金刚石膜的应用以及制备方法

金刚石膜的应用以及制备方法
金刚石膜的应用以及制备方法

金刚石膜的应用以及制备方法

——————微波等离子体CVD制备金刚石膜

前言:

随着对金刚石的深入研究以及广泛应用,对硬质碳素材料有了进一步探索和需求,因此渴望找到一种可以代替金刚石的的材料。自从1971年Aisenberg和Chabot第一次利用碳的离子束沉积技术制备出具有金刚石特征的非晶碳膜以后,全球范围内掀起了制备类金刚石薄膜的浪潮。金刚石膜具有高硬度、低摩擦系数、高弹性模量、高热导、高绝缘、高稳定性、宽能隙和载流子高迁移率等优异性质和这些优异特性的组合,是一种在传统工业、军事、航天航空和高科技领域具有广泛应用前景的新材料,被称为是继石器时代、青铜器时代、钢铁时代、硅时代以来的第五代新材料,亦被称为是继塑料发明以来在材料科学领域的最伟大的发明。

微波等离子体化学气相沉积金刚石膜(简称:CVD金刚石膜),具有沉积速度快、纯度高、成膜均匀、面积大、结晶好、成本低等优点,是当今国际上制备金刚石膜的最先进方法,亦是金刚石膜制备技术的发展方向。世界上各大金刚石膜制品公司皆主要采用微波等离子体化学气相法制备金刚石膜。

一、金刚石膜在当代社会中的重要作用。

(1)金刚石膜刀具应用

金刚石膜硬度高、热导率高、摩擦系数低、生物相容性好以及这些优异性能的组合,可制成金刚石膜的切削刀具、机芯、密封件、人工关节等。使用金刚石膜工具不仅可以极大提高工具的使用寿命与工效,还可以极大提高加工精度。更重要的是解决了超硬合金、陶瓷材料、碳纤维、玻璃纤维等超难加工材料的切削加工难题,为高、新、精、尖技术和工艺的发展奠定了基础。

(2)金刚石膜光学应用

使用微波等离子体化学气相法沉积金刚石膜于镜头、钟表、仪表等表面,可制造真正的永不磨损镜头和钟表等,并极大提高光学镜头的适用范围和成像质量,适应各种恶劣的环境。美国哈勃望远镜的镜头使用了表面沉积金刚石薄膜技术,以适应外太空的恶劣环境和提高成像质量。

(3)金刚石膜航天应用

金刚石膜具有良好的抗辐照性能,以金刚石膜为基底的电子器件在高空电离辐射、热辐射和宇宙射线的作用下仍能保持良好的工作性能,在航天器中具有重要的应用。使用微波等离子体化学气相法沉积金刚石膜于窗口表面,可以充分利用其高硬度、高热导等特性,制造各种航天器和深海设备的观察窗口。美国发射的金星探测器的观察窗口就使用了金刚石膜技术。

(4)金刚石膜军事应用

用金刚石膜窗口制作各种激光制导、红外制导导弹的头罩,可以极大地提高导弹的飞行速度和命中率。当导弹以10马赫飞行时,温度升到5000℃,此时制导窗口不仅要经受高温的考验,还要经受空气中微尘、水分子和空气分子的高速撞击,使用传统的ZnS、ZnSe 、Ge等材料制成的窗口即已受热变软、变形、打毛甚至变盲,而金刚石膜窗口却能安然无恙。

美国洛克希德导弹和空间公司(Lockheed Missiles and Space Company)采用CVD金刚石膜制造导弹拦截窗口,起到了很好的保护效果,并在单面镀金刚石膜后可增加透过率13%,双面镀膜后增加透过率26%。“AIM-9L Sidewinder”空对空热寻导弹,因为使用了金刚石膜窗口,大大提高了热寻的灵敏度。

(5)金刚石膜热沉应用

金刚石膜系高热导的绝缘体,用作大功率电器件的散热衬底而无需专门的冷却系统,在提高电子设备紧凑度的同时,减轻了重量,提高了电子器件的可靠性,这对于航空航天等高技术领域具有重要意义。美国F16战机的分频电路就使用了CVD金刚石膜衬底。如果卫星上全部使用金刚石膜作为电路的衬底,冷却系统将减少90%的重量,不仅尺寸大大减小,结构紧凑,而且改善了工作环境,增强了电子系统的功能和可靠性,使卫星总重量降低50%以上,发射效率成倍提高。

(6)金刚石膜电子学应用

《美国国家关键技术报告》认为:“电子和光学器件领域将是金刚石膜最终

的主要应用市场”。单晶金刚石膜的开发应用,将使现有的电子元器件淘汰或更新50%以上,这意味着电子工业领域的革命,如金刚石基半导体器件、集成电路、平板显示器等。美国桑德(Sandia)国家实验室成功开发了一种多芯片金刚石膜,由25个电子部件组成大功率电子系统;美国加州晶体公司研制成功一种导电性能优异的金刚石薄膜,并应用于高能物理中捕捉粒子踪迹的传感器上。美国航天局和哈勃空间研究中心成功开发金刚石膜MIS电容器,用于探测空间软X射线的总辐射流量等等。

(7)金刚石膜微电子-机械系统应用

金刚石膜已被用于微电子-机械系统(micro-electro-mechanical system,简称MEMS)之中。例如:航天应用的微型马达,在这类要求大量滑动和滚动接触的环境下,硅是不适合的,磨损很快。而金刚石的高硬度、高耐磨损性(比硅高10000倍、低摩擦系数(相当于聚四氟乙烯,只有0.01)以及热稳定性和化学惰性,在微型设备中有广泛的应用前景。

气象卫星或高空飞行器,要求MEMS系统能稳定工作数十年,由于设备尺寸小,这类设备必须以分钟400,000转的速度旋转才能有效工作。在这种速度下,硅器件只能工作数分钟,而金刚石膜器件却可以承受这样的磨损。同时,金刚石膜器件在工作时不需要润滑,在这样的尺寸下,原子间作用力已经不能被忽视了,平整的金刚石膜表面能吸附氢气或氧气,这层吸附气体起到了润滑的作用。

目前MEMS系统在现实生活中使用的例子有:轿车安全气囊引发的探测器,喷墨打印机的喷嘴以及小到可以植入人体内的血压检测器。

二、金刚石膜的制备方法,微波等离子CVD法。

CVD法制备金刚石膜的工艺已经开发出很多种,其中主要有:热丝法(Hot Filament CVD, 简称HFCVD)、微波法(Microwave Plasma CVD, 简称MPCVD)、直流等离子体炬法(DC Plasma-jet CVD)和氧-乙炔燃烧火焰法(Oxy-acetylene Combustion Flame)。其中,微波法是用电磁波能量来激发反应气体。由于是无极放电,等离子体纯净,同时微波的放电区集中而不扩展,能激活产生各种原子基团如原子氢等,产生的离子的最大动能低,不会腐蚀已生成的金刚石。与热丝法相比,避免了热丝法中因热金属丝蒸发而对金刚石膜的污染以及热金属丝对强腐蚀性气体如高浓度氧、卤素气体等十分敏感等缺点,使得在工艺中能够使用的反应气体的种类比HFCVD中多许多;与直流等离子体炬相比,微波功率调节连续

平缓,使得沉积温度可连续稳定变化,克服了直流电弧法中因电弧的点火及熄灭而对衬底和金刚石膜的巨大热冲击而造成在DC plasma-jet CVD中金刚石膜很容易从基片上脱落;通过对MPCVD沉积反应室结构的结构调整,可以在沉积腔中产生大面积而又稳定的等离子体球,因而有利于大面积、均匀地沉积金刚石膜,这一点又是火焰法所难以达到的,因而微波等离子体法制备金刚石膜的优越性在所有制备法中显得十分的突出。

MPCVD沉积装置从真空室的形式来分,有石英管式、石英钟罩式和带有微波窗的金属腔体式。从微波与等离子体的耦合方式分,有表面波耦合式、直接耦合式和天线耦合式。

目前最长用、最简单也是最早出现的装置是表面波耦合石英管式装置,它是由一根石英管穿过沿着矩形传来的频率为2.45GHz微波场构成,放电管中部正好是电场最强的地方,从而在放电管中部生成稳定的等离子体球。等离子体球的精确位置可以通过波导终端的短路滑片来调节,石英钟罩式有两类:直接耦合式,如美国Califonia大学的钟罩式MPCVD装置;天线耦合式,如美国Pennsylvania 州立大学的MPDR(microwave plasma dish reactor)装置。带有微波窗的金属腔体式也有两类:直接耦合式,如澳大利亚Sydner大学的不锈钢圆筒腔式MPCVD 装置;天线耦合式,如ASTEX公司销售的HPMS等离子体沉积系统和英国

Heriot-Watt大学的UHV反应室沉积系统等。在MPCVD中为了进一步提高等离子体密度,又出现了电子回旋共振MPCVD(Electron Cyclotron Resonance CVD,简称ECR-MPCVD),通过引入外加磁场,使电子在外加磁场作用下作圆周运动,当电子作圆周的频率与微波频率2.45GHz相等时,发生电子回旋共振,此时磁场的磁感应强度为8.75×10-2T,得到高的离化和分解效率从而可大大地提高等离子体密度,实现金刚石的大面积均匀沉积。ECR-MPCVD的优点是沉积气压低,可在低压下(0.1~1.0Pa)用低的离子能量(20eV)保持高密度的放电(1012cm-3)。甚至在693K时可长出晶面较好的金刚石,而温度低于453K时长出微晶(无晶面)金刚石。生长速率在0.01~0.1μ/h的量级,反应室的压强在10Pa左右。若超过1KPa,ECR不明显。MPCVD沉积装置不仅能沉积高纯度的金刚石膜,沉积速率也可以通过增大微波功率来提高。用5KW 微波功率的MPCVD,可以以10μm/h

的速率沉积工具级的金刚石膜,8μm/h的速率沉积热沉级的金刚石膜,3μm/h 的速率沉积光学级的金刚石膜;而用1.5KW微波功率沉积,则沉积速率将相应地降低一个数量级,因此,MPCVD法被认为是高速率,高质量,大面积沉积金刚石膜的首选方法。

在我国,微波等离子体CVD装置的研制中与发达国家如美国、日本相比还有一定的差距,但差距正在逐步缩小。通过有关科研人员的努力,我国于1993年成功研制出天线耦合石英钟罩式800KW的MPCVD装置;于1997年研制出5KW不锈钢腔体天线耦合式MPCVD装置。,目前8KW和10KW功率、2.45GHz频率的MPCVD 装置正在研制和试验当中。

当前美国和欧洲主要生产金刚石膜的公司(如Norton公司、Crystallume 公司、Lambda Technologies公司、ASTeX公司、Westinghouse电气公司、IBM 公司、Apollo Diamond公司、De Beer钻石公司等等)都是用微波等离子体CVD 方法来制备金刚石薄膜产品的。微波等离子体CVD法可以制备面积大、均匀性好、纯度高、结晶形态好的高质量金刚石薄膜,特别适合在各种曲面(异形表面)上涂复金刚石薄膜,能制备各种不同需要的金刚石薄膜制品。并且可以原位实施基体与金刚石薄膜之间的中间层的多种不同处理工艺,适用性强。设备的使用操作简便,设备本身没有易损易耗件,能长期稳定运行,生产的重复性好。设备的能耗低,运行成本也低。因此微波等离子体CVD法是当前世界上研究和制备金刚石薄膜的主流方法。特别是对正在研究开发电子器件级高纯和可控制掺杂的异质外延金刚石薄膜,微波等离子体CVD技术是唯一能达到相应严格工艺要求的制备方法。所以国际学术界公认“微波等离子体CVD法是稳定生长纯的均匀的高质量金刚石膜的最有前途的技术”。

金刚石膜必将在今后的发展中发挥越来越重要的作用,同时微波等离子体CVD 法制备金刚石膜的工艺也会日趋成熟。

参考文献

【1】麻蒔立男《薄膜制备技术基础》原著第四版

【2】《表面技术》2007年03期

【3】胡海天,邬钦崇,微波等离子体化学气相沉积金刚石膜,物理

【4】曲敬信表面工程手册化学工业出版社

微电子专业英语期末大作业题目:微电子专业英语

物联网工程学院微电子专业

学号:0301080121

学生姓名:汪伟江

2012 年12 月

类金刚石薄膜的分子动力学研究

Material Sciences 材料科学, 2014, 4, 145-151 Published Online July 2014 in Hans. https://www.360docs.net/doc/fe12043514.html,/journal/ms https://www.360docs.net/doc/fe12043514.html,/10.12677/ms.2014.44022 The Molecular Dynamics Simulation on the Diamond-Like Carbon Films Minyong Du1, Ming Zhang1*, Jizhou Wei1, Haoliang Deng1, Shangjie Chu1, Kun Ren2 1College of Materials Science and Engineering, BeiJing University of Technology, Beijing 2College of EE and CE, Beijing University of Technology, Beijing Email: duminyong@https://www.360docs.net/doc/fe12043514.html,, *mzhang@https://www.360docs.net/doc/fe12043514.html, Received: May 28th, 2014; revised: Jun. 25th, 2014; accepted: Jul. 4th, 2014 Copyright ? 2014 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/fe12043514.html,/licenses/by/4.0/ Abstract The research and application of the diamond-like carbon films are very extensive since it was found due to the superior properties. Therefore, we had begun to study using molecular simula-tion methods in order to get better properties and explore better structure as early as the 1980s. In this background, the paper describes the development of the case of the diamond-like carbon films’ study, and gives a brief summary for the representative study of each period. Then, we point out some of the key issues that the diamond-like simulation faces and give the prospect for its fu-ture development at the end of this paper. Keywords Diamond-Like Carbon Films, Molecular Dynamics Simulation, Interatomic Potentials 类金刚石薄膜的分子动力学研究 杜敏永1,张铭1*,魏纪周1,邓浩亮1,楚上杰1,任坤2 1北京工业大学,材料科学与工程学院,北京 2北京工业大学,电子信息与工程学院,北京 Email: duminyong@https://www.360docs.net/doc/fe12043514.html,, *mzhang@https://www.360docs.net/doc/fe12043514.html, 收稿日期:2014年5月28日;修回日期:2014年6月25日;录用日期:2014年7月4日 *通讯作者。

金刚石性能介绍

书山有路勤为径,学海无涯苦作舟 金刚石性能介绍 金刚石在自然界材料中具有特别优异的机械性能、热学性能、透光性、纵 波声速、半导体性能及化学惰性,是一种全方位的不可替代的特殊多功能材 料。用化学气相沉积(Chemical Vapor Deposition 简称CVD)方法生长的金刚石膜具有与颗粒状天然金刚石和高压人造金刚石几乎完全相同的性能,但却克服 了小颗粒状天然金刚石和高压人造金刚石尺寸大小的限制。材料学家一致认为 只有这种连续性大尺寸块状材料,才能使得金刚石全部优异性能得到充分的发挥。金刚石膜的优异性能主要表现在以下几个方面: 1.机械性能:金刚石在已知材料中硬度最高(维氏硬度可达10,400kg/mm2 本站注:约合102GPa)、耐磨性最好且摩擦系数极低。CVD 金刚石膜中不含任何粘结剂,其多晶结构又使其在各个方向具有几乎相同的硬度,且没有解理面,因此其综合机械性能兼具 单晶金刚石和聚晶金刚石(PCD)的优点,而在一定程度上又克服了它们的不 足,而且价格低廉。它不仅可代替天然金刚石、高压人造单晶金刚石和聚晶金 刚石在机械领域应用而且大大拓宽了其应用范围:如制造各种适合拉制软硬丝 的高性能拉丝模具;焊接型CVD 金刚石工具(使用寿命超过PCD 工具的1-3 倍);制作形状较为复杂的CVD 金刚石涂层硬质合金刀具(使用寿命比涂层前提高10-50 倍);其低摩擦系数还可用于摩擦部件如轴承的耐磨涂层等。据国外专家统计,仅应用于超硬材料方面就可以开发、改造出二千多种新产品。 2.声学性能:金刚石在所有材料中的传声速度最快,为18.2km/s。利用此性能不仅能制作频率响应超过5GHz 的声表面波器件(这种最高频响声表面波器件在通信领域的应用极其广泛)而且还可制作频响达60kHz 以上的超高保真扬声器及性 能最优异的声传感器。 3.热学性能:天然金刚石热导率达20W/cm.K, 为所有物质中最高者, 比SiC 大4 倍, 比Si 大13 倍, 比GaAs 大43 倍, 是Cu 和Ag

类金刚石薄膜界面结合力的改善技术

类金刚石薄膜界面结合力的改善技术 赵洋1 (1.西南大学材料科学与工程学院,重庆400715) [摘要] 本文对当前国内外改善DLC薄膜界面结合力的技术进行了综述,包括改善沉积工艺、掺杂、过渡层设计等,为改善DLC薄膜结合力提供依据。 [关键词]类金刚石薄膜;内应力;结合力 technology of improving the interfacial adhesion of DLC films Zhao Yang1 (1.School of Materials Science and Engineering,Southwest University,Chongqing 400715,China;) [Abstract] Current domestic and international technology of improving the interfacial adhesion of DLC films are summarized in this paper in order to supply the accordance of improving the adhesion,which includes the changing of deposition parameters, doping, interlayers, and so on. [Key words] DLC films; intrinsic force;adhesion 1 引言 类金刚石薄膜(DLC),具有类似于天然金刚石的性质,是一种新型的硬质润滑功能薄膜材料[1],薄膜中的碳原子部分处于sp2杂化状态,部分处于sp3杂化状态,同时也有极少数处于sp1杂化状态[2]。由于具有优良的光、电和力学特性, 在工业上具有广泛的应用前景[3~4], 近年来DLC膜在许多方面已得到了工业化应用, 如在切削刀具, 自动化机械零部件等的表面涂层处理上。 然而,DLC膜的一个致命弱点是内部应力很高, 有些DLC膜应力高达10G Pa,使得薄膜的结合力特性较差、不易厚膜化,从而极大地限制了它的应用范围。这主要是由于DLC薄膜在沉积过程中,离子对基体表面的轰击和注入,使得膜基之间存在较大的应力,再加上本身具有的化学惰性, 难以与基体形成化学健合, 使得其与一些常用的衬底材料难于形成强固的粘合层。为改善DLC薄膜的特性,尤其是界面结合力,许多科研工作人员从多方面进行了探索和研究。目前,国内外改善DLC薄膜界面结合强度主要是从本征应力和界面应力的控制两方面来着手。其中,通过改变工艺参数、掺杂第三元素[5]、引入中间过渡层或进行退火后处理[6]等方式来改善DLC膜结合力是目前技术研究的热点。 2 DLC结合力改善技术

金刚石薄膜的性能研究

金刚石薄膜的性能研究 金刚石薄膜的应用 由于金刚石的优异性质,加上CVD法大大降低了金刚石的生产成本而CVD金刚石薄膜的品质逐渐赶上甚至在一些方面超过天然金刚石而使得金刚石薄膜广泛地用于工业的许多领域: 1 工具领域 随着汽车、航空和航天工业的发展以及对材质轻量化、高比强度的要求日益提高,有色金属、碳纤维增强塑料(CFRP)、玻璃纤维增强塑料(GFRP)、纤维增强金属(FRM)以及石墨、陶瓷等新材料在工业中的应用日益广泛,因而对加工这些材料的刀具提出了更高的要求,金刚石的高硬度,耐磨损,高热导,低热膨胀系数,低摩擦系数,化学惰性等优点使得金刚石是加工非铁系材料的理想工具材料。HTHP金刚石在二十世纪60年代就被用于刀具领域,但由于其制备工艺复杂,价格昂贵,刀具种类受限而限制了其在工业上的广泛应用;将金刚石薄膜直接沉积在刀具表面,能极大地延长刀具的使用寿命,加工质量也大为提高。 2 热沉领域 目前国内半导体功率器件采用铜作热沉,在同时要求绝缘的场合采用氧化铍陶瓷。但氧化铍在制备过程中有剧毒物质产生,在发达国家已禁止使用。金刚石在室温下具有最高的热导率,是铜、银的5倍,又是良好的绝缘体,因而是大功率激光器件、微波器件、高集成电子器件的理想散热材料 采用金刚石热沉(散热片)的大功率半导体激光器已经用于光通信,在激光二极管、功率晶体管、电子封装材料等方面都有应用;金刚石热沉商品也已在国外市场出现。金刚石热沉的另一应用前景是用于正在发展之中的多芯片技术(MCMs,Multi Chip Modules),这一技术的目标是把许多超大规模集成电路芯片以三维的方式紧密排列结合成为超小型的超高性能器件,而这些芯片的散热则是该技术的关键,显然金刚石薄膜是解决这一技术难题最理想的材料。 3 光学应用领域 金刚石的光学吸收在0.22μm左右,相当于真空紫外光波段,从此位置直到毫米波段,除位于~5μm附近由于双声子吸收而造成的微弱吸收峰(吸收系数~12.3cm-1)外,不存在任何吸收峰。 金刚石膜作为光学涂层的应用前景非常好。在军事可用作红外光学窗口和透镜的涂层。在民用方面可用作在恶劣环境(如冶金,化工等)下工作的红外在线监测和控制仪器的光学元件涂层。CVD金刚石膜通常沉积温度在800~1000℃左右,大多数光学材料衬底都不允许在这样高的温度下沉积金刚石膜,因此在低温下沉

纳米金刚石薄膜的制备

?材料? 纳米金刚石薄膜的制备3 杨保和33,崔 建,熊 瑛,陈希明,孙大智,李翠平 (天津理工大学光电信息与电子工程系,薄膜电子与通信器件天津市重点实验室,天津300191) 摘要:采用微波等离子体化学气相沉积系统,利用氢气、甲烷、氩气和氧气为前驱气体,在直径为5cm的(111)取 向镜面抛光硅衬底上沉积出高平整度纳米金刚石薄膜。利用扫描电镜、X射线衍射谱和共焦显微显微拉曼光 谱我们分析了薄膜的表面形貌和结构特征。该薄膜平均粒径约为20nm。X射线衍射谱分析表明该薄膜具有 立方相对称(111)择优取向金刚石结构。在该薄膜一阶微显微拉曼光谱中,1332cm-1附近微晶金刚石的一阶 特征拉曼峰减弱消失,可明显观测到的三个拉曼散射峰分别位于1147cm-1、1364cm-1和1538cm-1,与己报导 的纳米金刚石拉曼光谱类似。该方法可制备出粒径约为20nm粒度分布均匀致密具有较高含量的sp3键的纳 米金刚石薄膜。 关键词:纳米金刚石薄膜;微波等离子体化学气相沉积 中图分类号:O484.4 文献标识码:A 文章编号:100520086(2008)0520625203 T he fab rication of nano2di amond substrate for SA W d evice in high frequ ency and pow er Y ANG Bao2he33,CUI Jian,XIONG Y ing,CHEN X i2ming,SUN Da2zhi,LI Cui2ping (Dept.of Opt.Electronic Information and Electronic Engineering,Tianjin University of T echnology,Tianjin K ey Lab.of Film Electronic&C ommunicate Devices,Tianjin300191,China) Abstract:A novel method to nano2diam ond films is provided.Nano2diam ond film has been prepared on(111)m irror polished Si substrate by m icrowave plasma chem ical deposition system with m ixture gases of H2,CH4,O2and Ar.C ombined SEM, golden phase micro2pictures,XRD spectrum and micro2Raman spectrum the morphology and structure of the film are charac2 terized.It is found that the film has uniform particle size and the average size,of diam ond particles is about20nm.According to the XRD spectrum,the film is cubic structure(111)diamond.And the only allowed Raman band in the first2order dia2 m ond spectrum near1332cm-1decreases and can′t be observed in the micro2Raman spectrum of the film.Three Raman band near1147cm-1,1364cm-1and1538cm-1lie in the spectrum which are sim ilar to the reported nano2diam ond films. 20nm plain diam ond film with high concentration of sp3is obtained by this method. K ey w ords:nano2diamond film;micowave plasma chemical vapor deposition 1 引 言 当今世界,电子和光电子产品正迅速朝着速度更快、体积更小、功率更高的方向发展。但是小体积、高功率的电子和光电器件由于会在小面积上产生大量的热(有时高达几个kW/ cm2)而导致出现一个极大的热通量,如果不能迅速降温散热器件就容易出现问题。金刚石具有所有物质中最高的热导率,最好的化学稳定性和抗各种辐射能力等,这使它成为具有广泛应用前景的新型薄膜功能材料[1~5]。 然而,作为实用的薄膜功能材料往往需要薄膜有很好的平整度。由于金刚石晶体生长特点是呈笋状生长,所以具有一定厚度的高平整度的微晶金刚石薄膜的制备难度很大[3]。另外,考虑到微晶金刚石的硬度和粗糙度,抛光过于昂贵和消费时间。所以也有必要探索自然生长具有光滑表面的薄膜。纳米金刚石膜致密光滑,缺陷和晶界尺度远小于微米量级,具有与金刚石微晶近似的较高的弹性模量,是非常优异的声表面波基底材料[2,4,5];另外,由于纳米金刚石的沉积方法是通过减少反应气体中刻蚀气体氢气的比重,增加反应中碳的二聚物C2,所以生长机制不同于微晶薄膜,可以制备表面平整且较厚的膜[2]。以上原因使高平整度纳米金刚石薄膜的制备成为金刚石声表面波器件研究的主要内容之一。 目前已报导的纳米金刚石膜的制备路径一方面可以通过 光电子?激光 第19卷第5期 2008年5月 Journal of Optoelectronics?Laser Vol.19No.5 May2008 3收稿日期:2006210203 修订日期:2007212218  3 基金项目:国家自然科学基金资助项目(60576011);天津市自然基金重点资助项目(05YF J Z JC00400);天津市科技发展计划资助项目(06TXT JJC14701);天津市自然基金资助项目(05YF J M JC05300)  33E2m ail:bhyang207@https://www.360docs.net/doc/fe12043514.html,

金刚石材料的功能特性研究与应用

陶瓷专题 金刚石材料的功能特性研究与应用 高 凯,李志宏 (天津大学材料科学与工程学院,天津 300072) Study and Application on Functional Properties of Diamond Materials GAO Kai,LI Zhi hong (S chool of M ater ial S cience and Engineer ing,T ianj in Univer sity,T ianj in300072,China) Abstract:Functional properties of diamo nd mater ials and its study and application recent years on w ide bandg ap semiconducto rs,ultraviolet detectors,sing le pho to n source for quantum computer,so nic surface diffusion and electronic encapsulatio n w ere reviewed in this paper,and other po tential application on func tional proper ties of the diamond materials w ere expected. Key words:Diamo nd,Functional proper ty,Study,Application 摘要:本文综述了金刚石的功能特性及其近年来在宽禁带半导体、紫外探测器、量子计算机用单光子源、声波材料和电子封装等方面的研究与应用进展,并对金刚石材料在其它功能特性方面的开发与应用前景提出了展望。 关键词:金刚石;功能特性;研究;应用 中图分类号:TB33 文献标识码:A 文章编号:1002-8935(2010)04-0009-05 金刚石是目前工业化生产的最硬材料,其前通常利用其硬度特性广泛地作为加工、研磨材料。但它除了具有高硬度之外,其许多优异特性被逐渐发现和挖掘,如室温下高热导率、极低的热膨胀系数、低的摩擦系数、良好的化学稳定性、大的禁带宽度(5 5eV)、高的声传播速度、掺杂诱导的半导体特性以及高的光学透过率,使其在机械加工、微电子器件、光学窗口及表面涂层等许多领域有着广阔的应用前景。因此,金刚石材料的功能特性研究与应用引起了人们极大的兴趣,并在很多领域取得了突破和进展。 1 在宽禁带半导体方面的研究与应用 金刚石作为一种宽禁带半导体,在光电子学中的应用前景无疑是最引人注目的。但是由于n型金刚石半导体掺杂存在着一定的困难,使制备同质结的困难加大,目前领先的依然是麻省理工学院有关于金刚石薄膜p n结的研究[1],2001年麻省理工学院的Koizumi等第一次制备了金刚石薄膜p n结,在金刚石单晶的(111)面上以同质外延生长的方法制备了两层金刚石薄膜,p型半导体使用B元素掺杂金刚石薄膜而成,n型半导体则以P元素掺杂制备,然后他们对这个装置进行了改进,在施加20V 偏压电路的情况下,装置被激发出了紫外光,并且指出,该装置可以在高温下运作。Alexo v A等[2]则在掺杂B元素后的金刚石薄膜上用同质外延法制备了一层掺杂N元素的金刚石薄膜,但是并没有详细报道此p n结的电致发光等特性。之后有关同质结的报道很不常见,估计主要是还是因为金刚石n型半导体掺杂的可重复性存在着一定的困难所致,目前报道都集中于金刚石半导体异质结上,比如,已在Si晶片上生长含B金刚石薄膜[3],或者是制备肖特基二极管(Schottky diodes)和场效应晶体管(Field effect transisto rs,FET)。 1987年化学气相沉积(CVD)法制备含B金刚石薄膜的方法并不完善,所以Geis等[4]用合成含B 金刚石单晶的方法制备了由W元素接触的首个金刚石肖特基二极管,并在700下考察了样品的性能,确定了样品具有很高的击穿场强。同一课题组的相关人员进一步考察了不同金属元素接触对金刚石肖特基二极管性能的影响[5],大量的工作表明,使用Al,Au,H g元素作为含B金刚石的表面接触元

类金刚石薄膜制备和应用

类金刚石膜调研 类金刚石薄膜发展史: 金刚石、类金刚石薄膜技术,是指利用各种光学薄膜制作技术制作接近天然金刚石和人造单晶金刚石特性(如在较宽光谱内均具有很高的光透过率--在2~15μm(微米)范围光的吸收率低到1%;具有很高的硬度、良好的导热性、耐腐蚀性以及化学稳定性高--1000℃(摄氏度)以上仍保持其化学稳定性等)的人造多晶金刚石薄膜、类金刚石薄膜(又称为硬碳膜、离子碳膜、或透明碳膜)的一种技术。 光学应用金刚石、类金刚石薄膜主要采用低压化学汽相沉积(CVD)技术制备。低压CVD 技术包括热丝CVD法、等离子体CVD法、离子束蒸镀法、光/激光CVD法附加活性氢激光CVD 法等。 目前,CVD法制作金刚石薄膜已取得丰硕成果,但作为红外光学薄膜应用还需进一步解决金刚石薄膜对红外光学材料的粘着性和光散射的问题。CVD法制作的金刚石薄膜与硅基片的粘着性是不错的,但是与其他材料(如锗、硫化锌等)基片的粘着性就甚差,或是根本就粘着不到一起去。对于光散射的问题,则是要求如何更好地控制金刚石薄膜表面形态和晶粒结构。理想的CVD法制造的红外光学应用的金刚石薄膜或许是一种单晶结构的膜,但是,目前使用CVD法还不能制造单晶结构的金刚石薄膜。此外,大面积薄膜的制作、膜的光洁度等技术课题以及金刚石薄膜的制作成本问题,都有待于继续研究解决。 1.1金刚石、类金刚石薄膜研究进展 自1963年在一次偶然的机会出现了不寻常的硬度和化学性能好的化学汽相沉积(CVD)碳形式的薄膜后,国外有不少研究单位开始研究金刚石薄膜的沉积工艺.1971年,艾森伯格(Aisenberg)和沙博(Chabot)等人,利用离子束蒸镀法,以石墨作薄膜材料,通过氩气弧光放电使石墨分解电离产生碳离子。碳离子经磁场聚焦成束,在比较高的真空条件下,在低压沉积室内的室温下的基片上沉积出了硬碳膜。这种硬碳膜具有近似于金刚石的一些特性-如透明度高、电阻抗大、硬度高等。当时,这种膜被人们称作i形碳。直到1976年,斯潘塞(Spencer)等人对这种应碳膜的结构进行了探讨,结果确认膜中有金刚石等数种碳系结晶,后才被人们称之为类金刚石膜。就在这一年,德贾吉恩(Derjaguin)等人利用化学转变法合成出了金刚石薄膜。从此之后,低压CVD金刚石薄膜工艺引起了人们的注意。70年代中期,前苏联

纳米金刚石薄膜的性能研究

纳米金刚石薄膜的性能研究 摘要:纳米金刚石薄膜的优异性能吸引了众多学者的关注,同时也成为CVD金刚石薄膜研究领域的新热点。它在很多领域都具有极好的应用前景,是我们将来生活中不可或缺的一种薄膜材料。本文简单介绍了纳米金刚石薄膜的一些应用,并主要从光学、力学和电学的角度对其性能做了详细阐述。 关键词:纳米金刚石薄膜性能 Properties of Nanocrystalline Diamond Films Abstract:The excellent properties of nanocrystalline diamond films are of interest for many researchers and have become a new hot point in the development of diamond films prepared by chemical vapor deposition. It has good prospects in many fields, and became an indispensable film material of our lives. The paper introduced briefly the applications of nanocrystalline diamond films, while its properties were described in detail mainly from the optical, mechanical and electrical points. Keywords:nanocrystalline diamond films properties

类金刚石薄膜的性能与应用

学科前沿知识讲座论文

类金刚石薄膜的性能与应用 摘要: 类金刚石膜(Diamond-like Carbon)简称DLC,是一类性质类似于金刚石如具有高硬度、高电阻率、耐腐蚀、良好的光学性能等,同时其又具有自身独特摩擦学特性的非晶碳膜。作为功能薄膜和保护薄膜,其广泛应用于机械、电子、光学、医学、航天等领域中。类金刚石膜制备方法比较简单,易实现工业化,具有广泛的应用前景。 关键词:超硬材料类金刚石薄膜制备气象沉积表面工程技术引言 磨损是工程界材料功能失效的主要形式之一,由此造成的资源、能源的浪费和经济损失可用“巨大”来表示。然而,磨损是发生于机械设备零部件表面的材料流失过程,虽然不可避免,但若采取得力措施,可以提高机件的耐磨性。材料表面工程主要是利用各种表面改性技术,赋予基体材料本身所不具备的特殊的力学、物理或化学性能,如高硬度、低摩擦系数、良好的化学及高温稳定性、理想的综合机械性能及优异的摩擦学性能,从而使零部件表面体系在技术指标、可靠性、寿命和经济性等方面获得最佳效果。硬质薄膜涂层因能减少工件的摩擦和磨损,有效提高表面硬度、韧性、耐磨性和高温稳定性,大幅度提高涂层产品的使用寿命,而广泛应用于机械制造、汽车工业、纺织工业、地质钻探、模具工业、航空航天等领域。

一、超硬薄膜材料 随着材料科学和现代涂层技术的发展,应用超硬材料涂层技术改善零部件表面的机械性能和摩擦学性能是21世纪表面工程领域重要的研究方向之一。超硬薄膜是指维氏硬度在40GPa以上的硬质薄膜。到目前为止,主要有以下几种超硬薄膜: 1 金刚石薄膜 金刚石薄膜的硬度为50~100GPa(与晶体取向有关),从20世纪80年代初开始,一直受到世界各国的广泛重视,并曾于20世纪80年代中叶至90年代末形成了一个全球范围的研究热潮。金刚石膜所具有的最高硬度、最高热导率、极低摩擦系数、很高的机械强度和良好化学稳定性的优异性能组合使其成为最理想的工具和工具涂层材料。金刚石薄膜在摩擦学领域应用的突出问题,就是在载荷条件下薄膜与基体之间的粘附强度以及薄膜本身的粗糙度问题,目前,己经有针对性地开展了大量的研究工作。随着研究工作的不断深入,金刚石薄膜将会为整个人类社会带来巨大的经济效益。 2 立方氮化硼(c-BN)薄膜 立方氮化硼(c-BN)薄膜的硬度为50~80GPa,它具有与金刚石相类似的晶体结构,其物理性能也与金刚石十分相似。与金刚石相比,c-BN的显著优点是具有良好的热稳定性和化学稳定性,适用于作为超硬刀具涂层,特别是用于加工铁基合金的刀具涂层。 3 碳氮膜 碳氮膜是新近开发的超硬薄膜材料,理论预测它具有达到和

化学气相沉积金刚石薄膜及其应用进展

化学气相沉积金刚石薄膜及其应用进展 摘要:化学气相淀积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。本文简单综述了化学气相淀积金刚石薄膜,又简单介绍了金刚石薄膜在各工业领域内的应用进展情况,并对其发展前景作了展望。 关键词:金刚石薄膜热灯丝CVD法微波等离子体CVD法 前言金刚石在所有已知物质中具有最高的硬度,室温下有最高的热导率,对光线而言从远红外区到深紫外区完全透明,有最低的可压缩性,极佳的化学惰性,其生物兼容性超过了钛合金等等。然而由于天然金刚石数量稀少,价格昂贵,尺寸有限等因素,人们很难利用金刚石的上述优异的性能。根据天然金刚石存在的事实以及热力学数据,人们一直想通过碳的另一同素异形体——石墨来合成金刚石。但由于金刚石与石墨之间存在着巨大的能量势垒,要将石墨转化为金刚石,必须使用高温高压技术来人工合成,使得人工高温高压合成的金刚石价格昂贵。 20世纪80年代初开发的化学气相沉积(CVD)制备的金刚石薄膜,不仅成本低,质量高,而又可大面积制备,使人们大规模应用金刚石优异性质的愿望,通过CVD法合成金刚石薄膜得以实现。金刚石膜具有极其优异的物理和化学性质,如高硬度、低磨擦系数、高弹性模量、高热导、高绝缘、宽能隙和载流子的高迁移率以及这些优异性质的组合和良好的化学稳定性等,因此金刚石薄膜在各个工业领域有极其广泛的应用前景。 1金刚石薄膜制备 在低温低压下利用化学气相沉积CVD技术生长金刚石膜;含碳化合物和氢气是最主要的原料,前者提供碳源,后者提供原子态的氢,促使更多的碳转变为sp3的金刚石结构,除去未转变为金刚石的其它形态碳(sp2石墨碳或非晶碳、sp1碳)。 金刚石薄膜制备的主要CVD方法:(1)热灯丝CVD(HFCVD);(2)微波等离子体CVD(MWPCVD);(3)直流等离子体CVD(DC-CVD);(4)直流电弧等离子体射流CVD(DC-JET);(5)电子增强CVD(EACVD);(6)磁微波等离子体

类金刚石薄膜

类金刚石薄膜 类金刚石薄膜是近来兴起的一种以sp3和sp2键的形式结合生成的亚稳态材料,兼具了金刚石和石墨的优良特性,而具有高硬度.高电阻率.良好光学性能以及优秀的摩擦学特性。 类金刚石薄膜通常又被人们称为DLC薄膜,是英文词汇Diamond Like Carbon的简称,它是一类性质近似于金刚石,具有高硬度.高电阻率.良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。碳元素因碳原子和碳原子之间的不同结合方式,从而使其最终产生不同的物质:金刚石(diamond)—碳碳以sp3键的形式结合;石墨(graphite)—碳碳以sp2键的形式结合;而如同绪论里所述类金刚石(DLC)—碳碳则是以sp3和sp2键的形式结合,生成的无定形碳的一种亚稳定形态,它没有严格的定义,可以包括很宽性质范围的非晶碳,因此兼具了金刚石和石墨的优良特性;所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,而在含氢的DLC膜中还存在一定数量的C-H键。由两个相同或不相同的原子轨道沿轨道对称轴方向相互重叠而形成的共价键,叫做σ键。σ键是原子轨道沿轴方向重叠而形成的,具有较大的重叠程度,因此σ键比较稳定。σ键是能围绕对称轴旋转,而不影响键的强度以及键跟键之间的角度(键角)。根据分子轨道理论,两个原子轨道充分接近后,能通过原子轨道的线性组合,形成两个分子轨道。其中,能量低于原来原子轨道的分子轨道叫成键轨道,能量高于原来原子轨道的分子轨道叫反键轨道。以核间轴为对称轴的成键轨道叫σ轨道,相应的键叫σ键。以核间轴为对称轴的反键轨道叫σ*轨道,相应的键叫σ*键。分子在基态时,构成化学键的电子通常处在成键轨道中,而让反键轨道空着。σ键是共价键的一种。它具有如下特点:第一点,σ键有方向性,两个成键原子必须沿着对称轴方向接近,才能达到最大重叠;第二点,成键电子云沿键轴对称分布,两端的原子可以沿轴自由旋转而不改变电子云密度的分布;第三点,σ键是头碰头的重叠,与其它键相比,重叠程度大,键能大,因此,化学性质稳定。共价单键是σ键,共

几种CVD制备金刚石薄膜的方法.

几种CVD制备金刚石薄膜的方法 1.热丝CVD法 此法又称为热解CVD法,Matsumoto等人采用热丝CVD法成功地生长出了金刚石薄膜。该法是把基片(Si、Mo、石英玻璃片等放在石英玻璃管做成的反应室内,把石英管内抽成真空后,把CH4和H2的混合气体输人到装在管中的钨丝附近(两种气体的流量比为0.5%-5%。用直流稳压电源加热钨丝到约2000℃,反应室内温度为700~900℃,基片温度为900℃左右,室内气体压力为1×103-1×105Pa。在这样的反应条件下,CH4和H2混合气中的H2被热解,产生原子态氢,原子态氢与CH4反应生成激发态的甲基,促进了碳化氢的热分解,促使金刚石SP3杂化C-C键的形成,使金刚石在基片上沉积,获得立方金刚石多晶薄膜。沉积速率为8-10μm/h 我国的金曾孙等人也用热丝CVD法生长出质量很好的金刚石薄膜。实验表明,基片温度和甲烷的浓度是薄膜生长最为重要的参数,它们对金刚石薄膜的结构、晶形、膜的质量和生长速率影响甚大。该法的特点是装置结构简单、操作方便、容易沉积出质量较好的金刚石膜。 2.电子加速CVD法 此法是在用热丝CVD法沉积金刚石薄膜过程中,用热电子轰击基片表面,加速金刚石在基片上沉积。与热丝CVD法不同的是,该法把电压正极接在用铝制成的基片架上,经加热的钨丝发射电子,电子在电场作用下轰击阳极的基片。CH4和H2的混合气体被输送到基片表面,由于热反应和热电子轰击的双重作用,使气体发生分解,形成各种具有活性的碳氢基团,促使具有双键和三键的碳离解,加速金刚石的成核和生长。基片可选用Si、SiC、Mo、WC、A12O3等材料。一般的工艺参数是:甲烷为ψ(CH4=0.5%~2.0%;气体流速为5-50cm3/min;基片温度在500~750℃之间;钨丝温度为2000℃;基片支架的电流密度为10mA/cm2,电压150V。用此法沉积出的金刚石薄膜的性质与天然金刚石基本相同,晶形完整,生长速率一般为3~5μm/h。此法的特点是通过电子轰击基片,从而加速了CH4和H2的分解,增加了基片表面上金刚石的

金刚石薄膜

金刚石薄膜 类金刚石薄膜是近来兴起的一种以sp3和sp2键的形式结合生成的亚稳态材料,兼具了金刚石和石墨的优良特性,而具有高硬度。高电阻率。良好光学性能以及优秀的摩擦学特性。 结构 类金刚石薄膜通常又被人们称为DLC薄膜,是英文词汇DiamondLikeCarbon的简称,它是一类性质近似于金刚石,具有高硬度.高电阻率.良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。碳元素因碳原子和碳原子之间的不同结合方式,从而使其最终产生不同的物质:金刚石(diamond)-碳碳以sp3键的形式结合;石墨(graphite)-碳碳以sp2键的形式结合;而如同绪论里所述类金刚石(DLC)-碳碳则是以sp3和sp2键的形式结合,生成的无定形碳的一种亚稳定形态,它没有严格的定义,可以包括很宽性质范围的非晶碳,因此兼具了金刚石和石墨的优良特性;所以由类金刚石而来的DLC膜同样是一种亚稳态长程无序的非晶材料,碳原子间的键合方式是共价键,主要包含sp2和sp3两种杂化键,而在含氢的DLC膜中还存在一定数量的C-H键。 由两个相同或不相同的原子轨道沿轨道对称轴方向相互

重叠而形成的共价键,叫做σ键。σ键是原子轨道沿轴方向重叠而形成的,具有较大的重叠程度,因此σ键比较稳定。σ键是能围绕对称轴旋转,而不影响键的强度以及键跟键之间的角度(键角)。根据分子轨道理论,两个原子轨道充分接近后,能通过原子轨道的线性组合,形成两个分子轨道。其中,能量低于原来原子轨道的分子轨道叫成键轨道,能量高于原来原子轨道的分子轨道叫反键轨道。以核间轴为对称轴的成键轨道叫σ轨道,相应的键叫σ键。以核间轴为对称轴的反键轨道叫σ*轨道,相应的键叫σ*键。分子在基态时,构成化学键的电子通常处在成键轨道中,而让反键轨道空着。 σ键是共价键的一种。它具有如下特点: 第一点,σ键有方向性,两个成键原子必须沿着对称轴方向接近,才能达到最大重叠;第二点,成键电子云沿键轴对称分布,两端的原子可以沿轴自由旋转而不改变电子云密度的分布;第三点,σ键是头碰头的重叠,与其它键相比,重叠程度大,键能大,因此,化学性质稳定。共价单键是σ键,共价双键有一个σ键,π键,共价三键由一个σ键,两个π键组成。 分类 类金刚石薄膜(DLC)是1种非晶薄膜,可分为无氢类金刚石碳膜(a-C)和氢化类金刚石碳膜(a-C:H)(图2)两类。无氢类金刚石碳膜有a-C膜(主要由sp3和sp2键碳原子相互混杂

oDLC类金刚石镀膜技术知识介绍

oDLC类金刚石镀膜技术知识介绍 DLC(类金刚石薄膜)定义: 类金刚石薄膜是近年兴起的一种以sp3和 sp2键的形式结合生成的亚稳态材料,兼具了金刚石和石墨的优良特性,而具有高硬度.高电阻率.良好光学性能以及优秀的摩擦学特性。类金刚石薄膜通常又被人们称为DLC薄膜,是英文词汇Diamond Like Carbon的简称,它是一类性质近似于金刚石,具有高硬度.高电阻率.良好光学性能等,同时又具有自身独特摩擦学特性的非晶碳薄膜。 DLC薄膜性能 机械性能:高硬度和高弹性模量、优异的耐磨性、低摩擦系数 电学性能:表面电阻高化学惰性大 光学性能:DLC膜在可见光区通常是吸收的,在红外去具有很高的透过率稳定性:亚稳态的材料、热稳定性很差,400摄氏度 oDLC镀膜技术解析: oDLC镀膜技术,是指通过纳米镀膜技术将DLC(类金刚石薄膜)均匀地沉积于钢化玻璃或者物质表面,形成一层独特的保护膜。借助类金刚石薄膜自身的高硬度优势提高钢化玻璃的表面硬度,改善其防刮抗压性能。、 oDLC镀膜技术的应用 由于DLC类金刚石有着和金刚石几乎一样的性质,因此,它的产品被广泛应用到机械、电子、光学和医学等各个领域。同时类金刚石膜有着比金刚石膜更高的新能价格比,所以相当广泛的领域内可以代替金刚石膜。 1、机械领域的应用 ①用于防止金属化学腐蚀和划伤方面 ②磁介质保护膜 2、电子领域的应用 ①UISI芯片的BEOL互联结构的低K值的材料 ②碳膜和DLC薄膜交替出现的多层结构构造共振隧道效应的多量子阱结构 3、光学领域的应用 ①塑料和聚碳酸酯等低熔点材料组成的光学透镜表面抗磨损保护层 ②DLC膜为性能极佳的发光材料之一:光学隙带范围宽,室温下光致发光和

200915010121化学气相沉积(CVD ) 金刚石薄膜

化学气相(CVD ) 金刚石薄 膜的 主要制备方法及应用

?金刚石又名钻石, 是碳的同素异构体, 属于立方晶系, 具有面心立方结构, 典型的原子晶体。金 刚石具有很多无与伦比的优异性能, 机械特性、 热学特性、透光性、纵波声速、半导体特性及化 学惰性等, 在自然界所有的材料中均是首屈一指的。例如: 金刚石硬度是自然界中硬度最高的, 热导率是已知材料中最高的(是铜的热导率5 倍) , 高绝缘性和从红外到紫外极宽的透光性??。由于 自然界中金刚石储量极少,

, 因此价格昂贵, 而且无论天然金刚石还是高温高压下合成的人造金刚石都是离散的颗粒状, 应用范围受到了很大限制。近几年, 发达国家对化学气相沉积(简称CVD) 金刚石膜制备及应用开发研究进行了大量投资。由于CVD 金刚石制造成本低, 可以大面积化、曲面化, 而且其厚度可按需要从不足1Lm 直至数毫米, 而且制备出的CVD 金刚石薄膜物理性和天然金刚石基本相同或接近, 化学性质完全相同, 使金刚石的应用领域大大扩大。

制备方法1. 1热灯丝CVD 法 (HFCVD) (如图1)

热灯丝CVD 法是在基片表面的附近用5 0. 15mm 左右螺旋钨丝通电加热、钨丝温度控制2000~2200℃。真空室压力控制40 乇左右, 基片温度控制在700~1000℃左右, 基片与钨丝距离l<10mm , 然后通入CH4 和H2 混合气体,使它们激发离解, 从而在基片表面生成金刚石。此法的改良形式是EACVD 法,实际上就是在热丝CVD 基础上给基片加一个150V 左右偏压, 使薄膜在沉积过程中同时受到电子的轰击, 可使薄膜中沉积速率得到提高。 此方法简单易行,缺点是沉积速度较慢v <10Lm?h , 不均匀, 工艺稳定性差, 易污染。

金刚石膜的应用以及制备方法

金刚石膜的应用以及制备方法 ——————微波等离子体CVD制备金刚石膜 前言: 随着对金刚石的深入研究以及广泛应用,对硬质碳素材料有了进一步探索和需求,因此渴望找到一种可以代替金刚石的的材料。自从1971年Aisenberg和Chabot第一次利用碳的离子束沉积技术制备出具有金刚石特征的非晶碳膜以后,全球范围内掀起了制备类金刚石薄膜的浪潮。金刚石膜具有高硬度、低摩擦系数、高弹性模量、高热导、高绝缘、高稳定性、宽能隙和载流子高迁移率等优异性质和这些优异特性的组合,是一种在传统工业、军事、航天航空和高科技领域具有广泛应用前景的新材料,被称为是继石器时代、青铜器时代、钢铁时代、硅时代以来的第五代新材料,亦被称为是继塑料发明以来在材料科学领域的最伟大的发明。 微波等离子体化学气相沉积金刚石膜(简称:CVD金刚石膜),具有沉积速度快、纯度高、成膜均匀、面积大、结晶好、成本低等优点,是当今国际上制备金刚石膜的最先进方法,亦是金刚石膜制备技术的发展方向。世界上各大金刚石膜制品公司皆主要采用微波等离子体化学气相法制备金刚石膜。 一、金刚石膜在当代社会中的重要作用。 (1)金刚石膜刀具应用 金刚石膜硬度高、热导率高、摩擦系数低、生物相容性好以及这些优异性能的组合,可制成金刚石膜的切削刀具、机芯、密封件、人工关节等。使用金刚石膜工具不仅可以极大提高工具的使用寿命与工效,还可以极大提高加工精度。更重要的是解决了超硬合金、陶瓷材料、碳纤维、玻璃纤维等超难加工材料的切削加工难题,为高、新、精、尖技术和工艺的发展奠定了基础。 (2)金刚石膜光学应用

使用微波等离子体化学气相法沉积金刚石膜于镜头、钟表、仪表等表面,可制造真正的永不磨损镜头和钟表等,并极大提高光学镜头的适用范围和成像质量,适应各种恶劣的环境。美国哈勃望远镜的镜头使用了表面沉积金刚石薄膜技术,以适应外太空的恶劣环境和提高成像质量。 (3)金刚石膜航天应用 金刚石膜具有良好的抗辐照性能,以金刚石膜为基底的电子器件在高空电离辐射、热辐射和宇宙射线的作用下仍能保持良好的工作性能,在航天器中具有重要的应用。使用微波等离子体化学气相法沉积金刚石膜于窗口表面,可以充分利用其高硬度、高热导等特性,制造各种航天器和深海设备的观察窗口。美国发射的金星探测器的观察窗口就使用了金刚石膜技术。 (4)金刚石膜军事应用 用金刚石膜窗口制作各种激光制导、红外制导导弹的头罩,可以极大地提高导弹的飞行速度和命中率。当导弹以10马赫飞行时,温度升到5000℃,此时制导窗口不仅要经受高温的考验,还要经受空气中微尘、水分子和空气分子的高速撞击,使用传统的ZnS、ZnSe 、Ge等材料制成的窗口即已受热变软、变形、打毛甚至变盲,而金刚石膜窗口却能安然无恙。 美国洛克希德导弹和空间公司(Lockheed Missiles and Space Company)采用CVD金刚石膜制造导弹拦截窗口,起到了很好的保护效果,并在单面镀金刚石膜后可增加透过率13%,双面镀膜后增加透过率26%。“AIM-9L Sidewinder”空对空热寻导弹,因为使用了金刚石膜窗口,大大提高了热寻的灵敏度。 (5)金刚石膜热沉应用 金刚石膜系高热导的绝缘体,用作大功率电器件的散热衬底而无需专门的冷却系统,在提高电子设备紧凑度的同时,减轻了重量,提高了电子器件的可靠性,这对于航空航天等高技术领域具有重要意义。美国F16战机的分频电路就使用了CVD金刚石膜衬底。如果卫星上全部使用金刚石膜作为电路的衬底,冷却系统将减少90%的重量,不仅尺寸大大减小,结构紧凑,而且改善了工作环境,增强了电子系统的功能和可靠性,使卫星总重量降低50%以上,发射效率成倍提高。 (6)金刚石膜电子学应用 《美国国家关键技术报告》认为:“电子和光学器件领域将是金刚石膜最终

相关文档
最新文档