DSP图像采集处理系统设计实例

DSP图像采集处理系统设计实例
DSP图像采集处理系统设计实例

DSP图像采集处理系统设计实例

本章将介绍基于TI C6000系列DSP芯片的图像采集处理系统实例。第一节介绍图像处理系统的应用。第二节介绍图像采集系统的基本结构,着重分析如何平衡需求和成本的设计方法。第三节介绍系统的硬件设计,分析DSP和图像采集芯片的接口、电气知识等,给出了设计方案。最后介绍系统的软件设计,主要介绍本系统的软件设计方案,同时也重点介绍TI的图像库。

1 图像采集处理系统的应用

数字图像处理技术是计算机图形深入应用和高层应用的一个极其广泛的领域,它把来自照相机、摄像机或者传真扫描装置、医用CT机、x光机等的图像,经过数学变换后得到数字图像信息,再由计算机进行编码、滤波、增强、复原、压缩、存储等处理,最后产生可视图像,这种技术称为图像处理(Image Processing)。图像处理技术在通信科学、生产与管理、多媒体技术、高清晰度电视、医用图像处理、商品电子化、目标跟踪等领域得到了广泛的应用。在通信事业上,传统的图像信息传输是以模拟图像信号形式出现的。为了提高信息传输的质量和速度,近来数字图像信号处理与传输技术正在迅猛发展,并逐步取代传统的模拟信号处理与传输技术。目前,“信息高速公路”成了发达国家的热门课题,其中数字图像处理技术则成为它的极其重要的部分。而且,数字图像处理技术还与当前乃至21世纪的一些关键电子技术及电子产品密切相关。

目前数字图像处理技术几个引人瞩目的高科技领域包括:

1.高清晰度电视(HDTV)

高清晰度电视是当今国际高科技竞争的制高点之一,占领这个制高点者,必将拥有巨大的经济效益。目前主要有两种发展模式:一是日本、西欧等国家在现有的基础上进行改良;二是美国推出的全数字HDTV,1992年美国推出了4种全数字HDTV,它们的关键技术是在视频图像信号处理上采用最先进的信源图像压缩编码技术。然而,其价格上分昂贵,难以真正商品化。这种状况的丰要原因是压缩编码方法的效率不高。

2.商业电子化

20世纪90年代,由于美国商品零售业的发展,出现了新兴的零售连锁集团,它凭借现代化的计算机管理信息系统所带来的零库存、低成本和低售价,迅速占领了市场,成为美国商品零售业的首批巨人。“这种商业电子化”大市场吸引着越来越多的创业者、高科技公司,以致一些世界性大公司纷纷涉足于这一领域。

商业零售业作为市场流通的枢纽与各行各业密切相关,它使得商业电子化成为一项复杂的系统工程,它不仅仅使商场收款机电子化,而且它还使商场网络化、货币支付电子化甚至订货电子化等。在商业电子化过程中,商品信息的处理、存储与传输是十分重要的环节。

3.可视电话

目前,国内外已有成型的产品,然而,它仍需占用较多通信线路,而且自身造价昂贵,其主要原因是图像压缩技术的压缩倍数尚不能满足要求,因此要使可视电话真正商品化,必须在图像压缩技术方面有新的突破才能实现。

4.多媒体技术

多媒体是指文(text)、图(image)、声(audio)、像(video)与计算机程序融合在一起形成的信息存储和传播媒体。它是近期发展起来的新技术,我们过去熟悉的声、图、像等媒体几乎是以模拟信号进行存储和传输的,而多媒体却是以数字信号的形式进行存储和传播的。

目前多媒体的开发和应用趋势,大致可分为三类:一是具有编辑和播放和双重功能的开发系统,这种系统适合于专业人员制作多媒体软件产品;二是主要以具备交互播放功能为主的教育/培训系统;三是主要用于家庭娱乐和学习的家用多媒体系统。可见,多媒体的潜力和应用前景是非常广阔的。

在多媒体技术中,数字图像处理技术起着关键性的作用。

5.医用图像处理技术

以“图像重选”技术为中心的医用图像处理技术日趋发展。目前,以医用超声成像、x光造影像、X光断影成像、CT扫描、核磁共振断层成像技术等为基础的医用图像处理技术,将为医学界实现“将人体变为透明体”的设想成为现实,其中,数字图像压缩处理技术是关键部分。

图像采集处理系统主要包括图像采集和图像处理两大部分。一般图像处理都是采用通用的或专用的DSP芯片,TI和ADI公司是提供通用的DSP芯片的两个主要公司,每一个公司都推出了浮点和定点通用DSP芯片,不仅如此,还针对不同应用场合,推出了众多系列的DSP芯片。比如TI公司推出了适合音频和视频处理的C5000和C6000系列的DSP芯片,另外,还根据各种终端设备的特点,推出了TMS320DSC21、TMS320DSC25、 TMS320DM310和TMS320DM64等DSP芯片。TI解决方案可以帮助许多消费类商品,例如摄录/像机、电子书、MPEG-4播放机/录制机、相片打印机、便携式网上视频家电、影片光盘柜、联网机和无线相机。

以TI的DSP芯片为基础的数码相机系统方框图如图8-1所示。

2图像采集系统的基本结构

图像采集系统应用在很多场合,尤其在生物识别领域应用得十分广泛,木节主要就是以Tl DSP芯片构建的生物识别系统为例,详细介绍该类图像采集系统的基本结构和特点。

2.1 系统基本结构和工作流程

一个基本的生物识别系统如图8-2所示,它必须包含几个基本部件:

1.信号采集部分

它主要是将生物特征信号转化成数字信号传给系统。它可能是图像信号,如虹膜图像、掌纹图像、指纹图像,也可能是采样信号,如采样人的语音。但在大多数生物识别系统中信号采集部分转化出来都是图像信号。本章介绍的也是基于图像信号采集的识别系统。

2.处理部分

处理部分通常是一个高性能的CPU。它是整个生物识别系统的核心。它/不仅仪要完成对数据的运算、处理和存储,还要实现对整个系统的控制,特别是I/O 部分的控制,以达到系统整体的要求。

3.RAM部分

生物识别系统中一般都有RAM部分,主要基于两个出发点:首先,生物识别系统中速度是一个重要指标。程序在RAM里面运行比在存储器里运行速度要快得多。其次,生物识别系统中采集的图像往往比较大,而且算法所要求的RAM空间也比较大。而CPU内部的RAM往往不能达到这个要求。

4.存储部分

存储部分主要存储两个部分的内容:一是系统的程序;二是生物特征模板。存储空间的大小也主要取决于这两个部分的要求。特别是生物特征模板的大小,如果系统要求存储的人员越多,存储空间要求也就越大。

5.I/O输入输出接口部分

I/O部分主要是完成系统功能要求。在不同的应用领域对I/O的要求也不一样。在考勤领域,就要求I/O具有液晶显示的功能。

6.通信接口部分

在网络应用领域,就要求生物识别系统具有网络通信的功能;在门禁应用领域,就要求系统具有串行通信(RS485、RS232)的功能。

7.电源部分

脱机系统由于它应用场合的限制,大多对电源有严格的限制,主要是要求节电。而生物识别系统基本上都是使用高性能的CPU,而它们对电源系统也有严格的要求,主要是要求电源稳定、干扰小。

生物识别系统的工作流程基本上可以分成两个部分:

(1)生物特征的采集和存储。用户通过I/O通知系统开始生物特征的采集和存储,处理器则通过采集器采集生物特征信号,再通过算法处理看是否能够转换成特征模板存储在存储空间内。在很多情况下,为了保证特征模板的质量,处理器会采集好几次生物特征信号来生成特征模板。工作完成后,处理器会通过I/O 通知用户。

(2)身份识别。但用户需要身份识别的时候,则通过I/O通知处理器。处理器首先通过采集器采集用户的特征信号,然后用识别算法转化成特征值,再与存储器

里面的特征模板比对。如果相似度大于一定的值,则认为是身份识别正确,否则,身份识别错误。

2.2系统技术指标

通常图像采集处理系统有以下几个重要的技术指标:

1.图像采集时间

通常图像采集有A/D转换和数据传输两个部分,图像采集时间包括A/D转换时间和数据传输时间。为了提高图像采集时间,采用高速A/D转换芯片和高速串行接口。TI和ADI公司都提供了高速的AD转换芯片,此类芯片大多提供并口和SPI之类的数据传输接口。

2.图像处理时间

图像处理时间是指系统从采集完一个完整图像到运算处理完图像所经过的一段时间。在流媒体的图像采集处理系统中对每帧图像的处理速度直接影响到系统性能,所以在此类产品中通常采用高性能的微处理器。在图像采集系统中,表现是多样的,以生物识别系统为例,对一幅完整的图像处理时间(通常是图像特征值处理和比对时间之和)有十分严格的要求。

3.存储容量

有些图像采集处理系统需要存储一定的图像数据,如数码相机和数码摄像机等。在图像采集系统中,表现是多样的,以生物识别系统为例,能够存储大量生物体样本特征值是个重要的指标。

4.RAM空间

图像采集处理器的特点是数据量大,占用的数据空间达到几兆。在所有图像采集处理系统中,大容量的数据RAM空间是一个重要的指标,直接影响到图像处理时间和处理效果。

5.系统功耗

系统功耗可分为两个部分:一是工作电流,是指系统在采集、处理信号的时候所消耗的电流。另一个是静态电流,是指系统在没有工作状态下的电流。因为在大多数应用场合,系统大部分时间都处于没有工作的状态,静态电流更具有实际意义。

6.成本

毋庸质疑,成本对于任何一会系统都是一个重要的技术指标。

3硬件电路设计

本节是主要介绍图像采集处理系统的硬件设计。在图像采集处理系统中,如何完整、真实地采集到现实对象的图像数据是非常重要的。图像采集的性能好坏直接影响到后续的图像处理和图像识别等功能模块。因此,设计一个快速、实时的图像采集硬件系统是非常重要的。下面以某公司的B芯片为例,介绍图像采集系统的硬件设计方案和注意事项。

3.1 图像采集时序分析

使用B芯片时需要注意两个方面的问题,一是包括芯片初始化部分,设定芯片的工作方式和运行参数;二是包括芯片的数据传输部分,系统要求CPU能够实时得到B芯片采集到的图像数据。B芯片的时序主要包括初始化部分的总线时序和数据传输时序。

1.初始化时序分析

B芯片初始化部分的总线时序如图8-3所示。可以看出其写时序基本上与SRAM 的写时序相同,在/WE的下降沿时,DBUS总线上数据准备好,在/WE的上升沿锁存DBUS总线数据。

2.数据发送时序

在数据传输接口中,B芯片提供两种接口方式:SPI方式和并行方式。下面将具体分析两种方式的优缺点,最终将导致硬件电路系统设计。

(1)SPI接口方式。

SPI是Series Protocol Interface的缩写,这是一个利用四根信号线的串行接口协议,包括主/从两种模式。4个接口信号是:

·MISO=串行数据输入(主设备输入,从设备输出)。

·MOSI=串行数据输卅(主设备输出,从设备输入)。

·SCK=移位时钟。

·SS=从设备使能。

SPI接口的最大特点是由主设备时钟信号的出现与否来界定主/从设备间的通信。一检测到主设备时钟信号,数据开始传输,时钟信号无效后,传输结束。在这期间,要求从设备必须被使能(SS信号保持有效)。SPI方式的优点是只占用4根数据线、数据传输速度快等优点。C6000系列McBSP作为SPI接口使用时的时序如图8-4所示。

B芯片的SPI接口为MASTER模式,提供4种CLOCK,最大可以达到6MHz。B芯片的SPI时序如图8-5所示。仔细分析其时序图可以发现:FSR是字节同步帧信号,向不是从设备的使能信号。标准的SPI时序是从设备的使能信号SS的下降沿数据开始从MISO引脚输出,上升沿出现在前一个数据全部发送完之后,模块在FSR 高电平时,把数据锁存到发送数据寄存器里,FSR下降沿时,模块开始串行发送数据。如果用标准的SPI接口读取B芯片生物样本数据,会出现片选信号出错的情况,导致SPI模块出现异常,最终无法读取到样本数据。因此在硬件电路设计中,放弃了采用SPI接口读取B芯片生物样本数据。

多通道缓冲串口(McBSP)的优点是可以设置时钟信号、帧同步信号和数据单元大小,可以实现与多种方式的接口时序无缝连接。把B芯片的串行时序看成普通的3线式通信,FSR是字节同步帧信号,DSP C6000的McBSP设置如下:

·(R/X)PHASE=0,单相帧。

·(R/X)FRLENl=O,每帧一个数据单元。

·(R/X)WDLENl=000b,数据单元字长8位。

·(R/X)FRLEN2和(R/X)WDLEN2字段无效,可以为任意值。

·CLK(R/X)P=0,时钟下降沿接收数据,上升沿处发送数据。

·FS(R/X)P=0,帧同步信号高有效。

· (R/X)DATDLY=01b,1位数据延迟。

·以帧信号的最高频率运行。

此种方式下,McBSP的收发数据时序如图8-6所示。从图8-6可以看出,采用此方式可以和B芯片的3线式串行通信匹配。由于DSP的McBSP是采用从方式,考虑到时序比较快,建议采用DMA方式读取DRR中的数据。

(2)并行方式。

此外,B芯片提供了并行数据传输方式。并行方式的缺点是占用8根数据线,不利于系统硬件的稳定性:优点是数据传输速度快,便于软体实现。并行数据传输方式时序如图8-7所示。DSC字节同步时钟信号,DR数据总线(8位)。从图中可以看出,在DSC上升沿时B芯片数据总线准备好数据,在DSC下降沿时CPU可以读取数据。并行数据传输的时序非常简单,软件易于实现。

综合考虑了图像采集系统的实时性要求和B芯片的时序特点,系统设计时采用了并行读取方式。

3.2系统硬件接口设计

图像采集处理系统硬件设计主要包括电源和复位电路、总线接口电路设计、扩展I/O口和通信接口等部分。下面详细介绍这几个部分硬件电路的设计,同时分析B芯片电气特性和设计B芯片接LJ电路。

1.电源电路和复位电路

图像采集系统的电源系统设计比较复杂,电源供应方式通常有两种方式:220V 电源供电和电池供电。在这里主要是介绍以电池作为电源供应方式的电源管理方案,目前稳压电源方式主要有线性稳压电源、DC-DC开关电源和电容式充电泵开关电源,它们的特点如表8-1所示。

图像采集处理系统尤其是手持便携设备对低功耗有很严格的要求,因此在系统中采用高效稳定的电源管理方案非常重要。该图像处理系统中,CPU芯片是双电源芯片,内核电源是1.8V,I/O电源是1.8V。另外,B芯片需要3.3V和12V电源。系统中3.3V电源的电流大约为300mA,CPU的内核电流约800mA。12V电源的电流约是20 mA。总共能耗约是1.5W。整个系统的电源管理方案如表8-2所示。

3.3V和1.8V电源的DC-DC转换芯片是采用TI公司的TPS54310芯片。TPS54310芯片具有以下几个优点:

·同步降压型PWM稳压芯片。

·低输出电压、高输出电流。

·开关频率可调,固定350kHz、500kHz,可调范围为280~700kHz。

·提供0.9V~3.3V的输出电压、3A输出电流,精度为1%。

·3A电流输出时,MOSFET 开关管导通电阻为60mΩ。

·内置峰值电流保护和热保护。

·快速的相应速度,转换效率达到95%。

·外部配置元器件少,易地设计。

3.3V电源的电路设计图如图8-8所示,正常输入电压是5V,输出电压是3.3V,输出电流最大3A。

1.8V电源的电路设计图如图8-9所示,正常输入电压是5V,输出电压是1.8V,输出电

流最大3A。

12V电源的电流只有20mA,采用DC-DC电源转换方式把3.3V电源提升到12V。由于耗电流小,采用一般的电源转换芯片就足够了。木系统中采用LM2703,具体电路图设计如图8-lO所示。

在嵌入式系统中,复位电路设计也是至关重要的。直接利用TPS54310芯片的PWRGD输出引脚,通过一定的逻辑转换得到CPU的复位信号。PWRGD引脚的特性是:当VSENSE引脚达到输出电压的90%时,PWRGD输出高,否则输出为低。PWRGD 引脚是OC门输出,需要接上10kΩ电阻。

2.总线接口设计

在嵌入式系统设计中,CPU大多数都具有与SRAM/FLASH和SDRAM无缝连接的功能。相对来说,总线接口设计比较简单。TMS320C6201也是一款提供多种协议接口无缝连接的CPU。TMS320C6201芯片集成了外部总线接口(EMIF)外设,EMIF控制对外部存储设备(如ROM/FLASH、SDRAM、SBSRAM)和外部I/O设备访问。EMIF 有4个BANKS,每一个BANK都可以设置对ROM、SDRAM和SBSRAM等类型外设存储设备的访问。根据TMS320C6201 BOOTLOAD的特点,通常CEl空间设置为对RAM、ROM、FLASH等外设,CE2、CE3空间设置为对SDRAM外设。

TMS320C6201内部运行时钟是200MHz,对外部空间访问的同步时钟是100MHz。由于大多数的外设都是属于低速设备,比如FLASH、SRAM等,因此设计硬件时需要考虑高速CPU和低速外设之间的时序配合问题。在TMS320C6201的EMIF相关寄存器里可以设置CPU内部对外部访问的延时时间,另外,通常低速外发有RY /BY引脚,该引脚可以与CPU的ARDY引脚直接相连,其硬件接线框图如图8-11所示;不利用外部硬件延时的硬件接线框图如图8-12所示。TMS320C6201的EMIF 与32位SDRAM的硬件接线框图如图8-13所示。

本系统中外扩展了256K×16位的FLASH29LY400,用地存储程序代码和采集到的图像数据。另外还扩展了2M×32位的SDRAM,主要是用于程序实际运行时占用

的程序和数据空间。系统的上电运行过程是通过ROM BOOTLOADER方式把程序代码load到SDRAM空间去,主程序和图像采集处理程序都在SDRAM空间运行。

3.扩展I/O设计

针对于本系统中FLASH和外部扩展的B芯片都是映射到CEl空间,而且系统需要具有对外部I/O信号的处理,如按键、拨码旋钮、蜂鸣器和指示灯的信号等,所以在系统中增加了一片CPLD EPM7256。TMS320C6201芯片没有可以直接使用的GPIO口,因此只能通过CPLD来扩展,如图8-14所示。

如前所述,系统采用并行方式访问图像采集B芯片,以TMS320C6201对外部RAM 读访问时序为例,介绍TMS320C6201与图像采集B芯片的硬件设计。TMS320C6201对外部SRAM的读访问时序如图8-15所示。

如前所述,B芯片在脉冲DSC信号触发下,图像数据从数据线DR[7..0]输出。采

用GPIO引脚模拟DSC时钟,通过对外部SRAM读访问方式读取图像数据。在系统中,把B芯片映射到CEl空间,对CEl空间进行读操作就可以读取图像数据了。

TMS320C620l与B芯片的接口框图如图8-16所示。用CE1作为74LVC245A的片选信号,对CEl空间进行读写访问就可以实现对B芯片的访问了。

此电路设计也存在不安全的因数,进行TMS320C6201的外部SRAM访问时序的分析就可以知道。仔细分析片选信号CEl和AOE信号,可以看出,片选信号CEl

比写AOE要宽。也就是说,对外部CEl空间读取数据时,74LVC245A片选有效,DIR信号从高跳到低,致使数据线上有一个从输出到输入的转变。在实际调试中,发现对数据线上的信号有比较大的影响,如图8-17所示。在测试中,发现此BUG 没有影响系统运行,因此采用以上总线扩展I/O方式。

4.存储器映射

整个图像采集处理系统的存储空间分4个BANK。第1个BANK是CEO,外扩SBSRAM 存储器;第2个BANK是CEl,FLASH存储器、B芯片和GPIO等外设分享此空间;第3个BANK是CE2,只是外扩SDRAM存储器。存储器映射为memory map1。具体地址如表8-3所示。

4软件设计

本节主要介绍该图像采集系统的软件设计部分,着重介绍对FLASH的读写操作程序、图像采集程序和TI的Image Library库的利用。

4.1 FLASH访问读写程序

该部分主要是介绍TMS320C6201对AM29LV040 FLASH芯片进行读写访问的程序设计。在该系统中,AM29LN040 FLASH芯片担当一个重要的任务,存储着所有的程序代码和初始化的数据段。不仅如此,还需要存储系统的参数、图像数据以及一些系统重要的信息。

该系统中AM291N040存储容量是4M位,8个512kB的sector。AM29LV040映射到系统的CEl空间,配置为16位ROM,硬件设计时没有利用AM29LV040的RY/BY引脚,所以在软件中需要轮询校验program和erase操作是否正确。

在系统中选用的AM29IN040是一款访问时间达到70ns的FLASH,CPU的运行频率是200MHz,对应EMIF CEl空间的控制寄存器(CECTLO)的设置如表8-4所示。

1.程序流程图

硬件复位后,FLASH设备自动初始为读模式,不需要任何特殊的操作就可以读取数据。当然首先必须正确初始化EMIF相关寄存器。相对来说,FLASH的写操作和擦除操作要复杂些。AM29IN040的编程和擦除的命令流程图如图8-18和图8-19所示。编程和擦除操作首先需要写入正确的命令字,然后轮询设备的状态判断操作是否正确。在每一种操作中需要用软件检验编程和擦除操作是否正确,轮询算法如图8-20所示。

数字图像处理 课程设计报告

数字图像处理 课程设计报告 姓名: 学号: 班级: 设计题目:图像处理 教师:赵哲老师 提交日期: 12月29日

一、设计内容: 主题:《图像处理》 详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等), 二、涉及知识内容: 1、二值化 2、各种滤波 3、算法等 三、设计流程图 四、实例分析及截图效果: 运行效果截图: 第一步:读取原图,并显示 close all;clear;clc; % 清楚工作窗口clc 清空变量clear 关闭打开的窗口close all I=imread(''); % 插入图片赋给I imshow(I);% 输出图I I1=rgb2gray(I);%图片变灰度图 figure%新建窗口 subplot(321);% 3行2列第一幅图 imhist(I1);%输出图片

title('原图直方图');%图片名称 一,图像处理模糊 H=fspecial('motion',40); %% 滤波算子模糊程度40 motion运动 q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制q1=rgb2gray(q); imhist(q1); title('模糊图直方图'); 二,图像处理锐化 H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的 qq=imfilter(I,H,'replicate'); qq1=rgb2gray(qq); imhist(qq1); title('锐化图直方图'); 三,图像处理浮雕(来源网络) %浮雕图 l=imread(''); f0=rgb2gray(l);%变灰度图 f1=imnoise(f0,'speckle',; %高斯噪声加入密度为的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点 f1=im2double(f1);%把图像数据类型转换为双精度浮点类型 h3=1/9.*[1 1 1;1 1 1;1 1 1]; %采用h3对图像f2进行卷积滤波 f4=conv2(f1,h3,'same'); %进行sobel滤波 h2=fspecial('sobel'); g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的 k=mat2gray(g3);% 实现图像矩阵的归一化操作 四,图像处理素描(来源网络) f=imread(''); [VG,A,PPG] = colorgrad(f); ppg = im2uint8(PPG); ppgf = 255 - ppg; [M,N] = size(ppgf);T=200; ppgf1 = zeros(M,N); for ii = 1:M for jj = 1:N if ppgf(ii,jj)

dsp课程设计实验报告

DSP 课程设计实验 一、语音信号的频谱分析: 要求首先画出语音信号的时域波形,然后对语音信号进行频谱分析。在MATLAB 中,可以利用函数fft 对信号进行快速傅立叶变换,得到信号的频谱特性,从而加深对频谱特性的理解。 其程序为: >> [y,fs,bits]=wavread('I:\',[1024 5120]); >> sound(y,fs,bits); >> Y=fft(y,4096); >> subplot(221);plot(y);title('原始信号波形'); | >> subplot(212);plot(abs(Y));title('原始信号频谱'); 程序运行结果为: 二、设计数字滤波器和画出频率响应: 根据语音信号的特点给出有关滤波器的性能指标: 低通滤波器性能指标,p f =1000Hz ,c f =1200Hz ,s A =100dB ,p A =1dB ; 高通滤波器性能指标,c f =4800Hz ,p f =5000Hz ,s A =100dB ,p A =1dB ; 带通滤波器性能指标,1p f =1200Hz ,2p f =3000Hz ,1c f =1000Hz ,2c f =3200Hz ,s A =100dB , p A =1dB ;

】 要求学生首先用窗函数法设计上面要求的三种滤波器,在MATLAB中,可以利用函数firl 设计FIR滤波器;然后再用双线性变换法设计上面要求的三种滤波器,在MATLAB中,可以利用函数butte、cheby1和ellip设计IIR滤波器;最后,利用MATLAB中的函数freqz画出各种滤波器的频率响应,这里以低通滤波器为例来说明设计过程。 低通: 用窗函数法设计的低通滤波器的程序如下: >> fp=1000;fc=1200;As=100;Ap=1;fs=22050; >> wc=2*fc/fs;wp=2*fp/fs; >> N=ceil(/*(wc-wp)/2))+1; >> beta=*; >> Win=Kaiser(N+1,beta); 、 >>b=firl(N,wc,Win); >>freqz(b,1,512,fs); 程序运行结果: 这里选用凯泽窗设计,滤波器的幅度和相位响应满足设计指标,但滤波器长度(N=708)太长,实现起来很困难,主要原因是滤波器指标太苛刻,因此,一般不用窗函数法设计这种类型的滤波器。 用双线性变换法设计的低通滤波器的程序如下: >> fp=1000;fc=1200;As=100;Ap=1;fs=22050; >> wc=2*fc/fs;wp=2*fp/fs; 》 >> [n,wn]=ellipord(wp,wc,Ap,As); >> [b,a]=ellip(n,Ap,As,wn); >> freqz(b,a,512,fs); ^

数字图像处理课程设计题目和要求-2013

. . . .页脚. 数字图像处理课程设计容、要求 题目一:图像处理软件 1、设计容及要求: (1)、独立设计方案,实现对图像的十五种以上处理(比如:底片化效果、灰度增强、图像复原、浮雕效果、木刻效果等等)。 (2)、参考photoshop软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示; (3)、将实验结果与其他软件实现的效果进行比较、分析。总结设计过程所遇到的问题。 2、参考方案(所有参考方案若无特殊说明,均以matlab为例说明): (1)实现图像处理的基本操作 学习使用matlab图像处理工具箱,利用imread()语句读入图像,例如 image=imread(flower.jpg),对图像进行显示(如imshow(image)),以及直方图计算和显示。 (2)图像处理算法的实现与显示 针对课程中学习的图像处理容,实现至少十五种图像处理功能,例如模糊、锐化、对比度增强、复原操作。改变图像处理的参数,查看处理结果的变化。自己设计要解决的问题,例如引入噪声,去噪;引入运动模糊、聚焦模糊等,对图像进行复原。 (3)参照“photoshop”软件,设计图像处理软件界面 可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视功能多少而定;参考matlab软件中GUI设计,学习软件界面的设计。

. . . 题目二:数字水印 1、设计容及要求: 为保护数字图像作品的知识产权,采用数字水印技术嵌入水印图像于作品中,同时尽可能不影响作品的可用性,在作品发生争执时,通过提取水印信息确认作品。通常情况下,水印图像大小要远小于载体图像,嵌入水印后的图像可能遇到噪声、有损压缩、滤波等方面的攻击。因此,评价水印算法的原则就是水印的隐藏性和抗攻击性。根据这一要求,设计水印算法。 (1)、查阅文献、了解数字水印的基本概念。 (2)、深入理解一种简单的数字水印嵌入与提取方法。 (3)、能够显示水印嵌入前后的载体图像。 (4)、能够显示嵌入与提取的水印。 (5)、选择一种以上的攻击方法,测试水印算法的鲁棒性等性能。 (6)、设计软件界面 2、参考方案 (1)对水印图像进行编码置乱(可采用伪随机码,提高水印图像的隐蔽性); (2) 对图像进行子图像分解(如8*8),对子块分别进行DCT变换; (3) 对DCT系数按照zig-zag排序进行排列,选择一种频系数,对该种频系数相邻 的系数进行水印嵌入 (4) 低通滤波检验水印算法的抗攻击性。 (5) 设计数字水印的软件界面。 .页脚.

数字图像处理课程设计报告

课程设计报告书课程名称:数字图像处理 题目:数字图像处理的傅里叶变换 学生姓名: 专业:计算机科学与技术 班别:计科本101班 学号: 指导老师: 日期: 2013 年 06 月 20 日

数字图像处理的傅里叶变换 1.课程设计目的和意义 (1)了解图像变换的意义和手段 (2)熟悉傅里叶变换的基本性质 (3)热练掌握FFT的方法反应用 (4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换 通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2.课程设计内容 (1)熟悉并掌握傅立叶变换 (2)了解傅立叶变换在图像处理中的应用 (3)通过实验了解二维频谱的分布特点 (4)用MATLAB实现傅立叶变换仿真 3.课程设计背景与基本原理 傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。 3.1课程设计背景 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 3.2 傅里叶变换 (1)应用傅里叶变换进行数字图像处理 数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。 20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。

数字图像处理课程设计

数字图像处理课程设计报告 目录 一.实验目的 (3) 二.实验内容............ ................... . (3) 1.打开图像 (3) (1)、图像信息获取 (3) (2). RgbtoHsi(&rgb, &Hsi) (4) (3).OnMouseMove(UINT nFlags, CPoint point) (4) 2.标记Mark点 (5)

(1)标记可能的点 (5) (2)把可能标记的点变为标记点 (5) (3) EdgeIformation边缘标记 (6) (4)EdgeFilter边缘滤波 (6) 3.二值化 (7) 4.填洞 (8) 5收缩 (10) 6获取中心点 (11) 三.学习心得 1.错误总结 (16) 2.心得体 会 (17) 一.实验目的: 对血液细胞切片图片进行各种处理,最终得出细胞的数目、半径等信息 基于vc的红细胞识别统计系统设计 它主要以病人的血液样本为原始数据。经过一系列的图像处理和分析,识别出血液中的红细胞,并能给出红细胞的个数。而得到红细胞的个数以后,通过血液量的检测,就可以得出血液中红细胞的密度。该系统可以很方便的利用在临床上,大大提高速度和效率。

二、实验内容 基于VC++6.0软件下的细胞识别,通过细胞的标记、二值化、提取边缘、填洞、收缩、找中心点、计数等过程完成实验目的 1 . 打开图像 (1)图像信息获取 该步骤实现的功能是打开bmp格式的图像文件,要对图像进行操作,系统必须能调用图像。 打开bmp图像的具体步骤为 1.新建项目:--MFC AppWizard、工程名 2.拷贝cdib.h,cdib.cpp到工程文件夹,再向工程里添加 3.~Doc.h添加变量:m_pDib 4.~doc.cpp:变量(m_pDib):new、delete 5.~doc.cpp: Serialize() 6.~View.cpp: OnDraw() m_pDib->Draw() 2.RgbtoHsi(&rgb, &Hsi)

dsp课程设计实验报告总结

DSP课程设计总结(2013-2014学年第2学期) 题目: 专业班级:电子1103 学生姓名:万蒙 学号:11052304 指导教师: 设计成绩: 2014 年6 月

目录 一设计目的----------------------------------------------------------------------3 二系统分析----------------------------------------------------------------------3 三硬件设计 3.1 硬件总体结构-----------------------------------------------------------3 3.2 DSP模块设计-----------------------------------------------------------4 3.3 电源模块设计----------------------------------------------------------4 3.4 时钟模块设计----------------------------------------------------------5 3.5 存储器模块设计--------------------------------------------------------6 3.6 复位模块设计----------------------------------------------------------6 3.7 JTAG模块设计--------------------------------------------------------7 四软件设计 4.1 软件总体流程-----------------------------------------------------7 4.2 核心模块及实现代码---------------------------------------8 五课程设计总结-----------------------------------------------------14

图像处理课程设计报告

图像处理课程设计报告 导语:设计是把一种设想通过合理的规划周密的计划通过各种感觉形式传达出来的过程。以下是XX整理图像处理课程设计报告的资料,欢迎阅读参考。 图像处理课程设计报告1 摘要:图像处理技术从其功能上可以分为两大类:模拟图像处理技术、和数字图像处理技术。数字图像处理技术指的是将图像信号直接转换成为数字信号,并利用计算机进行处理的过程,其主要的特点在于处理的精度高、处理的内容丰富、可以进行复杂、难度较高的处理内容。当其不在于处理的速度比较缓慢。当前图像处理技术主要的是体现在数字处理技术上,本文说阐述的图像处理技术也是以数字图像处理技术为主要介绍对象。数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。近年来, 图像处理技术得到了快速发展, 呈现出较为明显的发展趋势, 了解和掌握这些发展趋势对于做好目前的图像处理工作具有前瞻性的指导意义。本文总结了现代图像处理技术的三点发展趋势。 对图像进行处理(或加工、分析)的主要目的有三个方面: (1)提高图像的视感质量,如进行图像的亮度、彩色变换,增强、抑制某些成分,对图像进行几何变换等,以改善图像的质量。(2)提取图像中所包含的某些特征或特殊信息,这些被提

取的特征或信息往往为计算机分析图像提供便利。提取特征或信息的过程是计算机或计算机视觉的预处理。提取的特征可以包括很多方面,如频域特征、灰度或颜色特征、边界特征、区域特征、纹理特征、形状特征、拓扑特征和关系结构等。 (3)图像数据的变换、编码和压缩,以便于图像的存储和传输。不管是 何种目的的图像处理,都需要由计算机和图像专用设备组成的图像处理系统对图像数据进行输入、加工和输出。 数字图像处理主要研究的内容有以下几个方面: 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅里叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。 图像编码压缩图像编码压缩技术可减少描述图像的数据量,以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

数字图像处理课程设计(实验报告)

上海理工大学 计算机工程学院 实验报告 实验名称红细胞数目统计课程名称数字图像处理 姓名王磊学号0916020226 日期2012-11-27 地点图文信息中心成绩教师韩彦芳

一、设计内容: 主题:《红细胞数目检测》 详细说明:读入红细胞图片,通过中值滤波,开运算,闭运算,以及贴标签等方法获得细胞个数。 二、现实意义: 细胞数目检测在现实生活中的意义主要体现在医学上的作用,可通过细胞数目的检测来查看并估计病人或动物的血液中细胞数,如估测血液中红细胞、白细胞、血小板、淋巴细胞等细胞的数目,同时也可检测癌细胞的数目来查看医疗效果,根据这一系列的指标来对病人或动物进行治疗,是具有极其重要的现实作用的。 三、涉及知识内容: 1、中值滤波 2、开运算 3、闭运算 4、二值化 5、贴标签 四、实例分析及截图效果: (1)代码如下: 1、程序中定义图像变量说明 (1)Image--------------------------------------------------------------原图变量;

(2)Image_BW-------------------------------------------------------值化图象; (3)Image_BW_medfilt-------------------------中值滤波后的二值化图像; (4)Optimized_Image_BW---通过“初次二值化图像”与“中值滤波后的二值化图像”进行“或”运算优化图像效果; (5)Reverse_Image_BW--------------------------优化后二值化图象取反;(6)Filled_Image_BW----------------------已填充背景色的二进制图像;(7)Open_Image_BW--------------------------------------开运算后的图像; 2、实现代码: %-------图片前期处理------------------- %第一步:读取原图,并显示 A = imread('E:\红细胞3.png'); Image=rgb2gray(A); %RGB转化成灰度图 figure,imshow(Image); title('【原图】'); %第二步:进行二值化 Theshold = graythresh(Image); %取得图象的全局域值 Image_BW = im2bw(Image,Theshold); %二值化图象 figure,imshow(Image_BW); title('【初次二值化图像】'); %第三步二值化图像进行中值滤波 Image_BW_medfilt= medfilt2(Image_BW,[13 13]); figure,imshow(Image_BW_medfilt); title('【中值滤波后的二值化图像】'); %第四步:通过“初次二值化图像”与“中值滤波后的二值化图像”进行“或”运算优化图像效果 Optimized_Image_BW = Image_BW_medfilt|Image_BW; figure,imshow(Optimized_Image_BW); title('【进行“或”运算优化图像效果】'); %第五步:优化后二值化图象取反,保证:‘1’-〉‘白色’,‘0’-〉‘黑色’ %方便下面的操作 Reverse_Image_BW = ~Optimized_Image_BW; figure,imshow(Reverse_Image_BW); title('【优化后二值化图象取反】');

DSP实验报告

电气信息工程学院 D S P技术与综合训练 实验报告 班级 08通信1W 姓名丁安华 学号 08313115 指导老师倪福银刘舒淇 2011年09 月

目录 实验一 LED演示 1.1.实验目的 -------------------------------------------------P2 1. 2.实验设备-------------------------------------------------P2 1. 3.实验原理-------------------------------------------------P2 1. 4.实验程序设计流程------------------------------------------P3 1. 5.实验程序编写----------------------------------------------P4 1. 6.实验步骤-------------------------------------------------P7 1. 7.实验结果与分析--------------------------------------------P7实验二键盘输入 2.1.实验目的 -------------------------------------------------P8 2.2.实验设备-------------------------------------------------P8 2. 3.实验原理-------------------------------------------------P8 2. 4.实验程序设计流程------------------------------------------P9 2. 5.实验程序编写----------------------------------------------P10 2. 6.实验步骤-------------------------------------------------P14 2. 7.实验结果与分析--------------------------------------------P14实验三液晶显示器控制显示 3.1.实验目的 -------------------------------------------------P15 3.2.实验设备-------------------------------------------------P15 3.3.实验原理-------------------------------------------------P15 3. 4.实验程序设计流程------------------------------------------P17 3. 5.实验程序编写----------------------------------------------P18 3. 6.实验步骤-------------------------------------------------P22 3. 7.实验结果与分析--------------------------------------------P23实验四有限冲激响应滤波器(FIR)算法 4.1.实验目的 -------------------------------------------------P23 4.2.实验设备-------------------------------------------------P23 4.3.实验原理-------------------------------------------------P24 4.4.实验程序设计流程------------------------------------------P25 4. 5.实验程序编写----------------------------------------------P25 4. 6.实验步骤-------------------------------------------------P27 4. 7.实验结果与分析--------------------------------------------P28

数字图像处理课程设计题目

PROJECT 03-01 Image Enhancement Using Intensity Transformations The focus of this project is to experiment with intensity transformations to enhance an image. Download Fig. 3.8(a) and enhance it using (a) The log transformation of Eq. (3.2-2). (b) A power-law transformation of the form shown in Eq. (3.2-3). In (a) the only free parameter is c, but in (b) there are two parameters, c and r for which values have to be selected. As in most enhancement tasks, experimentation is a must. The objective of this project is to obtain the best visual enhancement possible with the methods in (a) and (b). Once (according to your judgment) you have the best visual result for each transformation, explain the reasons for the major differences between them. 使用强度的转变实现图像增强 这个项目的焦点就是通过强度转换实验来增强图像。 下载图片3.8(a),并且对它实现增强。对数变换的公式如3.2.2所示,幂次变换的基本形式如3.2.3所示。 在(a)中,唯一的自由参数是c,但是在(b)中有两个参数,c以及一个需要被选定值的参数r,在大多数关于增强的任务中,实验是必须的。这个项目的目的是为了用在(a)和(b)中的方法来获得最佳可视化增强的可能性,一旦(根据你的判断)你对每一个变换都拥有了最好的视觉效果,解释一下它们之间产生主要差别的原因。 PROJECT 03-02 [Multiple Uses] Histogram Equalization (a) Write a computer program for computing the histogram of an image. (b) Implement the histogram equalization technique discussed in Section 3.3.1. (c) Download Fig. 3.8(a) and perform histogram equalization on it. As a minimum, your report should include the original image, a plot of its histogram, a plot of the histogram-equalization transformation function, the enhanced image, and a plot of its histogram. Use this information to explain why the resulting image was enhanced as it was. 直方图均衡化 (a)写一个程序来计算图像的直方图 (b)实现直方图均衡化方法在参考3.3.1 (c)下载图38(a)并实现其直方图均衡。 你的实验报告中至少需要包括原图,绘制其直方图,增强后的图形,并绘制它的直方图。用以上这些信息解释为什么图像的增强结果是这样的。 PROJECT 03-03 [Multiple Uses]

数字图像处理课程设计报告

课程设计报告书 课程名称:数字图像处理 题目:数字图像处理的傅里叶变换 学生姓名: 专业:计算机科学与技术 班别:计科本101班 学号: 指导老师: 日期:2013 年06 月20 日 数字图像处理的傅里叶变换 1.课程设计目的和意义 (1)了解图像变换的意义和手段 (2)熟悉傅里叶变换的基本性质 (3)热练掌握FFT的方法反应用 (4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换 通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2.课程设计内容 (1)熟悉并掌握傅立叶变换 (2)了解傅立叶变换在图像处理中的应用 (3)通过实验了解二维频谱的分布特点 (4)用MATLAB实现傅立叶变换仿真

3.课程设计背景与基本原理 傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。 3.1课程设计背景 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 3.2 傅里叶变换 (1)应用傅里叶变换进行数字图像处理 数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。 ? ??20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。 傅里叶变换在数字图像处理中广泛用于频谱分析,傅里叶变换是线性系统分析的一个有力工具,它使我们能够定量地分析诸如数字化系统,采样点,电子放大器,卷积滤波器,噪声,显示点等地作用(效应)。傅里叶变换(FT)是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析,简化了计算工作量,被喻为描述图像信息的第二种语言,广泛应用于图像变换,图像编码与压缩,图像分割,图像重建等。因此,对涉及数字图像处理的工作者,深入研究和掌握傅里叶变换及其扩展形式的特性,是很有价值得。 (2)关于傅里叶(Fourier)变换 在信号处理中,傅里叶变换可以将时域信号变到频域中进行处理,因此傅里叶变换在信号处理中有着特殊重要的地位。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。傅里叶变换属于谐波分析。傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号

DSP实验报告

实验一 程序的控制与转移 一、实验目的 1、掌握条件算符的使用。 2、掌握循环操作指令(BNAZ )和比较操作指令(CMPR ) 二、实验设备 计算机、ZY13DSP12BD 实验箱、5402EVM 板。 三、实验原理 程序控制指令主要包括分支转移、子程序调用、子程序返回、条件操作及循环操作等。通过传送控制到程序存储器的其他位置,转移会中断连续的指令流。转移会影响在PC 中产生和保护的程序地址。其中转移可以分为两种形式的,一种是有条件的,另一种是无条件的。 四、实验内容 编写程序,实现计算y= ∑=5 1 i i x 的值。 五、实验步骤 1、用仿真机将计算机与ZY13DSP12BD 实验箱连接好,并依次打开实验箱电源、仿真机电源,然后运行CCS 软件。 2、新建一个项目:点击Project -New ,将项目命名为example2,并将项目保存在自己定义的文件夹下。 3、新建一个源文件example2.asm 。将该文件添加到工程example2.pjt 中。 4、在工程管理器中双击example2.asm ,编写源程序: .tiltle ”example2.asm ” .mmregs STACK .usect ”STACK ”,10H ;堆栈的设置 .bss x,5 ;为变量分配6个字的存储空间 .bss y,1 .def start .data table: .word 10,20,3,4,5 ;x1,x2,x3,x4,x5 .text Start: STM #0,SWWWSR ;插入0个等待状态 STM #STACK+10H,sp ;设置堆栈指针 STM #x,AR1 ;AR1指向x RPT #4 ;下一条被重复执行5遍 MVPD table,*AR1+ ;把程序存储器中的数据传送到数据存储器 LD #0,A ;A 清零 CALL SUM ;调用求和函数 end: B end SUM: STM #x,AR3 ;AR3指向x STM #4,AR2 ;AR2=4 loop: ADD *AR3+,A ;*AR3+A-->A,然后AR3+ BANZ loop,*AR2- ;如果AR2的值不为0,则跳到loop 处;否则执行下一条指令 STL A,*(y) ;把A 的低16位赋给变量y

图形图像处理实验报告

第四次实验报告 实验课程:图像图像处理实验人:尹丽(200921020047) 实验时间:2012年4月19日实验地点:5-602 指导老师:夏倩老师成绩: 一、实验内容: ⑴图像的锐化:使用Sobel,Laplacian 算子分别对图像进行运算,观察并体会运算结果。 ⑵综合练习:对需要进行处理的图像分析,正确运用所学的知识,采用正确的步骤,对图像进行各类处理,以得到令人满意的图像效果。 二、实验目的: 学会用Matlab中的下列函数对输入图像按实验内容进行运算;感受各种不同的图像处理方法对最终图像效果的影响。(imfilter;fspecial;) 三、实验步骤:

1、仔细阅读Matlab 帮助文件中有关以上函数的使用说明,能充分理解其使用方法并能运用它们完成实验内容。 2、将Fig3.41(c).jpg 图像文件读入Matlab ,使用filter2函数分别采用不同的算子对其作锐化运算,显示运算前后的图像。 3、算子的输入可采用直接输入法。其中Sobel ,Laplacian ,也可用fspecial 函数产生。 4、各类算子如下: ???? ??????---121000121 ??????????-111181111 5、将Fig3.46(a).jpg 图像文件读入Matlab ,按照以下步骤对其进行处理: (1)用带对角线的Laplacian 对其处理,以增强边缘。 (2)用imadd 函数叠加原始图像。可以看出噪声增强了,应想法降低。 (3)获取Sobel 模板并用filter2对其进行5×5邻域平均,以减少噪声。 5(1)实验代码如图: 对角线Laplacian Sobel 垂直梯度

图像处理课程设计

《图像处理技术应用实践》课程设计题目图像增强算法综合应用 学生姓名韩帅_______ 学号 院系计算机与软件学院 专业计算机科学与技术 范春年____ 噪声,不同的去噪方法效果不同,因此应该采用不同的去噪方法以达到最好的去噪效果。? (2)随机噪声应在空间域去除,而空域去噪方法中,中值滤波法效果最好。? (3)周期噪声应在频域中消去。?

(4)去除噪声后的图像仍然可以改善处理。? (5)均方误差评估去噪处理后图像的去噪效果。 2.2算法设计? (1)读入初始图片及加噪图片。? clc;?clear;? f=imread();? ? for?j?=?1?:?N? ???????d?=?sqrt((i-m)^2+(j-n)^2);? ????? h?=?1/(1+0.414*(d/d0)^(2*nn));??%?计算低通滤波器传递函数??????????? ?result(i,j)?=?h?*?G(i,j);???????? end???

end (4)计算均方误差评估去噪效果。? [m?n]=size(p);?l=f-p;? he=sum(sum(l));? avg=he/(m*n); ?k=l-avg;? result1=(sum(sum(k.^2)))/(m*n);? for i=1:M for j=1:N d=sqrt((i-m)^2+(j-n)^2); h=1/(1+0.414*(d/d0)^(2*nn)); %h=1/(1+(d/d0)^(2*nn)); %备用 G(i,j)=h*G(i,j); end end p=uint8(real(ifft2(ifftshift(G)))); subplot(341);imshow(f),title('原图'); subplot(345);imshow(log(abs(f2)),[]),title('频谱'); subplot(349);imhist(f),title('原图'); subplot(342);imshow(g),title('噪声');

数字图像处理课程设计报告

本科综合课程设计报告 题 目 ____________________________ 指导教师__________________________ 辅导教师__________________________ 学生姓名__________________________ 学生学号__________________________ _______________________________ 院(部)____________________________专业________________班 ___2008___年 _12__月 _30__日 数字图像处理演示系统 信息科学与技术学院 通信工程 052

1 主要内容 1.1数字图像处理背景及应用 数字图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。目前,图像处理演示系统应用领域广泛医学、军事、科研、商业等领域。因为数字图像处理技术易于实现非线性处理,处理程序和处理参数可变,故是一项通用性强,精度高,处理方法灵活,信息保存、传送可靠的图像处理技术。本图像处理演示系统以数字图像处理理论为基础,对某些常用功能进行界面化设计,便于初级用户的操作。 1.2 图像处理演示系统设计要求 能加载和显示原始图像,显示和输出处理后的图像; 系统要便于维护和具备可扩展性; 界面友好便于操作; 1.3 图像处理演示系统设计任务 数字图像处理演示系统应该具备图像的几何变换(平移、缩放、旋转、翻转)、图像增强(空间域的平滑滤波与锐化滤波)的简单处理功能。 1.3.1几何变换 几何变换又称为几何运算,它是图像处理和图像分析的重要内容之一。通过几何运算,可以根据应用的需要使原图像产生大小、形状、和位置等各方面的变化。简单的说,几何变换可以改变像素点所在的几何位置,以及图像中各物体之间的空间位置关系,这种运算可以被看成是将各物体在图像内移动,特别是图像具有一定的规律性时,一个图像可以由另外一个图像通过几何变换来产生。实际上,一个不受约束的几何变换,可将输入图像的一个点变换到输出图像中的任意位置。几何变换不仅提供了产生某些特殊图像的可能,甚至还可以使图像处理程序设计简单化。从变换性质来分可以分为图像的位置变换、形状变换等 1.3.2图像增强 图像增强是数字图像处理的基本内容之一,其目的是根据应用需要突出图像中的某些“有用”的信息,削弱或去除不需要的信息,以达到扩大图像中不同物体特征之间的差别,使处理后的图像对于特定应用而言,比原始图像更合适,或者为图像的信息提取以及其他图像分析技术奠定了基础。一般情况下,经过增强处理后,图像的视觉效果会发生改变,这种变化意味着图像的视觉效果得到了改善,某些特定信息得到了增强。

数字图像处理课设

标准 文案专业综合实验报告----数字图像处理 专业: 电子信息工程 班级: 学生姓名: 学号: 指导教师: 年月日

设计题目:图像去雾处理 一、设计目的 由于大气的散射作用,照相机接收到景物反射过来的光线经过了衰减。雾天的大气退化图像具有对比度低、景物不清晰的特点,给交 通系统及户外视觉系统的应用带来严重的影响。。鉴于图像处理和计 算机视觉中有关图像理解、目标识别、目标跟踪、智能导航等领域的 很多算法都是假设输入的图像或视频是在理想天气条件下拍摄的,因 此有雾图像清晰化就显得格外重要,是目前人们研究的热点问题之 一,但由于成像系统聚焦模糊、拍摄场景存在相对运动以及雾天等不 利环境,使得最终获取的图像往往无法使用。有雾天气条件下获取的 图像对比度低、图像内容模糊不清而且颜色整体偏向灰白色,图像去 雾的目的就是恢复有雾图像的对比度和真实色彩,重现在理想天气条 件下拍摄的清晰图像。 二、设计内容和要求 1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像 和直方图; 2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比 该复原图像与原始图像以及直方图均衡化后的图像;

三、设计思路 由于图像中存在噪声等干扰,使得图像模糊不清。可以采用图像增强的方法对原图像处理,使图像变得清晰。而直方图均衡化是一种 常用的图像增强的方法。图像模糊,其图像的像素分布不均匀,采用 直方图均衡化的方法使其图像像素分布均匀,从而达到均衡像素分布 增强图像的目的。 设计方案 在晴朗的天气条件下,洁净的空气一般是由氦气、氧气等气体分子、水蒸汽、微量的固体悬浮颗粒物等成分构成。在这种大气条件 下,从物体表面反射的光线在到达成像设备的过程中,基本不会受大 气中各种成分的影响发生散射、吸收、发射等现象,而是直接到达成 像设备。相对在有雾天气条件下获得的图像,在这种理想天气条件获 得的图像,我们称之为清晰无雾图像。而在有雾天气条件下获得的图 像模糊不清,图像对比度下降,图像的颜色发生漂移,偏向灰白色。 无雾图像和有雾图像相比对比度较高,因此可以考虑增强局部对比度方法进行去雾: 1、对彩色图像RGB模型转换为HSI,对I分量分析图像直方图; 2、设置适合尺寸模版,对I分量进行局部直方图均衡化增强,分 析增强前后的图像和直方图。 3、查阅“基于暗原色先验的单一图像去雾方法”,设计图像无雾 算法。 流程框图

相关文档
最新文档