的属性值是否显著地与其相邻空间点上的属性值相关联的重要指标,揭示空间参考单元与其邻近的空间单元属性特征值之间的相似性或相关性。其次,介绍用来测度空间自相关性的指标,可以分为全局指标和局部指标,常用的指标有:Moran’s I、Geary’s C和Getis-Ord G。最后,进一步阐述了空间自相关的研究意义。关键字:空间自相关;全局指标;局部指标The content and research significance of spatial autocorrelation analysisAbstract: In this paper, the content, the index and the research significance of spatial autocorrelation were analyzed. Firstly, the content of spatial autocorrelation is discussed. Spatial autocorrelation is related to the correlation of the same variables, and also can be used to measure the degree of concentration of the attribute value, in order to reveal the correlation between the space reference unit and its near unit, including global spatial autocorrelation and local spatial autocorrelation. Secondly, it analyzes the index of spatial autocorrelation, the main index included Moran’s I, Geary’s C and Getis-Ord G. Thirdly, this paper discussed the research signification of spatial autocorrelation analysis. Key words: spatial autocorrelation; global index; local index 引言空间

空间分析复习重点

空间分析的概念空间分析:是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。包括空间数据操作、空间数据分析、空间统计分析、空间建模。 空间数据的类型空间点数据、空间线数据、空间面数据、地统计数据 属性数据的类型名义量、次序量、间隔量、比率量 属性:与空间数据库中一个独立对象(记录)关联的数据项。属性已成为描述一个位置任何可记录特征或性质的术语。 空间统计分析陷阱1)空间自相关:“地理学第一定律”—任何事物都是空间相关的,距离近的空间相关性大。空间自相关破坏了经典统计当中的样本独立性假设。避免空间自相关所用的方法称为空间回归模型。2)可变面元问题MAUP:随面积单元定义的不同而变化的问题,就是可变面元问题。其类型分为:①尺度效应:当空间数据经聚合而改变其单元面积的大小、形状和方向时,分析结果也随之变化的现象。②区划效应:给定尺度下不同的单元组合方式导致分析结果产生变化的现象。3)边界效应:边界效应指分析中由于实体向一个或多个边界近似时出现的误差。生态谬误在同一粒度或聚合水平上,由于聚合方式的不同或划区方案的不同导致的分析结果的变化。(给定尺度下不同的单元组合方式) 空间数据的性质空间数据与一般的属性数据相比具有特殊的性质如空间相关性,空间异质性,以及有尺度变化等引起的MAUP效应等。一阶效应:大尺度的趋势,描述某个参数的总体变化性;二阶效应:局部效应,描述空间上邻近位置上的数值相互趋同的倾向。 空间依赖性:空间上距离相近的地理事物的相似性比距离远的事物的相似性大。 空间异质性:也叫空间非稳定性,意味着功能形式和参数在所研究的区域的不同地方是不一样的,但是在区域的局部,其变化是一致的。 ESDA是在一组数据中寻求重要信息的过程,利用EDA技术,分析人员无须借助于先验理论或假设,直接探索隐藏在数据中的关系、模式和趋势等,获得对问题的理解和相关知识。 常见EDA方法:直方图、茎叶图、箱线图、散点图、平行坐标图 主题地图的数据分类问题等间隔分类;分位数分类:自然分割分类。 空间点模式:根据地理实体或者时间的空间位置研究其分布模式的方法。 茎叶图:单变量、小数据集数据分布的图示方法。 优点是容易制作,让阅览者能很快抓住变量分布形状。缺点是无法指定图形组距,对大型资料不适用。 茎叶图制作方法:①选择适当的数字为茎,通常是起首数字,茎之间的间距相等;②每列标出所有可能叶的数字,叶子按数值大小依次排列;③由第一行数据,在对应的茎之列,顺序记录茎后的一位数字为叶,直到最后一行数据,需排列整齐(叶之间的间隔相等)。 箱线图&五数总结 箱线图也称箱须图需要五个数,称为五数总结:①最小值②下四分位数:Q1③中位数④上四分位数:Q3⑤最大值。分位数差:IQR = Q3 - Q1 3密度估计是一个随机变量概率密度函数的非参数方法。 应用不同带宽生成的100个服从正态分布随机数的核密度估计。 空间点模式:一般来说,点模式分析可以用来描述任何类型的事件数据。因为每一事件都可以抽象化为空间上的一个位置点。 空间模式的三种基本分布:1)随机分布:任何一点在任何一个位置发生的概率相同,某点的存在不影响其它点的分布。又称泊松分布

深入探析快速傅立叶变换(FFT)

深入探析快速傅立叶变换(FFT) 摘要: FFT(Fast Fourier Transform,快速傅立叶变换)是离散傅立叶变换的快速算法,也是我们在数字信号处理技术中经常会提到的一个概念。在大学的理工科课程中,在完成高等数学的课程后,数字信号处理一般会作为通信电子类专业的专业基础课程进行学习,原因是其中涉及了大量的高等数学的理论推导,同时又是各类应用技术的理论基础。 关于傅立叶变换的经典著作和文章非常多,但是看到满篇的复杂公式推导和罗列,我们还是很难从直观上去理解这一复杂的概念,我想对于普通的测试工程师来说,掌握FFT的概念首先应该搞清楚这样几个问题:(1)为什么需要FFT (2) 变换究竟是如何进行的(3) 变换前后信号有何种对应关系(4) 在使用测试工具(示波器或者其它软件平台)进行FFT的方法和需要注意的问题(5) 力科示 波器与泰克示波器的FFT计算方法的比较 在这篇文章中我尝试用更加浅显的讲解,尽量不使用公式推导来说一说FFT 的那些事儿。 一, 为什么需要FFT? 首先FFT(快速傅立叶变换)是离散傅立叶变换的快速算法,那么说到FFT,我们自然要先讲清楚傅立叶变换。先来看看傅立叶变换是从哪里来的? 傅立叶是一位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时颇具争议性的命题:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其他审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的权威,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因为怕被推上断头台而一直在逃难。直到拉格朗日死后15年这个论文才被发表出来。 谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它(棱角),逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。 为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有其他信号所不具备的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的,且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。

空间统计-空间自相关分析

空间自相关分析 1.1 自相关分析 空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。 空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。 1.1.1 全局空间自相关分析 全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。 Moran's I 系数公式如下: 11 2 11 1 ()()I ()()n n ij i j i j n n n ij i i j i n w x x x x w x x =====--= -∑∑∑∑∑(式 错误!文档中没有指定样式的文字。-1) 其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。 Moran's I 的Z-score 得分检验为:

四连杆机构分析代码动力学--精简

平面连杆机构的运动分析和动力分析1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 第一组(2代一套)四杆机构L1=125.36mm,L2=73.4mm,L3=103.4mm,L4=103.52mm 最短杆长度+最长杆长度(125.36+73.4) ≤其余两杆长度之和(103.4+103.52) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第二组(2代二套)四杆机构L1=125.36mm,L2=50.1mm,L3=109.8mm,L4=72.85mm 最短杆长度+最长杆长度(125.36+50.1) ≤其余两杆长度之和(109.8+72.85) 最短杆为连架杆,四杆机构为曲柄摇杆机构 第三组(3代)四杆机构L1=163.2mm,L2=61.6mm,L3=150mm,L4=90mm 最短杆长度+最长杆长度(163.2+61.6) ≤其余两杆长度之和(150+90) 最短杆为连架杆,四杆机构为曲柄摇杆机构 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。 1.3 机构的数学模型的建立 图1机构结构简图 在用矢量法建立机构的位置方程时,需将构件用矢量来表示,并作出机构的封闭矢量多边形。如图1所示,先建立一直角坐标系。设各构件的长度分别为L1 、L2 、L3 、L4 , 其方位角为、、、。以各杆矢量组成一个封闭矢量多边形,即ABCDA。其个矢量之和必等于零。即:

空间分析

空间分析复习资料 一、名词解释 1、空间分析:空间分析是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息。 2、网络结构模型:在网络模型中,地物被抽象为链、节点等对象,同时要关注其间连通关系。 3、空间数据模型:是关于现实世界中空间实体及其相互间联系的概念,它为描述空间数据的组织和设计空间数据库模式提供着基本方法。 4、叠置分析:将不同层的地物要素相重叠,使得一些要素或属性相叠加,从而获取新信息的方法。包括合成叠置分析和统计叠置分析。同义词:地图覆盖分析。 5、网络分析:是运筹学模型中的一个基本模型,它的根本目的是研究、策划一项网络工程如何安排,并使其运行效果最好,如一定资源的最佳分配,从一地到另一地的运输费用最低等。 6、栅格数据的聚类分析:栅格数据的聚类是根据设定的聚类条件对原有数据系统进行有选择的信息提取而建立新的栅格数据系统的方法。 7、数据高程模型:数字地形模型中地形属性为高程时称为数字高程模型。数字地形模型是地形表面形态属性信息的数字表达,是带有空间位置特征和地形属性特征的数字描述。 8、坡度:坡度是地面高程的变化率的求解,因此,坡度变率表征了地表面高程相对于水平面变化的二阶导数。 9、坡向:实际应用中,由于所建立的DEM数据常常是按从南到北获取的,所

以求出的坡向角度是与正北方向的夹角。 10、缓冲区分析:缓冲区分析是解决邻近度问题的空间分析工具之一。邻近度描述了地理空间中两个地物距离相近的程度,其确实是空间分析的一个重要手段。所谓缓冲区就是地理空间目标的一种影响范围或服务范围。 11、最佳路径分析: 12、空间插值:常用于将离散点的测量数据转换为连续的数据曲面,以便于其它空间现象的分布模式进行比较,它包括了空间内插和外推两种算法。 13、虚拟现实:由计算机生成的可与用户在视觉、听觉、触觉上实施交互,使用户有身临其境之感的人造环境。它在测绘与地学领域中的应用可以看作地图认知功能在计算机信息时代的新扩展。 14、拓扑分析: 15、空间数据库:地理信息系统的数据库(简称空间数据库或地理数据库)是某一区域内关于一定地理要素特征的数据集合。 16、再分类:地理信息系统存储的数据则具有原始数据的性质,所以不可以根据不同的需要对数据再进行分类和提取。由于这种分类是对原始数据进行的再次分类组织,因此称为再分类。 17、空间变换:为了满足特定空间分析的需要,需对原始图层及其属性进行一系列的逻辑或代数运算,以产生新的具有特殊意义的地理图层及其属性,这个过程称为空间变换。 18、路径分析:1)静态求最佳路径:在给定每条链上的属性后,求最佳路径。

离散傅立叶变换及谱分析

数字信号处理实验 实验二、离散傅立叶变换及谱分析 学院:信息工程学院 班级:电子101班 姓名:*** 学号:******

一、实验目的 1.掌握离散傅里叶变换的计算机实现方法。 2.检验实序列傅里叶变换的性质。 3.掌握计算序列的循环卷积的方法。 4.学习用DFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差,以便在实际中正确应用DFT。 二、实验内容 1.实现序列的离散傅里叶变换并对结果进行分析。(自己选择序列,要求包括复序列,实序列,实偶序列,实奇序列,虚奇序列) 本例检验实序列的性质DFT[xec(n)]=Re[X(k)] DFT[xoc(n)]=Im[X(k)] (1)设 x(n)=10*(0.8).^n(0<=n<=10),将x(n)分解为共扼对称及共扼反对称部分 n=0:10; x=10*(0.8).^n; [xec,xoc]=circevod(x); subplot(2,1,1);stem(n,xec); title('Circular -even component') xlabel('n');ylabel('xec(n)');axis([-0.5,10.5,-1,11]) subplot(2,1,2);stem(n,xoc); title('Circular -odd component') xlabel('n');ylabel('xoc(n)');axis([-0.5,10.5,-4,4]) figure(2) X=dft(x,11); Xec=dft(xec,11); Xoc=dft(xoc,11); subplot(2,2,1);stem(n,real(X));axis([-0.5,10.5,-5,50]) title('Real{DFT[x(n)]}');xlabel('k'); subplot(2,2,2);stem(n,imag(X));axis([-0.5,10.5,-20,20]) title('Imag{DFT[x(n)]}');xlabel('k'); subplot(2,2,3);stem(n,Xec);axis([-0.5,10.5,-5,50]) title('DFT[xec(n)]');xlabel('k'); subplot(2,2,4);stem(n,imag(Xoc));axis([-0.5,10.5,-20,20]) title('DFT[xoc(n)]');xlabel('k'); 实验说明: 复数序列实数部分的离散傅立叶变换是原来序列离散傅立叶变换的共轭对称分量,复数序列虚数部分的离散傅立叶变换是原来序列离散傅立叶变换的反对称分量,复序列共轭对称分量的离散傅立叶变换是原来序列离散傅立叶变换的实数部分,复序列反对称分量的离散傅立叶变换是原来序列离散傅立叶变换的虚数部分。

空间自相关--Morans'I

重庆各区县乡村人口所占比例的空间自相关分析 选题: 在ArcGIS中分别计算全局Moran’I 指数和局部Moran’I指数,分析重庆各区县乡村人口所占比例的空间关联程度。 实验目的: 根据重庆市各区县之间的邻接关系,采用二进制邻近权重矩阵,选取各区县2008年的重庆各区县的总人口及乡村人口,计算出重庆各区县乡村人口所占的比例,在ArcGIS里面分别计算全局Moran’I 指数和局部Moran’I指数,分析空间关联程度。 实验数据: 1.重庆统计年鉴中2008年重庆市各区县的总人口及乡村人口数量(excel表格) 2.重庆市各区县的矢量图(shp.文件) 软件: ArcGIS10.2 操作过程与结果分析: 第一步:导入Excel数据文件和重庆市各区县的矢量图,并建立关联 1. Catalog——Folder Connections,在对应的文件夹下打开重庆市各区县城镇化率的EXCEL表格及重庆市各区县shp文件

为关联字段,将两个文件关联起来

3.右键单击关联后的重庆区县界shp.文件,导出为Export_Output文件,新文件的属性表如下: 第二步:计算全局Morans I 1.打开ArcToolbox,选择Spatial Statistics Tools——Analying Patterns——Spatial Autocorrelation(Morans I)选择二进制邻接矩阵方法来确定空间权重矩阵(即当区域i和具有公共边或公共点时,两区域的距离矩阵设为1,若不相邻接,其距离矩阵设为0),选择欧式距离作为计算距离的方法,对数据进行标准化处理后计算全局Moran’I指数度量空间自相关

eviews自相关性检验

实验五自相关性 【实验目的】 掌握自相关性的检验与处理方法。 【实验内容】 利用表5-1资料,试建立我国城乡居民储蓄存款模型,并检验模型的自相关性。 【实验步骤】 一、回归模型的筛选 ⒈相关图分析 SCAT X Y 相关图表明,GDP指数与居民储蓄存款二者的曲线相关关系较为明显。现将函数初步设定为线性、双对数、对数、指数、二次多项式等不同形式,进而加以比较分析。 ⒉估计模型,利用LS命令分别建立以下模型 ⑴线性模型:LS Y C X t (-6.706) (13.862) = 2 R=0.9100 F=192.145 S.E=5030.809 ⑵双对数模型:GENR LNY=LOG(Y) GENR LNX=LOG(X) LS LNY C LNX t (-31.604) (64.189) = 2 R=0.9954 F=4120.223 S.E=0.1221 ⑶对数模型:LS Y C LNX

=t (-6.501) (7.200) 2R =0.7318 F =51.8455 S.E =8685.043 ⑷指数模型:LS LNY C X =t (23.716) (14.939) 2R =0.9215 F =223.166 S.E =0.5049 ⑸二次多项式模型:GENR X2=X^2 LS Y C X X2 =t (3.747) (-8.235) (25.886) 2R =0.9976 F =3814.274 S.E =835.979 ⒊选择模型 比较以上模型,可见各模型回归系数的符号及数值较为合理。各解释变量及常数项都通过了t 检验,模型都较为显著。除了对数模型的拟合优度较低外,其余模型都具有高拟合优度,因此可以首先剔除对数模型。 比较各模型的残差分布表。线性模型的残差在较长时期内呈连续递减趋势而后又转为连续递增趋势,指数模型则大体相反,残差先呈连续递增趋势而后又转为连续递减趋势,因此,可以初步判断这两种函数形式设置是不当的。而且,这两个模型的拟合优度也较双对数模型和二次多项式模型低,所以又可舍弃线性模型和指数模型。双对数模型和二次多项式模型都具有很高的拟合优度,因而初步选定回归模型为这两个模型。 二、自相关性检验 ⒈DW 检验; ⑴双对数模型 因为n =21,k =1,取显著性水平α=0.05时,查表得L d =1.22, U d =1.42,而0<0.7062=DW

GIS空间分析复习提纲及答案

空间分析复习提纲 一、基本概念(要求:基本掌握其原理及含义,能做名词解释) 1、空间分析:是基于地理对象的位置和形态的空间数据的分析技术,其目的在于提取和传输空间信息。 2、空间数据模型:以计算机能够接受和处理的数据形式,为了反映空间实体的某些结构特性和行为功能,按一定的方案建立起来的数据逻辑组织方式,是对现实世界的抽象表达。分为概念模型、逻辑模型、物理模型。 3、叠置分析:是指在同一地区、同一比例尺、同一数学基础、不同信息表达的两组或多组专题要素的图形或数据文件进行叠加,根据各类要素与多边形边界的交点或多边形属性建立多重属性组合的新图层,并对那些结构和属性上既互相重叠,又互相联系的多种现象要素进行综合分析和评价;或者对反映不同时期同一地理现象的多边形图形进行多时相系列分析,从而深入揭示各种现象要素的内在联系及其发展规律的一种空间分析方法。 4、网络分析:网络分析是通过研究网络的状态以及模拟和分析资源在网络上的流动和分配情况,对网络结构及其资源等的优化问题进行研究的一种空间分析方法。 5、缓冲区分析:即根据分析对象的点、线、面实体,自动建立它们周围一定距离的带状区,用以识别这些实体或主体对邻近对象的辐射范围或影响度,以便为某项分析或决策提供依据。其中包括点缓冲区、线缓冲区、面缓冲区等。 6、最佳路径分析:也称最优路径分析,以最短路径分析为主,一直是计算机科学、运筹学、交通工程学、地理信息科学等学科的研究热点。这里“最佳”包含很多含义,不仅指一般地理意义上的距离最短,还可以是成本最少、耗费时间最短、资源流量(容量)最大、线路利用率最高等标准。 7、空间插值:空间插值是指在为采样点估计一个变量值的过程,常用于将离散点的测量数据转换为连续的数据曲面,它包括内插和外推两种算法。,前者是通过已知点的数据计算同一区域内其他未知点的数据,后者则是通过已知区域的数据,求未知区域的数据。 8、空间量算:即空间量测与计算,是指对GIS数据库中各种空间目标的基本参数进行量算与分析,如空间目标的位置、距离、周长、面积、体积、曲率、空间形态以及空间分布等,空间量算是GIS获取地理空间信息的基本手段,所获得的基本空间参数是进行复杂空间分析、模拟与决策制定的基础。 9、克里金插值法:克里金插值法是空间统计分析方法的重要内容之一,它是建立在半变异函数理论分析基础上,对有限区域内的区域变化量取值进行无偏最优估计的一种方法,不仅考虑了待估点与参估点之间的空间相关性,还考虑了各参估点间的空间相关性,根据样本空间位置不同、样本间相关程度的不同,对每个参估点赋予不同的权,进行滑动加权平均,以估计待估点的属性值。 二、分析类(要求:重点掌握其原理及含义,能结合本专业研究方向做比较详细的阐述) 1、空间数据模型的分类? 答:分为三类: ①场模型:用于表述二维或三维空间中被看作是连续变化的现象; ②要素模型:有时也称对象模型,用于描述各种空间地物; ③网络模型:一种某一数据记录可与任意其他多个数据记录建立联系的有向图结构的数据模型,可 以模拟现实世界中的各种网络。

傅立叶的思想及其意义

【傅立叶生平简介】 夏尔·傅立叶(Charles Fourier,1772—1837) ,法国思想家弗朗斯瓦.沙利.马利.傅立叶是和圣西门同时代的法国著名的“空想”社会主义者。他的“空想”社会主义学说和圣西门主义产生的历史条件相同,但自成一个体系,被称作傅立叶主义。傅立叶的空想社会主义学说和圣西门、欧文的空想社会主义学说一起,为马克思的科学社会主义学说的诞生,提供了宝贵的思想资料,成为马克思主义的三个来源之一。马克思曾经称赞傅里叶是“19世纪最伟大的讽刺家”。 【他关于这个社会的主张】他不主张废除私有制,幻想通过宣传和教育来建立一种以“法郎吉”为其基层组织的社会主义社会。他已有关于消灭脑力劳动和体力劳动的对立以及城市和乡村的对立的思想萌芽。还首次提出妇女解放的程度是人民是否彻底解放的准绳。在教育上,主张对儿童从小实施劳动教育和科学教育。傅立叶还阐述了他的空想社会主义的理想社会是一种“和谐的”社会,这种社会由他称之为“法郎吉”的基层组织所组成。这是一种农业和工业联合在一起的生产、消费协作组织,劳动者以劳力、资本家以股份参加,成员都应该劳动。生产总收益除生产费外,按特定比例分配给出资本的股东、技术工作者和生产劳动者。为了自己的美好设想,傅立叶曾进行过一些尝试。他多次请统治者和资本家赞助他的计划,但

一直到他老死,始终没有一个资本家上门对他的计划感兴趣。虽然傅立叶的设想都失败了,但他关于未来社会的天才设想,却给科学社会主义的诞生提供了宝贵的思想材料。 【他心中的理想社会】傅立叶为自己的理想社会设计了一种叫做“法朗吉”的“和谐制度”,是一种工农结合的社会基层组织。”“法朗吉”通常由大约一千六百人组成。在“法朗吉”内,人人劳动,男女平等,免费教育,工农结合,没有城乡差别、脑力劳动和体力劳动的差别。他还为“法朗吉”绘制了一套建筑蓝图。建筑物叫“法伦斯泰尔”,中心区是食堂、商场、俱乐部、图书馆等。建筑中心的一侧是工厂区,另一侧是生活住宅区。“法朗吉”是招股建设的。收入按劳动、资本和才能分配。傅立叶幻想通过这种社会组织形式和分配方案来调和资本与劳动的矛盾,从而达到人人幸福的社会和谐。 【他对婚姻的认识】 傅立叶曾经正确地指出,资本主义文明制度的本质特征是侮辱女性,妇女是一种商品,婚姻不过是一种特殊的商业交易,资产阶级婚姻只是一种合法而持续的卖淫。他辛辣地嘲讽说:“正象文法中二个否定构成一个肯定,在婚姻交易中也是两个卖淫构成一桩德行。”傅立认为:“侮辱女性既是文明的本质特征,也是野蛮的本质特征,区别只在于野蛮以简单的形式所犯下的罪恶,文明都赋之以复杂的、暧昧的、两面性的、伪善的存在形式……对于使妇女陷于奴隶状态这件事,男人自己比任何人都更应该受到惩罚。”

傅立叶的基本理论

只要是理工科毕业的朋友,都学过傅立叶级数与傅立叶变换,但真正要与实际应用联系起来,用它来阐述应用中的各类问题,我们总会感觉概念模糊,似懂非懂,不知从何说起。是的,作者和你一样,常常有这样的体会。现在,让我与你一起重新学习傅立叶的基本理论和应用,最后还给出一份FFT(快速傅立叶变换)的源码(基于C)。希望对你有所帮助。Let’s go! 1.历史回顾 谈傅立叶变换,不能不说三角函数。三角函数起源于18世纪,主要是与简谐振动的研究有关。当时的科学家傅立叶对三角函数作了深入研究,并用三角级数解决了很多热传导的问题。三角函数的展开式如下: f(t) = (1/2a0) + (a1·cos(x)+b1·sin(x)) + (a2·cos(2x)+b2·sin(2x)) + … 其中,系数a和b表示不同频率阶数下的幅度。 成立条件: n 周期性条件,也就是说f(x)描述的波形必须每隔一段时间周期T就会重复出现; n Dirichlet条件,周期T内,有限的最大最小值,有限的不连续点; 任何区间内绝对可积; 研究目的: 把一个基于时间变量t的函数展开成傅立叶级数的目的是分解为不同的频率分量,以便进行各种滤波算法。这些基本的组成部分是正弦函数SIN(nt)和余弦函数COS(nt)。 应用领域: l 信号分析,包括滤波、数据压缩、电力系统的监控等; l 研究偏微分方程,比如求解热力学方程的解时,把f(t)展开为三角级数最为关键。 l 概率与统计,量子力学等学科。 2.傅立叶变换 H(w) = ∫h(t)·e^jwt·dt, (区间:-∽~+∽,w = 2πf) 讨论:这里为什么会选择复指数的形式而没有用正弦余弦表示?

基于ArcGIS的空间自相关分析模块的开发与应用

万方数据

万方数据

第6期魏晓峰等:基于AtcGIS的空间自相关分析模块的开发与应用 圈1建立权值矩阵对话枢 F毡.1Thedialogofcreilt吨WdghtMatrix 心。基于多边形邻接方式只对面状图层有效,因为点状图层不存在边相邻的概念。. 用户可以在“保存文件”文本框中选择一个指定路径下的文件夹用以保存所创建的权值矩阵文件,该文件将以文本形式保存。 在基于距离的权值矩阵建立中,为分析不同距离间空间自相关程度,可设鬣不同的距离带,用于找出自相关程度最显著的空间距离,界面设计如图2所示。 图2基于距离的空间权值矩阵建立对话框 Fig.2ThedialogofcreatingWeight Matrix based∞distance 界面分为2个部分,上半部分显示了各对象两两问的相关距离统计信息,用以设置距离带时的参考;下半部分主要用于设置距离带以建立相应的权值矩阵。距离带设置有2种方式。选择“系统方案”时需确定划分等级,系统将根据选择的划分数量自动生成相应的距离带。添加到下方的“距离带”列表框中;选择“自定义”按钮,用户可以手工输入距离带。距离单位均为地图单位。 2,1.2全局空间自相关分析 全局空间自相关分析对话框主要有2个参数:参与计算的权值矩阵和分析字段。权值矩阵可以选择由以上2种方式建立的权值矩阵文件。若分析的是基于距离的方式,则可以添加多个权值矩阵进行分析,以方便比较不同空间距离下的自相关程度(如图3所示)。 2.1.3局部空间自相关分析 局部空间自相关分析对话框与全局空间自相关分析 对话框类似,多了一个可选参数。该对话框设计为只能输入一个权值矩阵文件,其中Ⅲ标识字段用于标识各分析对象。若分析图层的每个对象具有NAME属性,则我们可以用其标识每个对象;若不选择此项,系统默认用数字标识(如图4所示)。 围3全局空间自相关分析对话柱 Fig.3Thedlatogdglobalspatial autocorrelaflonaDltlysi¥ 国4局部空间自相关分析对话框 Fig.4The蛳el'localspatial autocorrelaltonm鼬 2.2模块开发 模块采用ArcObjects组件技术在VB环境下进行开发。ArcObjects(简称AO)是Esm公司开发的一套基于COM技术的面向地理数据模型的大型组件库。AO的开发既可以选择应用程序内嵌的VBA,也可以选择支持COM标准的开发工具。 许多AO对象内建立了基本的数据管理和地图显示等GIS功能。由于AO是基于微软的COM技术构建的,所以,我们可以利用它来搭建出更高级的AO组件,从而开发出更加强大、灵活的应用系统。 利用AO组件开发出来的模块可以实现与ArcCI¥的无缝集成。通过ArcGLS提供的Customize对话框,这些应用模块可以像ArcGIS自身模块一样方便地载人和卸载。3应用实例 3.1分析数据 分析数据取自1980年美国俄亥俄州哥伦比亚区内49个区域统计信息,其中包含各子区域的犯罪率信息,犯 罪率为每千人所含犯罪数。 万方数据

武汉大学遥感信息工程学院 空间分析复习要点整理

1、请介绍国内外的某个空间分析研究组的研究工作,并谈谈自己的认识和思考。 2、什么是空间分析? 空间分析是基于地理对象的位置和形态特征的空间数据分析技术,其目的在于提取和传输空间信息(郭仁忠, 1997)。 3、分别从理论、算法和应用三个方面介绍空间分析理论、方法及应用? 空间分析的理论研究主要包括:空间关系理论、空间认知理论、空间推理理论、空间数据的不确定性分析理论等。 空间分析的方法包括:矢量数据的空间分析方法、栅格数据的空间分析方法、三维数据的空间分析方法、属性数据的空间统计方法。 空间分析理论和方法的应用领域有:卫生健康、水利、城市管理、地质灾害、交通、电力、环保、气候变化等领域。 4、请分别介绍地理学的第一语言、第二语言和第三语言? 第一语言为文字,第二语言为地图,第三语为GIS。 5、简述空间分析的第一个著名应用(霍乱病发病原因分析)如何利用空间分析方法完成具 体应用? 1854年8月到9月,英国伦敦霍乱病流行,政府始终找不到患者的发病原因,后来斯诺博士在绘有霍乱流行地区所有道路、房屋、饮用水机井等内容的1:6500的城区地图上,标出了每个霍乱病死者的居住位置,发现死者都集中在饮用布洛多斯托井水的地区和周围,从而得出发病原因为死者饮用了利用“布洛多斯托水泵吸水的井水。 6、简述空间分析与GIS的关系?空间分析在GIS中的地位和作用? 关系:空间分析是地理信息系统的核心和灵魂,是地理信息系统的主要特征,是评价一个地理信息系统的主要指标之一。 地位与作用: 1、空间分析是GIS的理论核心。空间分析作为地理信息系统领域的理论性和技术性都很强的分支,是提升GIS的理论性的重要突破口。 2、空间分析是GIS的功能核心。空间数据的采集、存储和管理为空间分析提供数据基础,而空间数据的描述是空间分析结果的表达。 7、简述空间分析与空间应用模型的关系? 一种观点认为空间应用模型是GIS的重要组成部分,它补充了GIS的空间分析能力。另一种观点认为空间分析是基本的、解决一般问题的理论和方法,空间模型是复杂(合)的、解决专门问题的理论和方法,两者应该区别开来。 8、拓扑空间关系和拓扑变换 拓扑空间关系是指拓扑变换下的拓扑不变量,如空间目标的相邻和连通关系。 拓扑变换是指在原来图形的点与变换了图形的点之间存在着一一对应的关系,并且邻近的点还是邻近的点的情况下,对图形进行的弯曲、拉伸、缩小等任意变形。 9、简述V9I模型及其特点? 用空间目标的Voronoi区域作为其外部,对原9元组模型进行改进,建立了一种基于Voronoi 的新9元组模型,简称为V9I模型。 V9I模型既考虑了空间实体的内部和边界,又将Voronoi区域看作一个整体,能够克服原9元组模型的一些缺点,包括无法区分相离关系、难以计算目标的补等。 10、Voronoi图 Voronoi图:又叫泰森多边形或Dirichelet图,它由一组连接两邻点连线的垂直平分线组成的连续多边形组成。N个在平面上有区别的点,按照最邻近原则划分平面;每个点与它的最近邻区域相关联。

空间自相关统计量(20201209125239)

空间自相关的测度指标 1全局空间自相关 全局空间自相关是对属性值在整个区域的空间特征的描述。表示全局空间自相关的指标和方法很多,主要有全局Moran' si、全局Geary' sC和全局Getis-OrdG[3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。 全局Moran' si 全局Moran指数i的计算公式为: 其中,n为样本量,即空间位置的个数。X i、x j是空间位置i和j的观察值,Wj表示空间位置i和j的邻近关系,当i和j为邻近的空间位置时,wij =1 ;反之,Wj =0o全局Moran指数i的取值范围为[-1,1]。 对于Moran指数,可以用标准化统计量Z来检验n个区域是否存在空间自相关关系,Z 的计算 公式为: n I E(l) W j(d)(X j X i) Z -------------- _i j i 'VAR( I) = S Jwi (n~1 ~W i) /(n~2) >f E(I i)和VAR(h)是其理论期望和理论方差。数学期望EI=-1/(n-1) o 当Z值为正且显着时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)趋于空 间集聚;当Z值为负且显着时,表明存在负的空间自相关,相似的观测值趋于分散分布;当Z值为零时,观测值呈独立随机分布。 全局Geary' sC 全局Geary' sC测量空间自相关的方法与全局Moran' sI相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:全局Moran' sI的交叉乘积项比较的是邻近空间位置的观察值与均值偏差的乘积,而全局Geary' sC比较的是邻近空间位置的观察值之差,由于并不关心xi是否大于xj,只 关心xi和xj之间差异的程度,因此对其取平方值。全局Geary' sC的取值范围为[0,2],数学期望恒为1。当全局Geary' sC的观察值<1,并且有统计学意义时,提示存在正空间自相关;当全局Geary' sC的观察值>1时,存在负空间自相关;全局Geary' sC的观察值=1时,无空间自相关。其假设检验的方法同全局Moran' sI。值得注意的是,全局Geary' sC的数学期望不受空间权重、观察值和样本量的影响,恒为1,导致了全局Geary' sC的

基于ArcGis的空间要点讲解

第一章 1.GIS空间分析的概念、GIS空间分析的研究对象 概念:空间分析是为解答地理空间问题而进行的数据分析与挖掘,是GIS的核心。 研究对象:空间目标及其特性。如空间特性——位置、分布、形态和空间关系;属性特性;时间特性。 空间分析类型:I基于空间图形数据的分析运算;基于非空间数据的数据运算;空间与非空间数据的联合运算。II基于矢量的空间分析;基于栅格的空间分析;矢- 栅联合空间分析。 2.道路拓宽案例分析 题:某城镇拟对建城区某条道路进行拓宽,其拆迁标准为: a)道路从原有的20m拓宽至60m; b)拓宽道路应尽量保持直线; c)部分位于拆迁区内的10层以上的建筑不拆除。 如何使用GIS进行道路拓宽的路线和费用分析?流程是怎样的? 解决,数据采集和建库:搜集研究区域的道路分布图、建筑物分布图以及地价等相关信息;缓冲区分析:对道路做一40m为半径的缓冲区分析;叠加分析:将缓冲区分析之后的道路图同建筑物分布图叠加分析,选出在缓冲区域内的层数超过10的建筑物,做好标记;统计分析:…… 3.GIS空间分析的核心问题 位置、条件、趋势、模式、模型。 第二章 1.空间查询的概念、空间量算的概念 空间查询:利用空间索引机制,从数据库中找出符合该条件的空间数据。 空间量算:对各种空间目标的基本参数进行量算与分析。 2.函数距离的概念 如曼哈顿距离、相对障碍物距离。 3.空间查询分类 属性查询; 空间相互关系查询,包含、在……之内、衷心地 相交、在……距离之内…… 混合查询。 4.空间量算主要内容 基本几何参数量测:位置、长度、面积、体积、距离、中心、重心…… 空间目标形态量测:曲率、弯曲度、完整性、复杂度…… 空间目标分布计算:分布中心、分布轴线、离散度、标准差圆、最近邻分析、分布密度、连通度、定向 5.分布密度的概念、连通度的概念 分布密度:单位分布区域内分布对象的数量; 连通度:空间网络中节点连线数与可能存在的所有连线数之比。 思考题:1)洪涝灾害评估系统实现的技术路线研究; 2)提供区域DEM,获取区域的高程曲线和相对高程曲线。 第三章 1.什么是Grid,Grid的行、列数与Cell Size和空间范围、离散型和连续型Grid的区别,

相关文档
最新文档