无线电空间传输损耗衰减计算

无线电空间传输损耗衰减计算
无线电空间传输损耗衰减计算

无线电空间传输损耗衰减计算

无线传输路径分析是无线传输网络设计的重要步骤,通过对传输路径的分析便于网络设计者根据无线链路的裕量大小选择合适类型的天线(方向,极化,增益等指标),安装天线高度,选择合适的馈缆和长度等。下面将简单介绍一下无线传输路径分析中的自由空间损耗的计算,信号接收强度的计算,链路系统裕量的计算几个主要方面的内容。

1.自由空间损耗的计算

自由空间损耗是指电磁波在传输路径中的衰落,计算公式如下:

Lbf=32.5+20lgF+20lgD

Lbf=自由空间损耗(dB)

D=距离(km)

F=频率(MHz)

2400MHz:Lbf=100+20lgD

5800MHz:Lbf=108+20lgD

以上公式是在气温25度,1个大气压的理想情况的计算公式。

下表列出典型自由空间损耗值

距离(km) 路径损耗@2.4GHz(dB)

1 2 3 4 5 6 7 -100 -106 -110 -112 -114 -116 -117

8 9 10 -118 -119 -120

15 20 25 30 35 40 45 50 -124 -126 -128 -130 -131 -132 -133 -134

通过查找上表和通过公式计算我们可以得到从发射站到接收站电磁波传输的理论衰落.

2.信号接收强度的计算:

信号接收强度是指接收站设备接收到的无线信号的强度。

RSS=Pt+Gr+Gt-Lc-Lbf

RSS=接收信号强度

Pt=发射功率

Gr=接收天线增益

Gt=发射天线增益

Lc=电缆和缆头的衰耗

Lbf=自由空间损耗

举例说明,如果发射站与接收站两站点相距25Km,设备发射功率20dBm,发射天线增益为17dBi,接收天线增益为24dBi,电缆和缆头损耗3dBi。则接收信号强度 RSS=20+17+24-3-128=-70dB

3.链路系统裕量SFM(Syetem Fade Margin)的计算

链路系统裕量是指接收站设备实际接收到的无线信号与接收站设备允许的最低接收阈值(设备接收灵敏度)相比多的富裕dB数值。

SFM= RSS-Rs

RSS=接收信号强度

Rs=设备接收灵敏度(dB)

在上面的例子中,如果设备接收灵敏度为-81dBi,则链路系统裕量为:

SFM=RSS-Rs

=-70-(-)81=11dB

上面的例子就是说,使用这种发射功率为20dBm,接收灵敏度为-81dBi的2400MHz的无线网桥,在加装了17dBi增益的发射天线和24dBi增益的接收天线,电缆和缆头损耗只有3dBi损耗,在传输了25KM后还有11 dB的链路系统裕量。

系统裕量是衡量无线链路可用性和稳定性的重要指标。因为无线信道是一个参变信道,干扰和噪音信号随时会影响有用信号,有时干扰和噪音信号的强度瞬间可达成20~30dB,所以在建设无线链路时,必须保留一定的系统裕量。虽然系统裕量大于5dB系统可以工作,但通常建议系统裕量大于15-20dB。

电缆损耗计算公式

电缆损耗计算公式 如果从材料上计算,那需要的数据比较多,那不好算,而且理论与实际差别较大。嗯,是比较正常的。常规电缆是5-8%的损耗。一般常用计算损耗的方法,就是通过几个电表的示数加减计算的。因为理论与实际的误差是比较大的,线路老化,会造成线路电阻变大,损耗增大。7%的损耗,是正常的。还需要你再给出一些数据…如电阻率等… 185的铜线,长度200米,电 缆损耗是多少。 电缆线路损耗计算一条500米长的240铜电缆线路损耗怎么计。 首先要知道电阻: 截面1平方毫米长度1米的铜芯线在20摄氏度时电阻为0.018 欧,R=P*L/S(P电阻系数.L长度米.S截面平方毫米) 240平方毫米铜线、长度500米、电阻:0.0375欧姆假定电流100安培,导线两端的电压:稀有金属3.75伏。耗功率:37.5瓦。 急求电缆线电损耗的计算公式? 线路电能损耗计算方法A1 线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗 电量计算为:ΔA=3 Rt×10-3 (kW·h) (Al-1)Ijf = (A) (Al-2)式中ΔA——代表日损耗电量,kW·h;t——运行时间(对于代表日t=24),h;Ijf——均方根电流,A;R——线路电 阻,n;It——各正点时通过元件的负荷电流,A。当负荷曲线以三相有功功率、无功功率表示时:Ijf= = (A) (Al-3)式中Pt ——t时刻通过元件的三相有功功率,kW;Qt——t时刻通过 元件的三相无功功率,kvar;Ut——t时刻同端电压,kV。A2 当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流Ijf与平均电流 Ipj(代表日负荷电流平均值)的等效关系。 3*150+1*70电缆300米线路损耗如何计算 300*0.01=3米也就是说300米的主材消耗量是3米.如果工作量是300米的工程,那么造价时的主材应申请303米.但如果是300米的距离敷设电缆时,需考虑波形弯度,弛度和交叉的附加长度,那么就应该是(水平长度+垂直长度)*1.025+预留长度,算完得数后再乘以1.01就是主材的最后消耗量。 一般电缆的损耗怎样计算 理论上只能取个适当的系数,如金属1.01~1.02,非金属1.04~1.05。要确切的得称重收集数据并总结归纳可得。 电缆线用电损耗如何计算?如现用YJV22-3*150+1*70 电缆线。 电缆电阻的计算: 1、铜导线的电阻率为:0.0175hexun1 Ω·m, 根据公式:R=P*L/S(P电阻系数.L长度米.S截面平方毫米),电缆的电阻为:R=0.0175*260/70=0.065Ω; 2、根据用公式P=I2R计算功率损耗。

自由空间损耗

无线传输距离和发射功率以及频率的关系 功率灵敏度(dBm dBmV dBuV) dBm=10log(Pout/1mW),其中Pout是以mW为单位的功率值 dBmV=20log(Vout /1mV),其中Vout是以mV为单位的电压值 dBuV=20log(Vout /1uV),其中Vout是以uV为单位的电压值 换算关系: Pout=Vout×Vout/R dBmV=10log(R/0.001)+dBm,R为负载阻抗 dBuV=60+dBmV 应用举例 无线通信距离的计算 这里给出自由空间传播时的无线通信距离的计算方法:所谓自由空间传播系指天线周围为无限大真空时的电波传播,它是理想传播条件。电波在自由空间传播时,其能量既不会被障碍物所吸收,也不会产生反射或散射。 通信距离与发射功率、接收灵敏度和工作频率有关。 [Lfs](dB)=32.44+20lgd(km)+20lgf(MHz) 式中Lfs为传输损耗,d为传输距离,频率的单位以MHz计算。 由上式可见,自由空间中电波传播损耗(亦称衰减)只与工作频率f和传播距离d有关,当f或d增大一倍时,[Lfs]将分别增加6dB. 下面的公式说明在自由空间下电波传播的损耗 Los = 32.44 + 20lg d(Km) + 20lg f(MHz) Los=20Lg(4π/c)+20Lg(f(Hz))+20Lg(d(m))=20Lg(4π /3x10^8)+20Lg(f(MHz)x10^6)+20Lg(d(km)x10^3)=20Lg(4π /3)-160+20Lgf+120+20Lgd+60=32.45+20Lgf+20Lgd, d 单位为km,f 单位为MHz Los 是传播损耗,单位为dB,一般车内损耗为8-10dB,馈线损耗8dB

IEC61439.1《低压成套开关设备和控制设备》关于铜导线、裸铜母线的工作电流和功率损耗的计算

【摘自IEC61439.1-2011附录H(资料性附录)】 铜导线的工作电流和功率损耗 表H.1提供了理想状态下,成套设备内导体的工作电流和功率损耗的指导性数值。确定这些值的计算方法可被用来计算其他工作环境下的数值。 表1 允许导体温度70℃的单芯铜电缆的工作电流和功率损耗 max301 2 v max20c 式中: k1 外壳内导体周围空气温度的降容系数(IEC60364-5-52-2009 表B.52.14)k1=0.61导体温度70℃周围环境温度55℃。 在其他空气温度时的k1值,见表H.2。 k2 多于一条电路组合的降容系数(IEC60364-5-52-2009 表B.52.17)

α电阻温度系数。α=0.004K-1 T c导体温度 表2电缆在导体允许温度为70℃时的降容系数k1 (引自IEC60364-5-52-2009 表B.52.14) 注:如果表1中的工作电流使用降容系数k1转换成其他的空气温度,则相应的功率损耗也应用上面的公式重新计算。

【摘自IEC61439.1-2011附录N(规范性附录)】 裸铜母排的工作电流和功率损耗 以下表格提供了成套设备内的导体在理想条件下的工作电流和功率消耗值。此附录不适用于试验验证用的导体。 给出用以建立这些值的计算方法,以便在其他条件下进行值得计算。 表N.1矩形截面裸铜排的工作电流和功率损耗,水平走向,最大面垂直排列, P v=I2хk3 [1+α(T c-20℃)] ?хA 式中: P v 每米的功率损耗;I工作电流; k3电流位移系数;

?铜的传导率,?=56m/Ωхmm2 A母线的截面积; α电阻的温度系数,α=0.004K-1 T c 导体温度 成套设备内不同的环境空气温度和/或导体温度为90℃时,工作电流可以通过表N.1中的数值乘以表N.2中的相应系数K4变换。则功率消耗也应用上面给出的公式计算。 表N.2成套设备内不同空气温度和/或不同导体温度的系数K4 可以认为,根据成套设备的设计,可能出现完全不同的环境和导体温度,尤其在较大的工作电流时。 在这些环境条件下,验证实际温升应该通过试验。功率损耗可以使用与用于表N.2相同的方法来计算。 注:在大电流条件下,附加的涡流损耗也许是重要的,但表N.1中的值并未考虑此种情况。

室内传播和路径损耗计算及实例(完整版)

室内传播与路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗得估算来预测无线通信系统在其工作环境下得性能;解释了自由空间传播损耗得计算;电磁波在介质中得发射与反射系数得理论计算就是预测反射与发射系数得工具。下面得一些实例与模型就是在2、4GHz工作频率时给出得。 ------------------------------------------------------------------------------------------- 1、简介 大多数无线应用设计人员最关心得问题就是系统能否正常工作在无线信道得最大距离。最简单得方法就是计算与预测:a)系统得动态范围;b)电磁波得传播损耗。 动态范围对设计者而言就是一个重要得系统指标。它决定了传输信道上(收发信机之间)允许得最大功率损耗。决定动态范围得主要指标就是发射功率与接收灵敏度。例如:某系统有80dB得动态范围就是指接收机可以检测到比发射功率低80dB得信号电平。传播损耗就是指传输路径上损失得能量,传播路径就是电磁波传输得路径(从发射机到接收机)。例:如果某路径得传播损耗就是50dB,发射机得功率就是10dB,那末接收机得接收信号电平就是-40dB。 2.自由空间中电磁波得传播 如上所述,当电磁波在自由空间传播时,其路径可认为就是连接收发信机得一条射线,可用Ferris公式计算自由空间得电波传播损耗: Pr/Pt= Gt、Gr、 (λ/4πR)2 (2、1) 式中Pr就是接收功率,Pt就是发射功率,Gt与Gr分别就是发射与接收天线得增益,R就是收发信机之间得距离,功率损耗与收发信机之间得距离R得平方成反比。公式2、1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2、2) 式中Gr与Gt分别代表接收天线与发射天线增益(dB),R就是收发信机之间得距离,λ就是波长。 当λ=12、3cm时(f=2、44GHz)可得出: PL2、44=-Gr-Gt+40、2+20log(R) (2、3) R得单位为米。 图2-1表示了信号频率2、44GHz,天线得增益为0dBi时得自由空间得损耗曲线。 注意:在此公式中收发天线得极化要一致(匹配),天线得极化不同会产生另一损耗系数。一般情况下对于理想得线极化天线,极化损耗同两个天线得极化方向得夹角得余弦得平方成正比。例如:两个偶极天线得方向夹角为45°时,极化损耗系数为-3dB左右。

自由空间衰减信道的光终端(翻译)

自由空间衰减信道的光终端 摘要 本文介绍了使用空间激光通信终端的多样性来减轻大气闪烁引起的衰减。多接收孔被充分分离来捕捉传入束中的统计独立样本。接收到的光信号通过照片与实测多样性增益被单独跟踪。终端由现成的组件组成。它用来成功演示了在2008年6月到9月之间的一个广泛的温度范围内超过5.4公里的地对地的链接。提出了设计概要和硬件实现。 这篇文章是由美国国防部,RRCO复员急症室,空军合同FA8721 - 05 - C- 0002赞助的。其中的意见,结论和建议都是作者的观点,不一定是美国政府支持的。关键词:自由空间光通信,激光通信 1.引言 地面自由空间激光通信的链接工作由于必须克服大气湍流在低海拔的角度上所以面临重大挑战。本文介绍一个终端设计来减少波前畸变和降低由于闪烁引起的瞬时功率损失的不利影响。 我们的设计采取的办法是使用无波前补偿的多重小孔径。有三个原因。首先,使用小孔径几乎消除了对波前校正的需要,因为小截面有效地降低了波前畸变的倾斜,它可进行追踪利用商业的快速控制反射镜。第二,由于闪烁的存在,小孔增加了在瞳平面的理想的或接近理想的常量光强分布的可能性,从而导致更有效地耦合到单模光纤。第三,通过增加小孔输出,有可能减少所有孔径同时衰减的可能性。 虽然空对地应用程序被假设为不对称,但主要是要求较高的下行数据速率,要求跟踪双向光信号。通过该报告中对实验链接的描述,地面配置终端用来空间分集而飞机终端不能。一种常见的光学模块设计应用于所有的孔径,包围了之间光纤和自由空间的组成部分,还包括指针机制和空间跟踪传感器。由于空对地应用不要求前置发射和接收之间的光束共同自于光纤发射器和接收器,从而简化了指向机制的终端设计。光纤元素实现了传输-接收的双重通信。 基于我们链接表明的孔径小于几厘米所引起的对模拟大气信道的影响将保 持波前畸变产生足够小的失真来避免波前恢复的需要,从而需要简化终端。通过商用单模光纤准直器的观察我们选择了12毫米直径的孔径,这足以满足有关水平链接的空间分集技术。合宜地,这使得整个终端很容易得到1”光学直径。如果可以,增加扩展束,在将来的飞行设计中用来提供更多光学增益但是仍要满足 D

10KV电缆的线路损耗及电阻计算公式

10KV电缆的线路损耗及电阻计算公式 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不

电机功率算电缆的例子电压损失百分数计算公式

电机功率算电缆的例子电压损失百分数计算公式 185千瓦的电动机,距电源200米,请问需要多大的铜芯电缆?具体的公式计算?用什么样的启动方式为好? 1--------简化公式:每个kw两个电流 185*2大约等于370A的电流 2---------查电工手册中的电缆载流量表选择240平方毫米的铜芯电缆3---------也可用以下选线口诀选择电缆截面。 铝芯绝缘线载流量与截面的倍数关系 10下五100上二, 25、35,四、三界, 70、95,两倍半, 穿管、温度,八、九折。 裸线加一半, 铜线升级算。 4----------启动方式看要求定,要求高的话就采用变频启动,要求低的话可采用星三角启动。 5---------- 低压供电范围是400m以内,应该不用考虑压降问题,压降范围400v以下+5% ,-7%。 6-----------如果电压低可以考虑电压补偿

电压损失百分数计算公式 己知P=185KW L=200m △U=5 求S=? △U=PL/CS S=PL/C△U=185X200/77X5=37000/385=96.1mm2 分析,如果供应这台电动机的变压器容量足够大,800KVA及以上,高低压配电系统线路的质量好,任何时候电压都不低于额定电压,可以用95mm2铜芯电缆。 如果供应这台电动机的变压器容量不大,800KVA以下,高低压配电系统线路的质量不怎么好,电压有可能低于额定电压,应该选用120mm2铜芯电缆。 功率185kw的额定电流 I=P/1.732UcosΦ=185/1.732/0.38/0.8=185/0.53=350安 电压损失百分数△U=5 的意思,就是100V电压通过导线下降5V,380V电压通过导线下降19V. 国家标准规定:380V动力用户电压损失不能超过额定电压的±7%,考虑其它电压损失,电动机的电缆取△U=5 较为合适。 电压损失百分数计算公式 △U=PL/CS △U——电压损失百分数 P——输送的有功功率(Kw) L——输送的距离(m)

传输与接入-计算题公式汇总

1、光纤的归一化频率参数 计算公式: a为光纤纤芯半径,λ为光纤中光波的工作波长,n1为纤芯的折射率,n2为包层的折射率。 △=(n1^2 - n2^2) /2 n1^2 2、光纤损耗 是指光波在光纤中传输一段距离后能量会衰减。a(λ)表示,单位为dB/km。 L 表示光纤长度,Pout表示光纤接出口功率,Pin为光纤接入口功率。Pout和Pin要是mW来计算。 功率(mw) = 10^ (功率(dBm)/10) 记得功率(dBm)一定要除以10,才能算出毫瓦的功率 3、数据孔径 计算公式:NA = n1为纤芯的折射率,n2为包层的折射率。 4、消光比 计算公式:EXT =10Lg(A/B) A表示传输1信号的功率 B表示传输0信号的功率。 5、功率密度 功率密度 P D为:

Pt为发射功率,Gt为发射天线增益,r为发射天线到接收位置的距离 6、自由空间传播损耗 Lp = 32.44 + 20Lg d + 20Lg f d是距离单位是km,f是频率单位是MHz 7、香农信道容量公式: C = W Lg(1+ S/N) S/N 为信道的信与噪声功率比简称信噪比,W为信道带宽,N=N0W N0为单边 噪声功率谱密度。 8、等效地球半径Re: Re 为等效地球半径,R0为实际地球半径,K为等效地球半径系数,dn/dh为折射率梯度。 温带地区K = 4/3 称为标准折射,0

电缆电路功率损耗计算

电缆电路功率损耗计算 公式: 电流等于电压除以电阻:I=U/R 功率等于电压与电流的乘积:P=U×I=U×U×I Db危化简大数字的计算,采用对数的方式进行缩小计算:db=10log p 电缆电阻等于电阻率与电缆长度的积再比上电缆的截面积 电阻率的计算公式为:ρ=RS/L ρ为电阻率----常用单位是Ω.m S 为横截面积----单位是㎡ R 为电阻值----单位是Ω L 是导线长度----单位是 M 电缆选择的计算顺序 例:允许损耗为 Xdb x=10log p 计算所损耗的功率 p (1)p=U×U/R 根据额定功率与额定电压计算负荷的等效电阻 (2)计算整个电路的电流 I=(p额—p负)/R负

(3)根据电流与损耗功率决定电缆电阻P=I×I×R (5) 根据电阻率与长度决定电缆截面积 ρ=RS/L 电阻率请询问电缆厂家 几种金属导体在20℃时的电阻率

已知电缆长度,功率,电压,需要多粗电缆 电压380V,电压降7%,则每相电压降=380×2= 功率30kw,电流约60A,线路每相电阻R=60=Ω 长度1000M,电阻 铝的电阻率是,则电缆截面S=1000×=131㎜2 铜的电阻率是,则电缆截面S=1000×=77㎜2 由于电机启动电流会很大,应选用150㎜2以上的铝缆或95㎜2以上的铜缆 电压降7%意味着线路损耗7%这个损耗实际上是很大的。如果每天使用8小时一月就会耗电500度, (农电规程中电一年就是6000度。 压380V的供电半径不得超过500米) 电缆选型表

基本含义:H—电话通信电缆 Y—实心聚氯乙烯或聚乙烯绝缘 YF—泡沫聚烯轻绝缘 YP—泡沫/实心皮聚烯轻绝缘 V—聚乙烯 A—涂塑铝带粘接屏蔽聚乙烯护套 C—自承式 T—石油膏填充 23—双层防腐钢带线包铠装聚乙烯外被层 33—单层细钢丝铠装聚乙烯外被层 43—单层粗钢丝铠装聚乙烯外被层 53—单层钢丝带皱纹纵包铠装聚乙烯外被层 553—双层钢带皱纹纵包铠装聚乙烯外被层

室内传播和路径损耗计算及实例(完整版)

室内传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态范围;b)电磁波的传播损耗。 动态范围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态范围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态范围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= . (λ/4πR)2 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) () 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=时(f=可得出: =-Gr-Gt++20log(R) () R的单位为米。 图2-1表示了信号频率,天线的增益为0dBi时的自由空间的损耗曲线。

光系统损耗计算概要

有线电视光网系统中光分路器的损耗计算 一、光功率单位介绍 在实际运用中,光功率单位常采用mw或分贝值dBm 在有线电视系统中,利用场强仪测得的射频电平是以dBpV为单位表示的,dB表示一个相对值,如甲的功率为18dBm,乙的功率为10dBm,则可以说甲比乙大8dB,dBm是功率绝对值的单位,不要相互搞混淆了。 二、光分路器的分光比定义及电气参数 光分路器类似于电缆传输网络中的分支器、分配器。在实际的运用中,常常用光分路器把光发射机输出的光信号分成强度不等的几路输出,光强较大的一路传输到较远的设备,光强弱的一路传输到较近的距离,以使各个光节点都能得到近似相等的光功率。光分路器对各支路光功率分配的比例称为分光比,分光比K定义为光分路器某输出端输出光功率与光分路器输出端总的输出光功率之比。

分光损耗:不同的分光比对光信号产生的损耗就叫做分光损耗,其值为-10lgK。 驸加损耗:光分路器把输入端的光信号按照预定的分光比对各个支路进行分配时,光信号通过光分路器时除分光损耗外,还有光分路器本身对光信号产生的损耗,这种损耗称为光分路器附加损耗。 插入损耗:插入损耗包括分光损耗和附加损耗两部分,即插入损耗(dB)=-10lgk+附加损耗。 同时光分路器还有频率响应、均匀性、隔离度等技术指标要求。三、光链路损耗的计算 光链路损耗包括三个部份:一是光缆对光信号强度产生的衰减;二是网络中各种接头、接点对光信号的衰减;三是网络中器件对光信号产生的衰减,例如光分路器的分光损耗和附加损耗。 光链路全程损耗可按下式计算:A=aL-10lgk+Ac+Af。式中:A为光链路全程损耗,aL为光纤对所传输光信号的衰减,α为光衰减系数,

电缆电路功率损耗计算

电缆电路功率损耗计算,电缆选择 2009-12-09 13:18 摆出公式: 电流等于电压与电阻之:I=U/R 功率等于电压与电流的积:P=U*I=U*U/R db为化简大数字的计算,采用对数的方式将其进行缩小计算:db=10log p 电缆电阻等于电阻率与电缆长度的积再比上电缆的截面积 电阻率的计算公式为:ρ=RS/L。 ρ为电阻率——常用单位Ω·m S为横截面积——常用单位㎡ R为电阻值——常用单位Ω L为导线的长度——常用单位m 电缆选择的计算程序 (1)例:允许损耗为XdB, X=10log p 计算所损耗的功率P (2) P=U*U/R 根据额定功率与额定电压计算负载的等效电阻 (3)计算整个电路的电流 I=(P额—P负)/R负 (4)根据电流与损耗功率决定电缆的电阻 P=I*I*R (5)根据电阻率与线路长度决定电缆的截面积 ρ=RS/L

电阻率请询问电缆生产厂家 几种金属导体在20℃时的电阻率 材料电阻率(Ω m) (1)银 1.65 × 10-8 (2)铜 1.75 × 10-8 (3)铝 2.83 × 10-8 (4)钨 5.48 × 10-8 (5)铁9.78 × 10-8 (6)铂 2.22 × 10-7 (7)锰铜 4.4 × 10-7 (8)汞9.6 × 10-7 (9)康铜 5.0 × 10-7 (10)镍铬合金 1.0 × 10-6 (11)铁铬铝合金1.4 × 10-6 (12) 铝镍铁合金1.6 × 10-6 (13)石墨(8~13)×10-6 已知电缆长度功率电压需用多粗的电缆 电压380,电压降7%,则每相压降=380*0.07/2=13.3V 功率30KW,电流约60A,则线路每相电阻R=13.3/60=0.2217Ω长度1000米,电阻0.2217Ω

室内传播和路径损耗计算与实例(完整版)

室传播和路径损耗计算及实例 RFWaves公司 Adi Shamir 摘要:通过对传播路径损耗的估算来预测无线通信系统在其工作环境下的性能;解释了自由空间传播损耗的计算;电磁波在介质中的发射和反射系数的理论计算是预测反射和发射系数的工具。下面的一些实例和模型是在2.4GHz工作频率时给出的。 ------------------------------------------------------------------------------------------- 1.简介 大多数无线应用设计人员最关心的问题是系统能否正常工作在无线信道的最大距离。最简单的方法是计算和预测:a)系统的动态围;b)电磁波的传播损耗。 动态围对设计者而言是一个重要的系统指标。它决定了传输信道上(收发信机之间)允许的最大功率损耗。决定动态围的主要指标是发射功率和接收灵敏度。例如:某系统有80dB的动态围是指接收机可以检测到比发射功率低80dB的信号电平。传播损耗是指传输路径上损失的能量,传播路径是电磁波传输的路径(从发射机到接收机)。例:如果某路径的传播损耗是50dB,发射机的功率是10dB,那末接收机的接收信号电平是-40dB。 2.自由空间中电磁波的传播 如上所述,当电磁波在自由空间传播时,其路径可认为是连接收发信机的一条射线,可用Ferris公式计算自由空间的电波传播损耗: Pr/Pt= Gt.Gr. (λ/4πR)2 (2.1) 式中Pr是接收功率,Pt是发射功率,Gt和Gr分别是发射和接收天线的增益,R是收发信机之间的距离,功率损耗与收发信机之间的距离R的平方成反比。公式2.1可以对数表示为: PL=-Gr-Gt+20log(4πR/λ)=Gr+Gt+22+20log(R/λ) (2.2) 式中Gr和Gt分别代表接收天线和发射天线增益(dB),R是收发信机之间的距离,λ是波长。 当λ=12.3cm时(f=2.44GHz)可得出: PL2.44=-Gr-Gt+40.2+20log(R) (2.3) R的单位为米。 图2-1表示了信号频率2.44GHz,天线的增益为0dBi时的自由空间的损耗曲线。 注意:在此公式中收发天线的极化要一致(匹配),天线的极化不同会产生另一损耗系数。一般情况下对于理想的线极化天线,极化损耗同两个天线的极化方向的夹角的余弦的平方成正比。例如:两个偶极天线的方向夹角为45°时,极化损耗系数为-3dB左右。

电缆的功率损耗和安装损耗

5.电缆定额损耗为多少,电力电缆损耗率1%,控制电缆损耗率1.5%,见安装定额。 1.一般尽量使用多芯电缆,因为损耗小。如果电流很大,宁使用双根多芯电缆,也不使用单芯电缆,假如一定使用单芯电缆,还要注意单芯电缆敷设时要使三芯电缆成三叶形排放。 2.电缆电路功率损耗计算,电缆选择 摆出公式: 电流等于电压与电阻之:I=U/R 功率等于电压与电流的积:P=U*I=U*U/R db为化简大数字的计算,采用对数的方式将其进行缩小计算:db=10log p

电缆电阻等于电阻率与电缆长度的积再比上电缆的截面积电阻率的计算公式为:ρ=RS/L。 ρ为电阻率——常用单位Ω·m S为横截面积——常用单位㎡ R为电阻值——常用单位Ω L为导线的长度——常用单位m 电缆选择的计算程序 (1)例:允许损耗为XdB, X=10log p 计算所损耗的功率P (2)P=U*U/R 根据额定功率与额定电压计算负载的等效电阻 (3)计算整个电路的电流 I=(P额—P负)/R负 (4)根据电流与损耗功率决定电缆的电阻 P=I*I*R (5)根据电阻率与线路长度决定电缆的截面积 ρ=RS/L 电阻率请询问电缆生产厂家

几种金属导体在20℃时的电阻率材料电阻率(Ω m) (1)银 1.65 ×10-8 (2)铜 1.75 ×10-8 (3)铝 2.83 ×10-8 (4)钨 5.48 ×10-8 (5)铁9.78 ×10-8 (6)铂 2.22 ×10-7 (7)锰铜 4.4 ×10-7 (8)汞9.6 ×10-7 (9)康铜 5.0 ×10-7 (10)镍铬合金 1.0 ×10-6 (11)铁铬铝合金1.4 ×10-6 (12) 铝镍铁合金1.6 ×10-6 (13)石墨(8~13)×10-6

线路电能损耗计算方法

线路电能损耗计算方法 A1 线路电能损耗计算的基本方法是均方根电流法,其代表日的损耗电量计算为:ΔA=3R t×10-3(kW·h) (Al-1) I =(A) (Al-2) jf 式中ΔA——代表日损耗电量,kW·h; t——运行时间(对于代表日t=24),h; I ——均方根电流,A; jf R——线路电阻,n; I ——各正点时通过元件的负荷电流,A。 t 当负荷曲线以三相有功功率、无功功率表示时: I = =(A) (Al-3) jf 式中P t——t时刻通过元件的三相有功功率,kW; ——t时刻通过元件的三相无功功率,kvar; Q t U t——t时刻同端电压,kV。 A2 当具备平均电流的资料时,可以利用均方根电流与平均电流的等效关系进行电能损耗计算,令均方根电流I jf与平均电流I pj(代表日负荷电流平均值)的等效关系为K(亦称负荷曲线形状系数),I jf=KI pj,则代表日线路损耗电量为: ΔA=3K2Rt×10-3(kW·h) (A2-1) 系数K2应根据负荷曲线、平均负荷率f及最小负荷率α确定。 当f >时,按直线变化的持续负荷曲线计算K2:

K2=[α+1/3(1-α)2]/ [1/2(1+α)]2 (A2-2) 当f <,且f >α时,按二阶梯持续负荷曲线计算K2: K2=[f(1+α)-α]/f2 (A2-3) 式中f——代表日平均负荷率,f=I pj/ I max,I max为最大负荷电流值,I pj为平均负荷电流值; α——代表日最小负荷率,α=I min/ I max,I min为最小负荷电流值。 A3 当只具有最大电流的资料时,可采用均方根电流与最大电流的等效关系进行能耗计算,令均方根电流平方与最大电流的平方的比值为F(亦称损失因数),F=/,则代表日的损耗电量为: ΔA=3FRt×10-3(kW·h) (A3-1) 式中F——损失因数; I ——代表日最大负荷电流,A。 max F的取值根据负荷曲线、平均负荷率f和最小负荷率α确定。 当f >时,按直线变化的持续负荷曲线计算F: F=α+1/3(1-α)2 (A3-2) 当f <,且f >α时,按二阶梯持续负荷曲线计算: F=f (1+α)-α (A3-3) 式中α——代表日最小负荷率; f——代表日平均负荷率。 A4 在计算过程中应考虑负荷电流引起的温升及环境温度对导线电阻的影响,具体按下式计算: (1+β1+β2) (Ω) (A4—1) R=R 20 β =(I pj / I20)2 (A4—2) 1

功率器件损耗计算(附件)

功率器件应用时所受到的热应力可能来源于两个方面:器件内部和器件外部。器件工作时所耗散的功率要通过发热形式耗散出去。若器件的散热能力有限,则功率的耗散就会造成器件内部芯片有源区温度上升及结温升高,使得器件可靠性降低,无法安全正常工作。在实际应用中,为了保证某些重要功率器件,在这些器件上使用散热器来控制其的工作温升。 功率器件常用的散热方式是使用散热器。散热器设计的选用主要依靠功率器件的损耗发热量。在计算出损耗量的前提下,对散热器的各个参数进行设计。在开关电源系统中功率器件有7个IGBT和2个整流桥,其损耗量计算如下: IGBT的散热器有两组: 其中U 1、U 2、U 3 为一组,U 4、U 5、U 6、U 7 为一组。U 1、U 2、U 3 损耗: 流过电流Io=228A 工作电压Vcc=620V

工作频率fc=3kHZ 其它计算参数由CM600DU-24NFH提供的参数表查得; 通过CM600DU-24NFH自带损耗计算软件可算得一个如下图: 由计算结果可知:P1=389.51W Po=3x P 1=3 X 389.5仁1168.53WU 4、U 5、U 6、U 7 损耗: 流过电流Io=114A 工作电压Vcc=620V 工作频率fc=20kHZ 其它计算参数由CM600DU-24NFH提供的参数表查得; 通过CM600DU-24NFH自带损耗计算软件可算得一个如下图: 由计算结果可知:P1=476.82W Po=4X P 1=4X 476.82=1907.28W 整流桥D IGBT模块的损耗量, IGBT模块的损耗量,

1、D 2 损耗计算 整流桥是由四个二极管构成,主要的损耗来自二极管PN 结。二极管的损耗包括正向导通损耗、反向恢复损耗和断态损耗。肖特级二极管的反向时间很短,反向损耗可以忽略不计。 一般来说,二极管的截止损耗在总功耗中所占的比例很小,可以忽略不计。在实际应用中,只考虑其的正向导通损耗。 二极管的正向导通损耗可由下式求出: Pdiode.F=V FI Fd 式中V F ――二极管正向导通压降;IF ――二极管的正向导通电流; d——二极管工作的占空比 根据查SKKE 310参数可知: VF = 2.1 VI F=400 Ad = 0.25 由此可得单个二极管的损耗P diode.F Pdiode.F=V FI Fd=2.1V X 400A X 0.25=210W 整流桥中的四个上二极管是交替工作的,每次工作是只有两个,所以整流桥的损耗为二极管的两倍,则:

空间传播衰耗公式及其他一些经验值详解

WLAN室内传播模型 无线局域网室内覆盖的主要特点是:覆盖范围较小,环境变动较大。一般情况下我们选取以下两种适用于WLAN的模型进行分析。由于室内无线环境千差万别,在规划中需根据实际情况选择参考模型与模型系数。 (1) Devasirvatham模型 Devasirvatham模型又称线性路径衰减模型,公式如下: Pl(d,f)[dB]为室内路径损耗= 其中,为自由空间损耗= d:传播路径;f:电波频率;a:模型系数 (2) 衰减因子模型 就电波空间传播损耗来说,2.4GHz频段的电磁波有近似的路径传播损耗。公式为: PathLoss(dB) = 46 +10* n*Log D(m) 其中,D为传播路径,n为衰减因子。针对不同的无线环境,衰减因子n的取值有所不同。在自由空间中,路径衰减与距离的平方成正比,即衰减因子为2。在建筑物内,距离对路径损耗的影响将明显大于自由空间。一般来说,对于全开放环境下n的取值为2.0~2.5;对于半开放环境下n的取值为2.5~3.0;对于较封闭环境下n的取值为3.0~3.5。典型路径传播损耗理论计算值如表1。

现阶段可提供的2.4GHz电磁波对于各种建筑材质的穿透损耗的经验值如下: ●隔墙的阻挡(砖墙厚度100mm ~300mm):20-40dB; ●楼层的阻挡:30dB以上; ●木制家具、门和其他木板隔墙阻挡2-15dB; ●厚玻璃(12mm):10dB(2450MHz) 开阔空间内,设计覆盖距离尽量不要超过30m。 ●如果天线目标区域之间有20mm左右薄墙阻隔时,设计覆盖距离尽量不要超过20m。 ●如果天线与目标区域之间有较多高于1.5m的家具等阻隔时,设计覆盖距离尽量不要超过20m。 ●如果天线安装在长走廊的一端,设计覆盖距离尽量不要超过20m。 ●如果天线与目标区域之间有一个拐角时,设计覆盖距离尽量不要超过15m。 ●如果天线与目标区域之间有多个拐角时,设计覆盖距离尽量不要超过10m。 ●不要进行隔楼层进行覆盖。

5.2.9功率损耗计算

5.2.9功率损耗计算 (1)三相线路中有功及无功功率损耗: 有功功率损耗 321103-?=?R I P js ,kW (5-2-42) 无功功率损耗 321103-?=?X I Q js , kvar (5-2-43) 以上式中 R ——每相线路电阻,Ω, 1R R '=; X ——每相线路电抗,Ω,1X X '=; l ——线路计算长度,km ; js I ——计算相电流,A ; R '、X '——线路单位长度的交流电阻及电抗,Ω/km 。 10kV 铝芯电缆和架空铝线每千米有功功率损耗与线路负荷之间的关系,见图5-2-1、图5-2-2。上述公式中的线路电阻是按导线温度为20℃计算的,如温度为55℃或60℃时,可从图5-2-1、图5-2-2查得的有功损耗值乘以温度校正系数1.14或1.16。 图5-2-1 确定6kV 不同截面铝芯电缆和架空线每千米有功功率损耗与线路负荷的关系曲线 铜芯电缆和架空铜线的有功功率损耗,可用上述铝线损耗数据乘以系数0.61求得。 (2)电力变压器的有功及无功功率损耗: 有功功率损耗 20???? ???+?=?r js k T S S P P P , kW (5-2-44) 无功功率损耗 20???? ???+?=?r js k T S S Q Q Q , kvar (5-2-45) 以上式中 js S ——变压器计算负荷,kV A ; r S ——变压器额定容量,kV A ; 0P ?——变压器空载有功损耗,kW ; k P ?——变压器满载(短路)有功损耗,kW ; 0Q ?——变压器空载无功损耗,kvar ,100%00r S I Q =?; %0I ——变压器空载电流占额定电流的百分数; k Q ?——变压器满载(短路)无功损耗,kvar ,100%r k k S U Q = ?; %k U ——变压器阻抗电压占额定电压的百分数。

光纤传输损耗测试实验报告报告

华侨大学工学院 实验报告 课程名称:光通信技术实验 实验项目名称:实验1 光纤传输损耗测试 学院:工学院 专业班级:13光电 姓名:林洋 学号:1395121026 指导教师:王达成 2016 年05 月日

预 习 报 告 一、 实验目的 1)了解光纤损耗的定义 2)了解截断法、插入法测量光纤的传输损耗 二、 实验仪器 20MHz 双踪示波器 万用表 光功率计 电话机 光纤跳线一组 光无源器件一套(连接器,光耦合器,光隔离器,波分复用器,光衰减器) 三、 实验原理 光纤在波长λ处的衰减系数为()αλ,其含义为单位长度光纤引起的光功率衰减,单位是dB/km 。当长度为L 时, 10()()l g (/)(0) P L dB km L P αλ=- (公式1.1) ITU-T G .650、G .651规定截断法为基准测量方法,背向散射法(OTDR 法)和插入法为替代测量方法。本实验采用插入法测量光纤的损耗。 (1)截断法:(破坏性测量方法) 截断法是一个直接利用衰减系数定义的测量方法。在不改变注入条件下,分别测出长光纤的输出功率2()P λ和剪断后约2m 长度短光纤的输出功率1()P λ,按定义计算出()αλ。该方法测试精度最高。

图1.1 截断法定波长衰减测试系统装置 (2)插入法 插入法原理上类似于截断法,只不过用带活接头的连接软线代替短纤进行参考测量,计算在预先相互连接的注入系统和接受系统之间(参考条 件)由于插入被测光纤引起的功率损耗。显然,功率1P、2P的测量没有 截断法直接,而且由于连接的损耗会给测量带来误差,精度比截断法差一些。所以该方法不适用于光纤光缆制造长度衰减的测量。但由于它具有非破坏性不需剪断和操作简便的优点,用该方法做成的便携式仪表,非常适用于中继段长总衰减的测量。图1.2示出了两种参考条件下的测试原理框图。 (a) (b) 图1.2 典型的插入损耗法测试装置

线路损耗计算公式

线路损耗: 线路损耗,简称线损。是电能通过输电线路传输而产生的能量损耗。 正文 电能通过输电线路传输而产生的能量损耗,简称线损。电力网络中除输送电能的线路外,还有变压器等其他输变电设备,也会产生电能的损耗,这些电能损耗(包括线损在内)的总和称为网损。 线损是由电力传输中有功功率的损耗造成的,主要由以下3个部分组成。 ①由于电流流经有电阻的导线,造成的有功功率的损耗,它是线损的最主要部分式中P、Q、I分别为流经路线的有功功率、无功功率和电流;U为路线上与P、Q同一点测得的电压;R为线路的电阻,与导线的截面、导线的材料和线路的长度有关。 ②由于线路有电压,而线间和线对接之间的绝缘有漏电,造成的有功功率损耗 ΔPg=U2g 式中g是表征绝缘漏电情况的电导。 ③电晕损耗:架空输电线路带电部分的电晕放电造成的有功功率损耗。在一般正常情况下,后两部分只占极小的份量。 减少线损,节约能量,提高电力传输的效率,是电力部门设计运行工作的主要内容之一。可以从下列几个方面着手降低线损:①提高电力系统的电压水平,包括在其他条件合理的情况下尽可能采用高一

级电压送电,在运行中保证电压水平;②使线路中的潮流合理,尤其应尽可能减少线路上无功功率的流动;③选用合理的导线材料和截面。 线损计算: 线损理论计算,是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 简介: 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 方法: 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A;

相关文档
最新文档