反激式开关电源设计思考(1)

反激式开关电源设计思考(1)
反激式开关电源设计思考(1)

反激式开关电源设计的思考一

对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用.另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化.

励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水.在整个抽水过程中,水泵中保持的水量又是不变的.这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定.

正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动.而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和.

反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:

第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来;

第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电.

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它.初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和.

磁芯饱和时,很短的时间内极易使开关管损坏.因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏.

由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题.

如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论.

反激式开关电源设计的思考二

“反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁

芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的

情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?

由全电流定律可知:

由上例可知,同一个磁芯在电流不变的条件下,仅增加1mm气隙,加气隙的磁

感强度仅为不加气隙的磁感应强度的4.8%,看来效果相当明显.

加了气隙后,是否会影响输出功率呢?换句话说,加了气隙变压器还能否储

原来那些能量呀?看一下下面的例子就知道了:

在“思考一”一文中已讨论过,当开关管导通时,次级绕组均不构成回路,此

时,变压器象是仅有一个初级绕组带磁芯的电感器一样,母线将次级需要的全部

能量都存在这个电感器里.如下图1就是一个有气隙的电感器:

图1表示一个磁芯长为lm,气隙长为lg,截面积为Ae的磁芯,在其上绕N匝线圈, 当输入电压为Ui时,输入功率为Wi:

6式右边的积分为图2中阴影部分面积A,即就是说:

磁场能量的大小等于磁化曲线b和纵轴所围成的面积大小.图1中,假定磁路各部分的面积相等,磁芯各部分的磁场强度为Hm,气隙部分的磁场强度为Hg,由全电流定律得:

11式右边第一项是磁芯中的磁场能量,第二项是气隙部分的磁场能量,分别用

Wi和Wg表示;那么:

图3中,曲线m表示图1电感器无气隙时的磁化曲线,曲线g表示有气隙时的磁化曲线.图中,面积Am表示储存在磁芯部分的磁场能量;面积Ag表示储存在气隙

部分的磁场能量.上面讲了气隙的作用以及磁场能量在变压器中的分布,那么,

根据输出功率如何选用磁芯呢?将在反激式开关电源设计思考三中讨论.

反激式开关电源设计的思考三(磁芯的选取)

在DCM状态下选择:

Uin-电源输入直流电压

Uinmin-电源输入直流电压最小值

D-占空比

Np-初级绕组匝数

Lp-初级绕组电感量Ae-磁芯有效面积

Ip-初级峰值电流

f-开关频率

Ton-开关管导通时间I-初级绕组电流有效值η-开关电源效率

J-电流密度

通过(3)式可方便计算出反激式开关电源在电流断续模式

时磁芯的AeAw值,通过查厂商提供的磁芯参数表就可选择

合适的磁芯,在选择磁芯时要留一定的余量.

例如:有一反激式开关电源输出功率为10W,开关频率为

40KHz, ΔB为0.16T,电流密度取4.5A/mm2磁芯选用EE系列, 那么由公式(3)可知:

考虑到实际绕线的绝缘层等的影响,须考虑填充系数(取0.8), 即:

Ap = AeAw/0.8=1.736×1000 / 0.8 = 2207.5

通过上面计算,EE19磁芯比较接近,考虑到辅助绕组和其他因素选择EE20磁芯.

为计算方便,(3)式可修正为:

Ap = AwAe = 6500×P0 / (△B×J×f) (4)

单位:

P0 ----- 瓦特;

△B ---- 特斯拉

J ------ 安培/平方毫米

f ------ 千赫兹

Ap ------ 毫米的四次方

在实际使用中一定要注意公式的应用条件,公式(4)是在单端反激式开关电源电流断续模式下推导出来的,并且用

了一系列假设:

1.窗口使用系数SF:0.4

2.初级绕组面积Ap = 次级绕组面积As

3.当直流输入电压最低时Dm=0.5

4.电源效率η= 0.8

5.填充系数为0.8

因此,该计算值在使用中要根据实际情况酌情修正,并且作

为我们选择磁芯的一个大致参考,由于工艺的原因必须通过

实践验证而最终确定.

另外单端反激式开关电源中,他激式和自激式的效率差别

比较大,一般自激式的效率比较低,大概在0.7左右,使用

公式(4)时要乘以(0.8/0.7=)1.15进行修正.

磁芯选好后,在反激式开关电源设计过程中应该遵循的规则将在反激式开关电源设计的思考四中讨论.

反激式开关电源设计的思考四

-反激式开关电源设计应遵循的规则

由于反激式开关电源的特殊性,在设计时要特别考虑的问

题就多一些,归纳起来有如下几点:

一、任何时刻开关管上所承受的电压都要低于它所能够承受的最大电压,并且要有足够的安全裕量;

以此为出发点,就确定了变压器的变化;

Ucemax = Uinmax + N·Uo + Upk + Uy

式中:Ucemax-开关管所能承受的最大电压

N-变比初级匝数Np / 次级匝数Ns

Uin-直流输入电压最大值

Uo-输出电压

Upk-漏感所产生的电压

Uy-电压裕量

此式很重要一点,就是确定了变比N,变比一确定一系列

问题就确定下来;比如:

反射电压:VoR =N·Vo;

占空比: D = VoR /( Vin +VoR);

导通时间: Ton = D·T

变比一定要选择合适,以使电路达到优化;若使用双极型

晶体管对其基电极的控制很重要,因为它影响着Vcemax的大小:Vces>Vcer>Vceo;在ce间承受最高电压时最好保证be结短接或者反偏,此时晶体管就可承受较高的反偏电压.

二、任何时刻都应保证磁芯不饱和;

由于反激式开关变压器的特殊性,磁芯饱和问题在反激式

变换器的设计中尤为重要.一旦磁芯饱和,开关管瞬间就

会损坏.为防止磁芯饱和反激式开关变压器磁芯一般都留

气隙,显著扩大磁场强度的范围,但仅靠气隙并不能完全

解决磁芯饱和的问题,由磁感应定律很容易得出:

由(1)式知:

磁感应强度与输入电压和导通时间有关.在输入电压一

定时,由反馈电路保证Ton的合适值.

在工作过程中,根据磁饱和的形式分两种情况:

一种是:一次性饱和:

当反馈环路突然失控时,在一个周期内导通一直持续,

直到过大的Ip使磁芯饱和而使开关管立即损坏;

另一种是:逐次积累式饱和:

磁芯每个周期都有置位与复位动作,反激式开关电源磁

芯置位是由初级绕组来实现,磁芯复位是由次级绕组和

输出电路来实现.当电路等设计不当时, 每次磁芯不能

完全复位,一次次的积累,在若干周期内磁芯饱和.就像

吹气不一样,一口气吹破就相当磁芯一次性饱和;每吹一次,就排气,但每次排气量都比进气量少一点,这样循环

几次后,气球就会被撑破的;若每次充排气量相同,气球

就不会破的,磁芯也是如此,如下图:

磁芯从a→b→c为置位,从c→d→a为复位,每个周期都要

回到a,磁芯就不会饱和.对于反激式开关电源的断续模

式,磁芯复位一般是不成问题的.

三、始终保持变换器工作于一个模式如CCM或DCM;不要在两个模式之间转换,这两种模式不同,对反馈回路的调节

电路要求也不同,在考虑某一种模式而设计的调节电路, 如运行到另一模式时易引起不稳定或者性能下降.

四、保证最小导通时间不接近双极性开关管的存储时间;(

MOSFET管例外)

在设计反激式开关电源时,特别在开关电源频率较高

、直流输入电压最高,负载又较轻时,开关导通时间

Ton最小,若这个时间接近或小于双极性晶体管的存储时间(0.5μs~1.0μs)时,极易造成开关管失控,而使磁

芯饱和.此时就要重新审视开关频率的选择,或能否工作

于如此高电压或者通过调节占空比来适应.或者选用其

他电路拓扑.

五、不要将变换器的重要元件的参数选得接近分布参数;具体来说,电阻不要太大,电容器和电感器不要太小.

(1)许多反激式开关电源都有一个振荡频率,由IC芯片提供

,如UC3842,由RC决定,当把R选择太大,C太小时,就

易使稳定性特别差;如电容C小得接近分布参数,也就是说取掉该电容由线路板及其它元件间的分布参数而形成的容值都和所选的电容容值差不多;或者所选电阻太大以至于线路板上的漏电流所等效的阻值都和所选的电阻大小差不多;这将造成工作不稳定,如温度或湿度变化时其

分布参数也跟着变化,严重影响振荡的稳定性.R一般

不要大于1M欧,C一般不要小于22PF.

(2)反激式开关电源的输出功率如下式:(DCM)

由(2)式可知:

在电流断续模式时,当电压和频率固定的情况下,输出功率和变压器的初级电感成反比.即要增加功率就要减小初级绕组的电感量.反激式开关变压器的特殊性:当开关管导通时变压器相当于仅有初级绕组的一个带磁芯的电感器 ,当这个电感器小到一定值时就不可太小了,当小至和分布电感值差不多时,这样变压器的参数就没有一致性,工作稳定性差,可能分布参数的变化都会使整个电感值变化一少半,电路的可靠性就无从谈起.初级电感值至少应是分布电感的10倍以上.

(3)同样道理,磁芯的气隙也不可选的太少,太小的话,磁

芯稍微的变动(如热胀冷缩)对气隙来说都显得占的比例很大,这样的变压器就无一致性可言,更无法批量生产. 六、反激式变换器的输出滤波电容比起其它拓扑形式的电路

所受的冲击更大,它的选择好坏对整个电源的性能及寿命有举足轻重的作用.选择时,一般是按纹波电压要求初

选电容值,用电容的额定纹波电流确定电容值,这样比

较安全稳妥.当然,耐压值和温度等级也要足够.

七、降低损耗,遏制温升,提高效率,延长寿命

开关电源内部的损耗主要分四个方面:

(1)开关损耗如:功率开关,驱动;

(2)导通损耗如:输出整流器,电解电容中电阻损耗;

(3)附加损耗如:控制IC,反馈电路,启动电路,驱动电

路;

(4)电阻损耗如:预加负载等;

在反激式开关电源中,功率开关和驱动以及输出整流部

分占损耗的90%多,磁性元件占5%,其它占5%; 损耗

直接影响效率,更影响电源的稳定性和工作寿命.损耗

都以发热而表现出来,晶体管和电容和磁性元件都对温

度很敏感;下面看一下温度的影响:

(1)温度每升高10℃,电解电容的寿命就会减半

(2)在高温和反向电压接近额定值时,肖特基二极管的漏电

很严重,就像阴阳极通路一样;

(3)通用磁性材料,从25℃到100℃饱和磁感应强度下降30%

左右;在这里,磁性材料的损耗虽然说占比例很小但是它

对整个开关电源的影响非常大.比如在正常工作时,设计

的最大磁通密度偏大,由于温升的原因将使饱和磁感应强

度下降,再加上反馈回路的延迟效应而使导通时间加长,

极易使磁芯饱和,瞬间开关管损坏.在此设计时,最好保

证铜耗接近于磁耗,初级绕组的铜耗接近于次级绕组的铜

耗以达到最优化的设计防止磁芯过渡温升.

(4)MOSFET管,每升高25℃,栅极阀值电压下降5%;MOSFET

管的最大节点温度时150℃,节点温度的理想值为105℃,

最高不要超过125℃;MOSFET管,Rds随温度的升高而增大.

(5)双极型晶体管,随温度的升高,Vce而减小,在环境温度

较高或接近最高结温时,晶体管的实际最高耐压会有所下

降,并且漏电流会更进一步增加,很易造成热损耗.所以

,在设计时,尽可能降低元件本身损耗而造成的温升,也

要注意远离热源,不因外界原因而造成温升.更要优化设

计减小损耗,提高效率,延长元器件及整个电源的工作寿

命.

反激式开关电源设计的思考五

-常用公式的理解

在反激式开关电源设计之前,我们必须对要用到的公式有所了解,这样不

至于造成不管公式适用条件如何,拿来就用,以致看似合理实则差之远矣. 下面将在反激式开关电源设计中常用的公式分析如下:

再讲电源设计用公式前先看一看一些基本的知识.

一、基本知识

1.磁场的产生:

磁场是由运动电荷产生的,变压器磁芯中的磁场是由绕组中的传导电流产生,磁铁的磁场是由“分子电流”产生.

2.右手定则

右手定则用于判断通电螺线管的磁极(N极/S极,或者说磁力线的方向),

用右手握住螺线管,弯曲的四指沿电流回绕方向将拇指伸直,这时拇指指向螺线管的N极或者磁力线的方向.

3.磁感应强度B

磁场是由运动电荷产生的,同时,运动的电荷在磁场中又会受到力的作用.

由此,人们通过在磁场中运动的电荷所受磁场力的大小来反映磁场的强弱;

让不同电量(q>0)的电荷,在垂直磁场的方向以不同的速度运动,该电荷

就会受力,虽然电荷在各点受磁场力的大小不同,但是力与电荷量以及速度

的比值在同一点却是相同的,唯一的,这个值就反映了该点磁场的强弱.因

此:

B =F / q.v (1)

该式的物理意义为:磁场中某点的磁感应强度B的大小,在数值上等于单位

正电荷,以单位速度沿垂直磁场方向运动时,所受力的大小.磁感应强度的

单位:

4.磁通量φ

磁场不仅有强弱还有方向,用磁力线能很好的表示磁感应强度的方向,磁力

线是一些围绕电流的闭合线,没有起点也没有终点的曲线.把垂直穿过一个

曲面的磁感应线的条数称为穿过该面的磁通量.用φ表示.也形象的将磁感

应强度称为磁通密度,两者关系如下:

φ=B·S (2)

磁通的单位:1T·m2 = 1Wb(韦伯)

5.磁场强度H

既然点电荷之间的相互作用服从库仑定律,那么,库仑认为点磁荷也应有类

似的定律.

此式为磁的库仑定律;

既然电场强弱可通过点电荷去测量,那么磁场的强弱也就可用点磁荷来测量,类似的,把点磁荷放在磁场中,根据其受力的大小就可反映该点磁场的强

弱,因此就引入了磁场强度的物理量H

H =F/qm0 (4)

该式中F是试探点磁荷qm0在磁场某点所受的力,该式的物理意义:磁场中某点的磁场强度H的大小在数值上等于单位磁荷在该点所受到的磁场力的大小.

6.安培环路定理

磁感应线是套连在闭合载流回路上的闭合线,若取磁感应强度沿磁感应线的环路积分,则磁感应强度沿任何闭合环路L的线积分,等于穿过这个环路所

有电流的代数和的μ0倍.

∮(L)B·dl =μ0∑I(5)

在有磁介质时,安培环路定律表示为:

∮LB·dl =μ0(∑I +Is)(6)

(6)式中:Is-为磁化电流

I -传导电流

介质内任何曲面S的磁化电流强度Is为

Is =∮LM dl (7)

(7)式中,M为磁化强度,在数值上等于磁化面电流密度

代(7)式入(6)式得:

∮LB·dl =μ0(∑I +∮LM dl)

或:∮L( -M)·dl =∑I

令:H = -M

则:∮LH·dl =∑I (8)

(8)式表示:

磁场强度沿任一闭合路径的线积分只与传导电流有关.也说明传导电流确定以后,不论磁场中放进什么样的磁介质,也不论磁介质放在何处,磁场强度

的线积分都只与传导电流有关.

因而,引入磁场强度H这个物理量后,就可绕过磁介质磁化,磁化电流等不

方便测量、处理等一系列问题,而可方便的从宏观上处理磁介质的存在时的磁场问题.

7.磁感应强度B和磁场强度H的关系

磁感应强度和磁场强度都是反映磁场强弱和方向的物理量.

磁感应强度是根据在磁场中垂直运动的电荷受力这个特点出发,通过运动电荷在磁场中受力大小及方向反映磁场的强弱及方向的.

磁场强度是根据两个磁荷间总有作用力这个特点为出发点,通过在磁场中放探试点磁荷,根据点磁荷在该点受力大小和方向来反映磁场的强弱及方向的.

也就是说,由于人们对磁的认识的观点不同而使对同一个物理现象用不同的物理量来描述的.在磁荷观点中,为描述磁场的强弱而引入了磁场强度H,

而磁感应强度B是作为辅助量引入的;相反,在分子电流观点中,为描述磁

场的强弱而引入了磁感应强度B,而磁场强度H时作为辅助量引入的.

引入磁感应强度和磁场强度都只是表示磁场在某点的强弱及大小,磁场是自然存在的,它在某点的大小和方向是客观存在的,不会因为表示的方法不同而有所改变.

由磁场强度H的定义式可知:

上式中:μ0-绝对磁导率

μr-相对磁导率

μ-磁介质的磁导率

8.法拉第电磁感应定律

穿过单匝导线回路的磁通量变化时,会在导体回路中产生感应电动势,感应电动势的大小与穿过回路磁通量的变化率dφ/ dt 成正比.

ε=-K dφ/ dt(12)

若全采用国际单位制,K=1

ε=-dφ/ dt

当为N匝导线组成的回路时

ε=-N dφ/ dt(13)

法拉第电磁感应定律表明,决定感应电动势大小的是磁通随时间的变化率, 而不是磁通量本身的大小,也就是说保持恒定大小的磁通量是不会产生感应电动势的.

9.自感系数L

对于密绕N匝的线圈,电流I在各匝线圈中产生的磁通基本相同,线圈产生的自感电动势为:

(14)式说明了自感电动势与自感磁链ψ的关系,而自感磁链与线圈中的电

流成正比:

ψ=L I (15)

式中,系数L称为自感系数,I与ψ均为由方向性的物理量,在合适的符号规定下,可保证自感磁链与电流同时为正或同时为负,因而保证自感系数恒为正.

代(15)入(14)得:

由该式可知,自感系数L在数值上等于单位电流引起的自感磁链,但是自感系数就象电阻器的电阻一样,是该器件本身的一种属性,是自然存在的,和是否有电流流过以及电流大小都无关,它只决定于线圈本身的大小,形状以及周围介质等因素.

10.有效值,平均值(以电流为例)

11.次级有效值,平均值(以电流为例)

二、开关电源设计部分相关公式:

1.变比/匝数比:N

N =Np / Ns (20)

但是在设计变压器之前并不知道初次级线匝匝数,匝数比的确定很大程度上取决于开关管的耐压值,由于输入最高直流电压,变压器的漏感和反射电压一起确定了开关管在截止瞬间所要承受的最大的电压值,其中反射电压是由输出电压和变比确定的,若开关管所能承受的最大电压为Vm,那么:

Vm = Uinmax + N(V0+Vd) + Vpk + Vy (21)

式中:Uinmax-为最大直流输入电压

Vo- 输出电压

Vd-输出二极管管压降

Vp-漏感所产生的尖峰电压

Vy-安全电压裕量

其中,漏感电压可通过变压器制作工艺和增加阻容吸收电路来抑制;可

见,改变匝数比能控制开关管的威胁,对于220或380电网来说,开关管的耐压已不成问题,在设计中常常根据反射电压直接确定匝数比;

VoR = N(VO+VD) (22)

220V交流电压时,VoR常取150V左右

380V交流电压时,VoR常取200V左右

可根据具体情况调整即可.

2.初级匝数:Np

根据电磁感应定律

首先确定△B,△B的选择保证变压器正常工作时不会饱和,一般主要根据磁性材料和开关电源频率决定,磁材确定Bs,开关频率影响磁耗,磁耗过大,

磁芯温升越高,一般磁芯从25℃到100℃,Bs下降30%,因此开关频率越高,△B占Bs的比例越小,以下是一个资料的建议:

频率f 最大工作磁通密度

<50kHz 0.5Bs

<100 kHz 0.4Bs

<500kHz 0.25Bs

<1M kHz 0.1Bs

可见,此式是在开关管导通时间时保证磁芯不饱和的情况下选择初级匝数, 即由△B去确定Np

3.初级电感量:Lp

由自感系数的定义可知:

要计算电感必须知道初级电流Ip

4.初级峰值电流:Ip

反激式开关电流在开关管导通时变压器就像是仅有一个初级线圈的电感器, 输入的能量由初级线圈转化为磁场能存入磁芯和气隙中.

可见,在最低输入电压时保证输出功率的情况下选择最大Ip.

5.匝数N,反射电压Vor和最大占空比Dm

在功率开关管导通期间,开关变压器的磁芯磁通φ随初级绕组电流Ip的增大而增大;

在功率磁开关管截止期间,磁通φ随次级绕组电流减小而减小;

设磁通φ的最小值为φmin,在磁化电流临界状态和不连续状态下,最小磁

通φmin对应于剩余磁感应强度的磁通是一个确定值.

假若在每个工作周期结束时,磁通没有回到周期开始时的出发点,则磁通φ

将随周期地重复而逐渐增加,工作点也将不断上升,使得电流增大,磁芯饱

和,当磁芯饱和时如下曲线S处:

此时,随着H的变化,即i的变化,dφ/dt = 0,也即,ε=-Ndφ/ dt=0

开关管所承受的电压为:

Uin+ε-IxRp=Uin-Ndφ/ dt-IxRp=Uin-0-IxRp≈Uin

Uin直接加于开关管上,开关管会瞬间损坏.为了不至于发生这种损坏功率

开关管的现象,每个周期结束时工作磁通φ必须回到原来的初始位置,-这

就是磁通φ的复位原则.

U=Ndφ/ dt,故可得:

dφ=1/N·U·dt

对于反激式开关电源来说,在功率管处于导通期间:

dφ=1/Np·Ui·Ton

在功率管处于截止期间:

dφ=1/Ns·Uo·Tr

在功率管导通期间磁通量的增加量dφ导通应该等于在功率管截止期间磁通量的减少量dφ截止,即:

工作在磁化电流连续状态下的单管反激式型直流变换器的输出电压Uo取决于功率开关变压器初次级绕组的匝数比,功率开关导通时间Ton与截止时间Toff之比和输入电压Ui的高低,而与负载电阻R无关.

(30)式为反激式开关电源计算最大占空比的一个重要公式,该式是由磁复位的条件而推出,即开关管导通时的伏秒积与次级二极管导通时的伏秒积应相等.

反激式开关电源设计的思考六

-变压器设计实例

已知条件:

输入电压:DC:380V~700V

输出电压:1) 5V/0.5A

2) 12V/0.5A

3) 24V/0.3A

PWM控制论芯片选用UC2842,

开关频率:50KHz

效率η:80%

取样电压用12V,5V用7-8V电压通过低压差三端稳压块得到; 算得Po=5×0.5+12×0.5+24×0.3=15.7 W

计算步骤:

1、确定变比N

N=Np/Ns

VoR = N(VO+VD)

N=VoR/(VO+VD)

VoR取210V

N=210/(12+1)=16.1 取16

2.计算最大占空比Dmax

3、选择磁芯

计划选择EE型磁芯,因此ΔB为0.2T,电流密度J取4A/mm2 Ap = AwAe = 6500×P0 / (△B×J×f)

=2.51×103 (mm4)

通过查南通华兴磁性材料有限公司EE型磁芯参数知

单端正激式开关电源-主电路设计

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronicequipment,its performance directly relatedto electronic equipmenttechnical indicators and safe workcan. Atpresent,switchingpower supply for hasthe advantages ofsmallsize, ligh tweight,high efficiency, lowcalorific value andstable performan ce advantages and replacetraditional technology of phased manost at, and widelyusedin electronic equipment. The design of thesingle straight separate-excitedswitching powersupply is a kind of indirect dcconverter technology,this design wasadopted for the maincircuit,induced by TOPSwitchseries ofswitchpowerintegration chipTOP244Y as the core of thepulse widthmodulation circuit implementation deliver edstraight into - --the voltage output variableflowstraight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transf ormer;Pulsewidthmodulation 目录

单端反激开关电源方案

反激式开关电源变压器的设计 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D ,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我设计变压器的方法。 设计变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V 到265V ,输出5V ,2A 的电源,开关频率是100KHZ 。 第一步,选定原边感应电压V OR 这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电压,为了便于理解,我们从下面图一所示的例子谈起,慢慢的来。 这是一个典型的单端反激式开关电源,大家再熟悉不过了,下面分析一下一个工作周期的工作情况,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的电流: I 升=V S *Ton/L 这三项分别是原边输入电压、开关开通时间和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的电流: I降=V OR *T OFF /L 这三项分别是原边感应电压(即放电电压)、开关管关断时间和电感量.在经过一个周期后,原边电感电流会回到原来的值,不可能会变,所以,有: V S *T ON /L=V OR *T OFF /L 即上升了的等于下降了的,懂吗?好懂吧!上式中可以用D来代替T ON ,用(1-D)来代替T OFF 。移项可得: 图一

2019年反激式开关电源设计大全

2019年反激式开关电源设计大全

前言 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它 的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消 副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负 载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水 泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整 个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电 流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分 量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝 数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很 小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步:第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。

可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压 器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没 有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向 磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁 感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动 势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开 关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下, 首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源 变压器设计的思考二中讨论。 反激式开关电源设计的思考二---气隙的作用 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁 芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢? 由全电流定律可知:

单端正激开关电源设计

《开关电源》作品设计论文 设计题目:单端正激开关电源设计 学院名称:电子与信息工程学院 专业:电气工程及其自动化 班级:电气091班 姓名:陈永杰学号:09401170131 指导教师:孔中华 2012 年 5 月25 日

宁波工程学院开关电源论文 摘要 开关电源非常广泛地应用在通讯、计算机、汽车和消费电子产品等领域。电源设备用以实现电能变换和功率传递,是各种电子设备正常工作的基础,而高频高效小型开关电源又是开关电源发展的必然趋势,在通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等领域得到了越来越多的广泛应用。 在深入研究分析各种开关电源原理和特点的基础上,根据导师根据项目布置的指标要求,论文设计了一种单端正激式高频单路输出开关电源。该开关电源的特点是以单端正激式为主拓扑,以电流型控制芯片UC3842和高频变压器为核心,采用EMI滤波器、MOSFET、输出滤波电路、采样反馈通道等主要元器件和电路模块,实现了单路稳定输出。 论文所设计的开关电源输入为市电220V交流,输出电压为10V直流电压,输出最大电流为40A,开关频率为200KHZ。论文采用面积乘积法(AP),确定了高频变压器的原副边形式以及铁芯材料的选择,设计了输出电路、系统补偿器以及启动电路和EMI滤波电路。 论文设计好后,对所设计的单端正激式高频开关电源电路系统进行全面仿真,仿真结果表明,各项指标符合要求。 而后,做出实物,调试显示:该开关电源的输出电压调整特性、负载调整率、输出纹波、动态响应、温度变化等均满足了项目的指标要求,并且具有良好的过载、短路保护特性和波形特性,各项技术指标能够达到信息平台的供电要求。 关键词:高频开关电源;单端正激式;AP法变压器 II

单端反激式开关电源-主电路设计

摘要开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制、IC 和MOSFET构成。 本设计在大量前人设计开关电源的的基础上,以反激式电路的框架,用TOP244Y 构成12V、2.5A开关电源模块,通过整流桥输出到高频变压器一次侧,在二次侧经次级整流滤波输出。输出电压经采样与TL431稳压管内部基准电压进行比较,经过线性光偶合器PC817改变TOP244Y的占空比,从而使电路能直流稳压输出。 关键词开关电源;脉冲宽度调制控制;高频变压器;TOP244Y ABSTRACT Switching power supply is the use of modern electronic technology, control switching transistor turn-on and turn-off time ratio of the output voltage to maintain a stable power supply, switching power supply generally by the pulse width modulation (PWM) control,IC and MOSFET form. The design of a large number of predecessors in the switching power supply design based on the flyback circuit to the framework, using TOP244Y constitute a 12V, 2.5A switching power supply module, through the rectifier bridge output to high-frequency transformer primary side, the secondary side by the time level rectifier output. TL431 by sampling the output voltage regulator with an internal reference voltage comparison, after a linear optical coupler PC817 change TOP244Y duty cycle, so the circuit can be DC regulated output. Keyword Switching Power Supply;PWM Control;high frequency transformer;TOP244Y 目录 前言 (3) 1.反激式PWM高频开关电源的工作原理 (4)

反激式开关电源设计的思考(一到五)

反激式开关电源设计的思考一 对一般变压器而言,原边绕组的电流由两部分组成,一部分是负载电流分量,它的大小与副边负载有关;当副边电流加大时,原边负载电流分量也增加,以抵消副边电流的作用。另一部分是励磁电流分量,主要产生主磁通,在空载运行和负载运行时,该励磁分量均不变化。 励磁电流分量就如同抽水泵中必须保持有适量的水一样,若抽水泵中无水,它就无法产生真空效应,大气压就无法将水压上来,水泵就无法正常工作;只有给水泵中加适量的水,让水泵排空,才可正常抽水。在整个抽水过程中,水泵中保持的水量又是不变的。这就是,励磁电流在变压器中必须存在,并且在整个工作过程中保持恒定。 正激式变压器和上述基本一样,初级绕组的电流也由励磁电流和负载电流两部分组成;在初级绕组有电流的同时,次级绕组也有电流,初级负载电流分量去平衡次级电流,激励电流分量会使磁芯沿磁滞回线移动。而初次级负载安匝数相互抵消,它们不会使磁芯沿磁滞回线来回移动,而励磁电流占初级总电流很小一部分,一般不大于总电流10%,因此不会造成磁芯饱和。 反激式变换器和以上所述大不相同,反激式变换器工作过程分两步: 第一:开关管导通,母线通过初级绕组将电能转换为磁能存储起来; 第二:开关管关断,存储的磁能通过次级绕组给电容充电,同时给负载供电。 可见,反激式变换器开关管导通时,次级绕组均没构成回路,整个变压器如同仅有一个初级绕组的带磁芯的电感器一样,此时仅有初级电流,转换器没有次级安匝数去抵消它。初级的全部电流用于磁芯沿磁滞回线移动,实现电能向磁能的转换;这种情况极易使磁芯饱和。 磁芯饱和时,很短的时间内极易使开关管损坏。因为当磁芯饱和时,磁感应强度基本不变,dB/dt近似为零,根据电磁感应定律,将不会产生自感电动势去抵消母线电压,初级绕组线圈的电阻很小,这样母线电压将几乎全部加在开关管上,开关管会瞬时损坏。 由上边分析可知,反激式开关电源的设计,在保证输出功率的前提下,首要解决的是磁芯饱和问题。 如何解决磁芯饱和问题?磁场能量存于何处?将在下一篇文章:反激式开关电源变压器设计的思考二中讨论。 关键词:开关电源反激式磁芯饱和 反激式开关电源设计的思考二 “反激式开关电源设计的思考一”文中,分析了反激式变换器的特殊性防止磁芯和的重要性,那么如何防止磁芯的饱和呢?大家知道增加气隙可在相同ΔB的情况下,ΔIW的变化范围扩大许多,为什么气隙有此作用呢?由全电流定律可知:

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

单端正激式开关电源_主电路的设计说明

摘要:电源是各种电子设备不可或缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠工作。目前,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的相控稳压电源,并广泛应用于电子设备中。 本设计的单端正激式开关电源是一种间接直流变流技术,本设计以正激电路为主体,采用以TOPSwitch系列开关电源集成芯片TOP244Y为核心的脉宽调制电路实现交-直-交-直变流,输出稳压稳频的直流电。 关键词开关电源;正激电路;变压器;脉宽调制; ABSTRACT Power is an indispensable part of electronic equipment, its performance directly related to electronic equipment technical indicators and safe work can. At present, switching power supply for has the advantages of small size, light weight, high efficiency, low calorific value and stable performance advantages and replace traditional technology of phased manostat, and widely used in electronic equipment. The design of the single straight separate-excited switching power supply is a kind of indirect dc converter technology, this design was adopted for the main circuit, induced by TOPSwitch series of switch power integration chip TOP244Y as the core of the pulse width modulation circuit implementation delivered straight into - - - the voltage output variable flow straight, dc frequency stability. KEY WORDS Switching power supply;Is induced circuit;Transformer;Pulse width modulation 目录 前言 (1)

(完整版)单端反激式开关电源的设计..

《电力电子技术》 课程设计报告 题目:单端反激式开关电源的设计学院:信息与控制工程学院

一、课程设计目的 (1)熟悉Power MosFET的使用; (2)熟悉磁性材料、磁性元件及其在电力电子电路中的使用; (3)增强设计、制作和调试电力电子电路的能力; 二、课程设计的要求与内容 本课程设计要求根据所提供的元器件设计并制作一个小功率 的反激式开关电源。我设计的是一个输入190V,输出9V/1.1A的反激式开关电源,要求画出必要的设计电路图,进行必要的电路参数计算,完成电路的焊接任务。有条件的可以用protel99 SE进行PCB电路板的印制。 三、设计原理 1、开关型稳压电源的电路结构 (1)按驱动方式分,有自激式和他激式。 (2)按DC/DC变换器的工作方式分:①单端正激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。 (3)按电路组成分,有谐振型和非谐振型。 (4)按控制方式分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式; ③PWM与PFM混合式。 DC/DC变换器用于开关电源时,很多情况下要求输入与输出间进行电隔离。这时必须采用变压器进行隔离,称为隔离变换器。这类变换器把直流电压或电流变换为高频方波电压或电流,经变压器升压或降压后,再经整流平滑滤波变为直流电压或电流。因此,这类变换器又称为逆变整流型变换器。 DC/DC变换器有5种基本类型:单端正激式、单端反激式、推挽式、半桥式和全桥式转换器。下面重点分析隔离式单端反激转换电路,电路结构图如图1所示。

图1 电路结构图 电路工作过程如下:当M1导通时,它在变压器初级电感线圈中存储能量,与变压器次级相连的二极管VD处于反偏压状态,所以二极管VD截止,在变压器次级无电流流过,即没有能量传递给负载;当M1截止时,变压器次级电感线圈中的电压极性反转,使VD导通,给输出电容C充电,同时负载R上也有电流I 流过。M1导通与截止的等效拓扑如图2所示。 图2 M1导通与截止的等效拓扑 2、反激变换器工作原理 基本反激变换器如图3所示。假设变压器和其他元器件均为理想元器件,稳态工作如下: (1)当有源开关Q导通时,变压器原边电流增加,会产生上正下负的感应电动势,从而在副边产生下正上负的感应电动势,如图 3(a)所示,无源开关VD1因反偏而截止,输出由电容C向负 载提供能量,而原边则从电源吸收能量,储存于磁路中。 (2)当有源开关Q截止时,由于变压器磁路中的磁通不能突变,所以在原边会感应出上负下正的感应电动势,故VD1正偏而导通,

(整理)反激式开关电源变压器设计原理.

反激式开关电源变压器设计原理 (Flyback Transformer Design Theory) 第一节. 概述. 反激式(Flyback)转换器又称单端反激式或"Buck-Boost"转换器.因其输出端在原边绕组断开电源时获得能量故而得名.离线型反激式转换器原理图如图. 一、反激式转换器的优点有: 1. 电路简单,能高效提供多路直流输出,因此适合多组输出要求. 2. 转换效率高,损失小. 3. 变压器匝数比值较小. 4. 输入电压在很大的范围内波动时,仍可有较稳定的输出,目前已可实现交流输入在 85~265V间.无需切换而达到稳定输出的要求. 二、反激式转换器的缺点有: 1. 输出电压中存在较大的纹波,负载调整精度不高,因此输出功率受到限制,通常应用于150W以下. 2. 转换变压器在电流连续(CCM)模式下工作时,有较大的直流分量,易导致磁芯饱和,所以必须在磁路中加入气隙,从而造成变压器体积变大. 3. 变压器有直流电流成份,且同时会工作于CCM / DCM两种模式,故变压器在设计时较困难,反复调整次数较顺向式多,迭代过程较复杂. 第二节. 工作原理 在图1所示隔离反驰式转换器(The isolated flyback converter)中, 变压器" T "有隔离与扼流之双重作用.因此" T "又称为Transformer- choke.电路的工作原理如下: 当开关晶体管 Tr ton时,变压器初级Np有电流 Ip,并将能量储存于其中(E = LpIp / 2).由于Np与Ns极性相反,此时二极管D反向偏压而截止,无能量传送到负载.当开关Tr off 时,由楞次定律 : (e = -N△Φ/△T)可知,变压器原边绕组将产生一反向电势,此时二极管D正向导通,负载有电流IL流通.反激式转换器之稳态波形如图2. 由图可知,导通时间 ton的大小将决定Ip、Vce的幅值: Vce max = VIN / 1-Dmax VIN: 输入直流电压 ; Dmax : 最大工作周期 Dmax = ton / T 由此可知,想要得到低的集电极电压,必须保持低的Dmax,也就是Dmax<0.5,在实际应用中通常取Dmax = 0.4,以限制Vcemax ≦ 2.2VIN. 开关管Tr on时的集电极工作电流Ie,也就是原边峰值电流Ip 为: Ic = Ip = IL / n. 因IL = Io,故当Io一定时,匝比 n的大小即决定了Ic 的大小,上式是按功率守恒原则,原副边安匝数相等 NpIp = NsIs而导出. Ip 亦可用下列方法表示: Ic = Ip = 2Po / (η*VIN*Dmax) η: 转换器的效率 公式导出如下: 输出功率 : Po = LIp2η / 2T

反激式开关电源设计

基于U C3845的反激式开关电源设计 时间:2011-10-2821:40:13来源:作者: 引言 反激式开关电源以其结构简单、元器件少等优点在自动控制及智能仪表的电源中得到广泛的应用。开关电源的调节部分通常采用脉宽调制(PWM)技术,即在主变换器周期不变的情况下,根据输入电压或负载的变化来调节功率MOSFET管导通的占空比,从而使输出电压稳定。脉宽调制的方法很多,本文中所介绍的是一种高性能的固定频率电流型脉宽集成控制芯片UC3845。该芯片是专为离线的直流至直流变换器应用而设计的。其主要特点是具有内部振荡器、高精度误差比较器、逐周电流取样比较、启动电流小、大电流图腾柱输出等,是驱动MOSFET的理想器件。 1UC3845简介 UC3845芯片为SO8或SO14管脚塑料表贴元件。专为低压应用设计。其欠压锁定门限为8.5v(通),7.6V(断);电流模式工作达500千赫输出开关频率;在反激式应用中最大占空比为0.5;输出静区时间从50%~70%可调;自动前馈补偿;锁存脉宽调制,用于逐周期限流;内部微调的参考源;带欠压锁定;大电流图腾柱输出;输入欠压锁定,带滞后;启动及工作电流低。 芯片管脚图及管脚功能如图1所示。 图1UC3845芯片管脚图 1脚:输出/补偿,内部误差放大器的输出端。通常此脚与脚2之间接有反馈网络,以确定误差放大器的增益和频响。 2脚:电压反馈输入端。此脚与内部误差放大器同向输入端的基准电压(2.5V)进行比较,调整脉宽。 3脚:电流取样输入端。 4脚:RT/CT振荡器的外接电容C和电阻R的公共端。通过一个电阻接Vref通过一个电阻接地。 5脚:接地。 6脚:图腾柱式PWM输出,驱动能力为土1A. 7脚:正电源脚。 8脚:Vref,5V基准电压,输出电流可达50mA. 2设计方法 如图2为基于UC3845反激式开关电源的电路图,虚线框内为UC3845内部简化方框图。 1)启动电压和电容的选择 交流电源115VAC经整流、滤波后为一个纹波非常小的直流高压Udc,该电压根据交流电源范围往往可得到一个最大Udcmax,一和最小电压Udcmin。 当直流输入电压大于144V以上时,UC3845应启动开始工作,启动电阻应由线路直流电压和启动所需电流来确定。 根据UC3845的参数分析可知,当启动电压低于8.5V时,UC3845的整个电路仅消耗lmA的电流,即UC3845的典型启动电压为8.5V,电流为1mA.加上外围电路损耗约0.5mA,即整个电路损耗约1.5mA.在输入直流电压为最小电压Ddcmmn时,启动电阻Rin的计算如下: 图2基于UC3845反激式开关电源的电路图 启动过程完成后,UC3845的消耗电流会随着MOSFET管的开通增至100mA左右。该电流由启动电容在启动时储存的电荷量来提供。此时,启动电容上的电压会发生跌落到7.6V以上,要使UC3845fj~

单端反激式开关电源(毕业设计)

目录 摘要 (2) 第一章开关电源概述 (1) 1.1 开关电源的定义与分类 (1) 1.2 开关电源的基本工作原理与应用 (1) 1.2.1 开关电源的基本工作原理 (1) 1.2.2 开关电源的应用 (2) 1.3 开关电源待解决的问题及发展趋势 (5) 1.3.1 开关电源待解决的问题 (5) 1.3.2 开关电源的发展趋势 (5) 第二章设计方案比较与选择 (7) 2.1 本课题选题意义 (7) 2.2 方案的设计要求 (7) 2.3 选取的设计方案 (8) 第三章反激式高频开关电源系统的设计 (9) 3.1 高频开关电源系统参数及主电路原理图 (9) 3.2 单端反激式高频变压器的设计 (10) 3.2.1 高频变压器设计考虑的问题 (10) 3.2.2 单端反激式变压器设计 (11) 3.3 高频开关电源控制电路的设计 (15) 3.3.1 PWM 集成控制器的工作原理与比较 (15) 3.3.2 UC3842工作原理 (17) 3.3.3 UC3842的使用特点 (18) 3.4 反馈电路及保护电路的设计 (19) 3.4.1 过压、欠压保护电路及反馈 (19) 3.4.2 过流保护电路及反馈 (19) 3.5变压器设计中注意事项 (20) 第四章总结 (21) 参考文献 (23) 致谢 ............................................................................................................................ 错误!未定义书签。

反激式开关电源设计资料.doc

反激式开关电源设计资料 前言 反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。 单端反激式开关稳压电源的基本工作原理如下: D1 T R L 图1 反激式开关电源原理图 当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。因单端反激式电源只是在原边开关管到同期间存储能

量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。因此又称单端反激式变换器是一种“电感储能式变换器”。 学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。

第一章 电源参数的计算 第一步,确定系统的参数。我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。先要确定这些相关因素,才能更好的设计出符合标准的电源。我们在第二章会详细介绍如何利用这些参数设计电源。 输入电压范围(V line min 和V line max ); 输入电压频率(f L ); 输出电压(V O ); 输出电流(I O ); 最大输出功率 (P 0)。 效率估计(E ff ):需要估计功率转换效率以计算最大输入功率。如果没有参考数据可供使用,则对于低电压输出应用和高电压输出应用,应分别将E ff 设定为0.8~0.85。 利用估计效率,可由式(1-1)求出最大输入功率。 O IN ff P P E = (1-1) 第二步:确定输入整流滤波电容(C DC )和DC 电压范围。 最大DC 电压纹波计算: max DC V ?= (1-2) 式(1-2)中,D ch 为规定的输入整流滤波电容的充电占空比。其 典型值为0.2。对于通用型输入(85~265Vrms ),一般将max V DC ?设定为

一款基于UC3842的单端反激式开关电源的设计

一款基于UC3842的单端反激式开关电源的设计 164908060( 楼主 ) 2013-8-31 11:00:32只看该作者 981 | 21 倒序浏览引言 电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。 UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。所谓电流型脉宽调制器是按反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。 电路设计和原理 1 UC3842工作原理 UC3842是单电源供电,带电流正向补偿,单路调制输出的集成芯片,其内部组成框图如图l所示。其中脚1外接阻容元件,用来补偿误差放大器的频率特性。脚2是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压进行比较,产生误差电压。脚3是电流检测输入端,与电阻配合,构成过流保护电路。脚4外接锯齿波振荡器外部定时电阻与定时电容,决定振荡频率,基准电压VREF为0.5V。输出电压将决定变压器的变压比。由图1可见,它主要包括高频振荡、误差比较、欠压锁定、电流取样比较、脉宽调制锁存等功能电路。UC3842主要用于高频中小容量开关电源,用它构成的传统离线式反激变换器电路在驱动隔离输出的单端开关时,通常将误差比较器的反向输入端通过反馈绕组经电阻分压得到的信号与内部2.5V基准进行比较,误差比较器的输出端与反向输入端接成PI补偿网络,误差比较器的输出端与电流采样电压进行比较,从而控制PWM序列的占空比,达到电路稳定的目的。

反激式开关电源的设计方法

1 设计步骤: 1.1 产品规格书制作 1.2 设计线路图、零件选用. 1.3 PCB Layout. 1.4 变压器、电感等计算. 1.5 设计验证. 2 设计流程介绍: 2.1 产品规格书制作 依据客户的要求,制作产品规格书。做为设计开发、品质检验、生产测试等的依据。 2.2 设计线路图、零件选用。 2.3 PCB Layout. 外形尺寸、接口定义,散热方式等。 2.4 变压器、电感等计算. 变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的, 2.4.1 决定变压器的材质及尺寸: 依据变压器计算公式 Gauss x NpxAe LpxIp B 100(max ) B(max) = 铁心饱合的磁通密度(Gauss) Lp = 一次侧电感值(uH) Ip = 一次侧峰值电流(A) Np = 一次侧(主线圈)圈数 Ae = 铁心截面积(cm 2) B(max) 依铁心的材质及本身的温度来决定,以TDK Ferrite Core PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考 虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的 power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心 因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以 做较大瓦数的Power 。 2.4.2 决定一次侧滤波电容: 滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。 2.4.3 决定变压器线径及线数: 变压器的选择实际中一般根据经验,依据电源的体积、工作频率,

反激式开关电源原理与工程设计讲解

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则 五.变压器的设计 六.反激式开关电源的稳定性问题

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 1.反激式开关电源电路拓扑 2.为什么是反激式 a.变压器的同名端相反 b.利用了二极管的单向导电特性 3.电感电流的变化为何不是突变 电压加在有电感的闭合回路上,流过电感上电流不是突变

的,而是线性增加。 愣次定律: a.当电感线圈流过变化的电流时会产生感生电动势,其大 小于与线圈中电流的变化率成正比; b.感生电动势总是阻碍原电流的变化 4.变压器的主要作用与能量的传递 理想变压器与反激式变压器的区别 反激式变压器的作用 a.电感(储能)作用 遵守的是安匝比守恒(而不是电压比守恒) 储存的能量为1/2×L×Ip2

b.限流的作用 c.变压作用 初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。 d.变压器的气隙作用 扩展磁滞回线,能使变压器更不易饱和 磁饱和的原理 图 电感值跟导磁率成正比,

导磁率=B/H B是磁通密度 H是磁场强度 简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/H B是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦! 电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零 5.开关管漏极电压的组成 a. 高压为基础部分 b. 折射回来的电压部分 c. 漏感产生的尖峰部分 波形

正激式开关电源的设计

7-3 正激式开关电源的设计 中山市技师学院 葛中海 由于反激式开关电源中的开关变压器起到储能电感的作用,因此反激式开关变压器类似于电感的设计,但需注意防止磁饱和的问题。反激式在20~100W 的小功率开关电源方面比较有优势,因其电路简单,控制也比较容易。而正激式开关电源中的高频变压器只起到传输能量的作用,其开关变压器可按正常的变压器设计方法,但需考虑磁复位、同步整流等问题。正激式适合50~250W 之低压、大电流的开关电源。这是二者的重要区别! 技术指标 正激式开关电源的技术指标见表7-7所示。 表7-7 正激式开关电源的技术指标 项 目 参 数 输入电压 单相交流220V 输入电压变动范围 160Vac ~235Vac 输入频率 50Hz 输出电压 V O =@20A 输出功率 110W 工作频率的确定 工作频率对电源体积以及特性影响很大,必须很好选择。工作频率高时,开关变压器和输出滤波器可小型化,过渡响应速度快。但主开关元件的热损耗增大、噪声大,而且集成控制器、主开关元件、输出二极管、输出电容及变压器的磁芯、还有电路设计等受到限制。 这里基本工作频率0f 选200kHz ,则 3010 20011?== f T =5μs 式中,T 为周期,0f 为基本工作频率。 最大导通时间的确定 对于正向激励开关电源,D 选为40%~45%较为适宜。最大导通时间max ON t 为 max ON t =T ?max D (7-24) max D 是设计电路时的一个重要参数,它对主开关元件、输出二极管的耐压与输出保持时间、

变压器以及和输出滤波器的大小、转换效率等都有很大影响。此处,选max D =45%。由式(7-24),则有 max ON t =5μ?=μs 正向激励开关电源的基本电路结构如图7-25所示。 图7-25 正向激励开关电源的基本电路结构 变压器匝比的计算 1.次级输出电压的计算 如图7-26所示,次级电压2V 与电压O V +F V +L V 的关系可以这样理解:正脉冲电压2V 与ON t 包围的矩形“等积变形”为整个周期T 的矩形,则矩形的“纵向的高”就是O V +F V +L V ,即 ()ON F L O t T V V V V ?++= 2 (7-25) 式中,F V 是输出二极管的导通压降,L V 是包含输出扼流圈2L 的次级绕组接线压降。 由此可见,图7-26所示A 面积等于B 面积,C 是公共面积,因此,真正加在负载上的输出

什么样的电路是单端反激

单位的项目需要一个开关电源,而产品空间的设计又导致无法使用市售的成品电源,于是我就领到了这个设计开关电源的任务。 这个任务的内容是设计一款220V AC网电源输入,带有5V500mA,12V6A输出的隔离式开关电源,对效率、纹波等其他的要求不高。 1、电源的主回路 1.1什么样的电路是单端反激 如图一所示的电路构成的电源电路就是常说的单端反激开关电源。 基本工作原理 简单说就是当Q1开通时,输入的直流电压通过初级绕组向变压器灌入能量;Q1关断时变压器内灌注的能量通过次级绕组释放,经D1整流、C2滤波后供负载使用。(插基本原理示意图) 1.2单端反激电源的优点 首先这个结构是与网电隔离的(国外的资料一般叫离线式)安全性好;这种结构相对简单,比较好做; 通过改变开关脉冲占空比和变压器的变比可以很容易的实现大范围的电压调整; 1.3单端反激电源的限制 最大的限制就是输出功率咯,一般就是几十瓦或者百来瓦。有这个限制的原因是这种电路结构的输出功率取决于通过变压器原边的电流峰值,而这个峰值跟原边的电感量(还有开关频率、占空比等其他因素),如果想把电源的功率做的很大,那么变压器的电感量会小到跟分布参数接近,最后没办法成功的绕出一个合适的变压器来。 所以在设计电源一开始的时候,应该对要设计的电源功率有一个规划,资料上的说法是如果设计功率在100W以内那么可以采用单端反激的结构,否则应该考虑单端正激的结构。 这一次我要设计电源大概是80瓦的,所以我选择了单端反激的结构。 另一个限制是占空比,单端反激的结构中,开关信号的占空比一般不超过45%。这是因为在单端反激的结构中,由于变压器绕组的反电动势存在,作为开关管在关断时需要承受的电压为:

单端正激开关电源设计

单端正激开关电源设计 Prepared on 22 November 2020

《开关电源》作品设计论文 设计题目:单端正激开关电源设计 学院名称:电子与信息工程学院 专业:电气工程及其自动化 班级:电气091班 姓名:陈永杰学号: 指导教师:孔中华 2012 年 5 月 25 日

摘要 开关电源非常广泛地应用在通讯、计算机、汽车和消费电子产品等领域。电源设备用以实现电能变换和功率传递,是各种电子设备正常工作的基础,而高频高效小型开关电源又是开关电源发展的必然趋势,在通信、军事装备、交通设施、仪器仪表、工业设备、家用电器等领域得到了越来越多的广泛应用。 在深入研究分析各种开关电源原理和特点的基础上,根据导师根据项目布置的指标要求,论文设计了一种单端正激式高频单路输出开关电源。该开关电源的特点是以单端正激式为主拓扑,以电流型控制芯片UC3842和高频变压器为核心,采用EMI滤波器、MOSFET、输出滤波电路、采样反馈通道等主要元器件和电路模块,实现了单路稳定输出。 论文所设计的开关电源输入为市电220V交流,输出电压为10V直流电压,输出最大电流为40A,开关频率为200KHZ。论文采用面积乘积法(AP),确定了高频变压器的原副边形式以及铁芯材料的选择,设计了输出电路、系统补偿器以及启动电路和EMI滤波电路。 论文设计好后,对所设计的单端正激式高频开关电源电路系统进行全面仿真,仿真结果表明,各项指标符合要求。 而后,做出实物,调试显示:该开关电源的输出电压调整特性、负载调整率、输出纹波、动态响应、温度变化等均满足了项目的指标要求,并且具有良好的过载、短路保护特性和波形特性,各项技术指标能够达到信息平台的供电要求。 关键词:高频开关电源;单端正激式;AP法变压器

相关文档
最新文档