磁场的特性

磁场的特性
磁场的特性

一、磁场

1、磁场:

①磁场的力的特性

②磁现象的电本质

③磁感应强度B :定义式: B =(对L的正确理解)磁感应强度的单位

④磁感应强度方向的规定:

练:磁感应强度的单位:1T等于()BD

A.1N/CB.1C.1D.1

练:(14海南)下列说法中,符合物理学史实的是()ABD

A.亚里士多德认为,必须有力作用在物体上,物体才能运动;没有力的作用,物体或静止B.牛顿认为,力是物体运动状态改变的原因,而不是物体运动的原因

C.麦克斯韦发现了电流的磁效应,即电流可以在其周围产生磁场

D.奥斯特发现导线通电时,导线附近的小磁针发生偏转

练习、有关磁感应强度的下列说法中,正确的是()A

A. 磁感应强度是用来表示磁场强弱的物理量

B. 若有一小段通电导体在某点不受磁场力的作用,则该点的磁感应强度一定为零

C. 若有一小段长为L,通以电流为I的导体,在磁场中某处受到的磁场力为F,则该处磁感应强度的大小一定是F/IL

D. 由定义式B=F/IL可知,电流强度I越大,导线L越长,某点的磁感应强度就越小

2、磁场的几何描述——磁感线

①磁感线的特点

练、如图所示为某磁场的一条磁感线,其上有A、B两点,则()D

A. A点的磁感应强度一定大

B. B点的磁感应强度一定大

C. 因为磁感线是直线,A、B两点的磁感应强度一样大

D. 条件不足,无法判断

练:静电场和磁场对比()AB

A.电场线不闭合,磁感线闭合B.静电场和磁场都可使运动电荷发生偏转

C.静电场和磁场都可使运动电荷加速D.静电场和磁场都能对运动电荷做功

练习、如图所示, 是磁场中某区域的磁感线, 则()A

A. a、b两处的磁感强度大小不等, Ba > Bb

B. a、b两处的磁感强度大小不等, Ba < Bb

C. 同一通电导线放在a处受力一定比放在b处受力大

D. 同一通电导线放在b处受力一定比放在a处受力大

②几种常见磁场的磁感线:永磁体周围磁场的磁感线

地球周围磁场的磁感线

练习、20世纪50年代,一些科学家提出了地磁场的“电磁感应学说”,认为当太阳强烈活动影响地球面引起磁暴时,磁暴在外地核(深度介于2900km~5100km之间)中感应产生衰减时间较长的电流,此电流产生了地磁场.连续的磁暴作用可维持地磁场,则外地核中的电流方向为(地磁场N极与S极在地球表面的连线称为磁子午线)( )B

A.垂直磁子午线由西向东B.垂直磁子午线由东向西

C.沿磁子午线由南向北D.沿磁子午线由北向南

练习、关于地磁场下列说法中正确的是()D

A. 地理位置的南、北极即为地磁场的南北极

B. 地磁场的磁感线是不闭合曲线

C. 在赤道上的磁针的N极在静止时指向地理南极

D. 在赤道上的磁针的N极在静止时指向地理北极

③电流周围磁场的磁感线

重要题型之:直线电流周围磁场的磁感线

练、图所示是通电直导线周围磁感线分布情况示意图,各图的中央表示垂直于纸面的通电直导线及其中电流的方向,其他的均为磁感线,其方向由箭头指向表示,这四个图中,正确的是()C

练习:如图所示,在正四棱柱abcd—a′b′c′d′的中心线OO′上有一根通有恒定电流的无限长直导线,下列有关各点的磁场的说法中正确的是()AD

A.棱aa′上的各点磁感应强度大小相等

B.棱ad上的各点磁感应强度大小相等

C.棱ab上的各点磁感应强度方向相同

D.棱cc′上的各点磁感应强度方向相同

重要结论:磁场是矢量,磁场的叠加满足平行四边行法则

练习、两根通电的长直导线平行放置,电流分别为I1和I2(I1>I2)电流的方向如图所示,在与导线垂直的平面上有a、b、c、d四点,其中a、b在导线横截面连线的延长线上,c、d 在导线横截面连线的垂直平分线上。则导体中的电流在这四点产生的磁场的磁感应强度可能为零的是()B

A.a点

B.b点

C.c点

D.d点

练习、(11全国)如图,两根相互平行的长直导线分别通有方向相反的电流I1和I2,且I1>I2;a、b、c、d为导线某一横截面所在平面内的四点,且a、b、c与两导线共面;b点在两导线之间,b、d的连线与导线所在平面垂直。磁感应强度可能为零的点是()C

A、a点

B、b点

C、c点

D、d点

各国工频电磁场限值的有关情况汇总

各国工频电磁场限值的有关情况汇总 据了解,到目前为止,国际上尚无工频电磁场暴露限值的IEC标准或其他国际标准,只有ICNIRP(国际非电离辐射防护委员会)向世界各国推荐了一个电场和磁场辐射限值的导则:《限制时变电场、磁场和电磁场暴露(300GHz以下)导则》,其中推荐以5000V/m作为居民区工频电场限值标准,100μT作为公众全天辐射时的磁感应强度限值标准。 目前我国所有相关的规范和技术标准中,涉及环境中工频电场强度、磁场强度限值的只有《500kV超高压送变电工程电磁辐射环境影响评价技术规范》(HJ/T 24–1998),其原文是:“关于超高压送变电设施的工频电场、磁场强度限值目前尚无国家标准。为便于评价,根据我国有关单位的研究成果、送电线路设计规定和参考各国限值,推荐以4000V/m作为居民区工频电场评价标准,推荐应用国际辐射保护协会关于公众全天辐射时的工频限值100μT作为磁感应强度的评价标准。待相应国家标准发布后,以其规定限值为准。”很明显,该推荐限值就是以国际非电离辐射防护委员会的导则为基础的,并且电场强度的限值更严格。 世界上其他各国或学术组织关于工频电场和磁场的限值情况见下表: 另外需要说明的是: 欧洲议会1999年7月发布了一个一般公众电磁场暴露限值的推荐标准。这是一个供欧洲各国制定标准的框架,目前已有许多欧洲国家准备接受这一标准。这个标准建立在ICNIRP 导则基础之上,同样是以目前已经得到确认的效应作为基准。 美国没有统一的国家标准。一些学术组织制定了自己的标准,许多州也根据自己的情况制定了输电线路的工频电磁场标准。 日本并没有公众工频磁场暴露限值的明确标准,1993年,日本一个政府研究机构的报告

两种磁场的本质和特征

两种磁场的本质和特征 电场有两种,即库仑电场和感生电场,库仑电场的数学形式是:E=Kq/rr;感生电场的数学形式是:E=BV。感生电场的数学公式中含有速度V这个物理量,而且该速度是相对观测者(所在系)的,也就是说,在运动的磁场可以产生(感生)电场,但在磁场系(或在随磁铁同速前进的观测者看来),该(感生)电场的强度永远是零。 上述观点是毋庸置疑的,而且也与事实完全相符,比如,(感生)电场的强度只能用检测电荷来测量,而当电荷与磁铁同速前进(即相对静止)时,该电荷和磁铁之间永远不可能存在力的作用!也就是说,在磁铁系,感生电场的测量值永远是零。 我们不得不考虑另一个问题,电荷自身的电场(或称之为库仑电场)的强度与参照系的选择有关系吗?在电磁学中的库仑电场的数学形式为:E=Kq/rr,其中没有速度V这个物理量,是否可以认为,电荷自身的电场与参照系无关呢?不能这样简单处理,而且电磁学自身也将该公式归类于“静电学”之中。 一旦电荷运动起来,其周围的电场会是什么样子?只要我们翻开任何一本《经典电动力学》就可以找到答案和相应的公式。该公式中出现了速度这个物理量!静止电荷周围的库仑电场是“球对称”的。但在《经典电动力学》中,运动电荷周围的电场不再“球对称”了!在运动电荷的速度方向上的电力线密度会随着速度的增大而减小,而在于运动电荷的速度垂直的方向上的电力线的密度会随着速度的增大而增大! 在《相对论》中,也有运动电荷周围电场强度的公式,其数学形式与《经典电动力学》中的数学形式几乎一模一样!但这两个体系中的“同一个公式”却有着本质区别!《经典电动力学》中公式里的速度是相对“绝对静止系”(或绝对空间)的,而《相对论》中公式里的速度是相对观测者(所在系)的。即相对论认为:在(运动速度)不同的观测者看来,同一个电荷周围的电场强度是不同的!而如此荒唐的结论在《经典电动力学》中是不会出现的。但是,各种寻找“绝对静止系”实验的失败使经典电动力学受到重创。 既然《经典电动力学》和《相对论》都认为运动电荷周围的电场和静止电荷周围的电场不同,而且它们给出的“运动电荷周围的电场”的数学公式又一样,这似乎也说明,公式本身是毋庸置疑的。运动电荷周围的电场为什么会改变(与静止时比)?道理很简单!因为匀速运动的“匀强”电场会产生“恒定的”磁场,而电荷周围的(库仑)电场并非“匀强电场”,因此,匀速运动的电荷必然要产生“变化的”磁场,而该“变化的”磁场必然要产生“感生电场”,而该“感生电场”和电荷周围的“库仑电场”叠加后,正好就是上述公式中的“运动电荷周围的电场”!关键问题是,该公式中的速度V是电荷相对何参照系的速度?该速度V即非相对“绝对静止系”的也非相对“观测者”的,而应该是相对地球的! 下面我们开始研究磁场。 磁场也有两种,即运动电荷产生的“感生磁场”和磁铁周围的磁场。磁铁的磁场从本质上讲也是“感生磁场”,是由磁铁内部的“环形分子电流”产生的。我们可以用电磁铁(模型)来代替磁铁。

电磁场中的基本物理量和基本实验定律.

第二章 电磁场中的基本物理量和基本实验定律 2.1电磁场的源量——电荷和电流 一、电荷与电荷密度 C e 1910602.1-?+= 1、 自然界中最小的带电粒子包括电子和质子——电子电荷量 191.60210C e -=-?←基本电荷量 一般带电体的电荷量 ,3,2,1±==n ne q 2、电荷的几种分布方式 从微观上看,电荷是以离散的方式出现在空间中,从宏观电磁学的观点上看,大量带电粒子密集出现在某空间范围内时,可假设电荷是以连续的形式分布在这个范围内中。 空间中——体电荷 面上——面电荷 线上——线电荷 体电荷:电荷连续分布在一定体积内形成的电荷体。 体电荷密度)(r ' ρ定义: 在电荷空间V 内,任取体积元V ?,其中电荷量为q ?,则 ?'=?=??='→?v v dv r q dv dq v q lin r )()(0 ρρ 3/m c 面电荷:当电荷存在于一个薄层上时,称其为面电荷。 面电荷密度)(r s ' ρ的定义: 在面电荷上,任取面积元s ?,其中电荷量为q ?,则 ds r q ds dq s q lin r s s s s ?'=?=??='→?)()(0 ρρ 2/m c 线电荷:当电荷只分布于一条细线上时,称其为线电荷。 线电荷密度)(r l ' ρ的定义: 在线电荷上,任取线元l ?,其中电荷量为q ?,则 dl r q dl dq l q lin r s l l l ?'=?=??='→?)()(0 ρρ 点电荷:当电荷体积非常小,q 无限集中在一个几何点上可忽略时,称为点电 荷。 点电荷的)(r δ函数表示:∞→?=→?v q lin v 0ρ,保持总电荷不变,

地铁车站屏蔽门电磁测试EMC标准

1.采用标准 IEC 61000-6-4:EMC 通用标准工业环境的辐射标准 (EN50081-2) Electromagnetic compatibility (EMC). Generic standards. Emission standard (EN50082-2) for industrial environments (EN55022) EN55011:2003:<<工业、科学和医疗(ISM)射频设备电磁骚扰特性的测量方法和限值>> IEC 61000-4-2:试验与测量技术第二部分:静电放电抗扰性试验 (EN 61000-4-2-95) Testing and Measurement Techniques Section 2: Electrostatic Discharge Immunity Test IEC 61000-4-3:试验与测量技术第三部分:射频电磁场辐射抗扰性试验 (EN 61000-4-3-97) Testing and Measurement Techniques Section 3: Radiated, radio frequency, Electromagnetic Field Immunity Test IEC 61000-4-4:试验与测量技术第四部分:电快速瞬变脉冲群抗扰性试验 (EN 61000-4-4-95) Testing and Measurement Techniques Section 4: Electrical Fast Transient/Burst Immunity Test IEC 61000-4-5:试验与测量技术第五部分:浪涌(冲击)抗扰性试验 (EN 61000-4-5-95) Testing and Measurement Techniques Section 5: Surge Immunity Test IEC 61000-4-6:试验与测量技术第六部分:射频场感应传导骚扰抗扰性试验 (EN 61000-4-6-96) Testing and Measurement Techniques Section 6: Immunity to Conducted Disturbances, Induced by radio-frequency Fields IEC 61000-4-8:试验与测量技术第八部分:工频磁场的抗扰度试验 (EN 61000-4-8-93) Testing and Measurement Techniques Section 8: Power Frequency Magnetic Field Immunity Test

工频磁场强度

工频磁场强度 1 楼2009/6/1012:16:52叶都1900发表于搜房网 - 上海业主论坛 - 保利叶上海(潜力论坛) 1.什么叫输变电工频磁场强度? 输变电工频磁场强度是用来衡量输配电设施周围空间某个点位在一定方向上的磁场强弱的尺度,计量单位为安培/米(A/m)。 磁场强度通常可用磁感应强度,又称磁通密度表示,计量单位为特斯拉(T)。输配电设施产生的工频磁场磁感应强度一般都很小,常用毫特(mT)或微特(μT)表示。 1特(T)=1000毫特(mT)=1000000微特(μT) 1毫特(mT)=12.56×104安培/米(A/m) 2.输电线路工频磁场强度有什么特点? 输电线路工频磁场强度的特点,一是随着用电负荷的变化,即通过输电线路电流的变化,工频磁场强度也随着变化;二是随着与输电线路距离的增加,工频磁场强度快速降低,并且与工频电场强度相比,工频磁场强度随距离变远,下降得更快。 3.我国对输变电工频磁场强度有规定吗? 有的。国家环境保护总局在输变电工程环境影响评价技术规范中,推荐对公众的工频磁感应强度限值是0.1毫特(即100微特)。 4.国际上,工频磁场强度有什么规定? 国际非电离辐射防护委员会(ICNIRP)1998年发布了《限制时变电场、磁场和电磁场暴露的导则(300GHz以下)》。在这个导则中,对公众工频磁感应强度的限值是0.1毫特(即100微特)。这个限值得到世界卫生组织正式推荐,已被世界上许多国家广泛采用。我国规定的推荐限值与国际导则规定的限值相同。 5.输电线路工频磁场强度有多大? 输电线路周边的工频磁场强度主要取决于线路电流的大小、线路导线的排列方式、与导线的距离等。以下图5、6、7是最常见三种电压等级110kV、220kV、500kV输电线路在地面上方1.5米处,工频磁感应强度沿垂直线路方向的分布图。 (1)110kV输电线路 图5导线水平排列,相间距离3.5米,对地高度7.0米,电流300安。 (2)220kV输电线路 图6导线水平排列,相间距离5.6米,对地高度11米,电流500安。 (3)500kV输电线路 图7单回线水平排列,相间距离12米,对地高度19米,电流800安。 由以上各图可见,最常见三种电压等级输电线路的工频磁感应强度都远小于100微特。 6.变电站周围工频磁场强度有多大? 变电站站界工频磁感应强度主要来源于进出线的影响。变电站站界1米外的工频磁感应强度小于10微特,远低于我国规定的推荐限值。户内变电站周围的工频磁感应强度则趋于本底值。 8.家用电器的工频磁场有多大? 表5是几种家用电器的工频(60赫)磁感应强度。(引自中华人民共和国国家标准化指导性技术文件GB/Z 18039-2005/IE C 61000-2-7:1998电磁兼容环境各种环境中的低频磁场) 家用电器距离z处的磁感应强度,微特(μT) Z=3厘米Z=30厘米Z=100厘米 电动剃须刀15~1500 0.08~9 0.01~0.3 真空吸尘器200~800 2~20 0.13~2

磁场的基本物理量

河北经济管理学校教案 序号:1 编号:JL/JW/ 河北经济管理学校教案

为了描述不同物质的导磁能力,引入了磁导率这个物理量,磁导率的大小反映了物质导磁能力的强弱。物质导磁性能的强弱用磁导率来表示。磁导率的单位是:亨利/米(H/m)。不同的物质磁导率不同。在相同的条件下,磁导率值越大,磁感应强度 B 越大,磁场越强;磁导率值越小,磁感应强度 B 越小,磁场越弱。 4.磁场强度(重难点) 磁场中某点的磁场强度等于该点磁感应强度与介质磁导率的比值,用字母H 表示。 磁场强度 H 也是矢量,其方向与磁感应强度 B 同向,国际单 位是:安培/米 (A/m)。 必须注意:磁场中各点的磁场强度H 的大小只与产生磁场的电流I 的大小和导体的形状有关,与磁介质的性质无关。 计算举例(15min ) 1.如图所示是某磁场磁感线的分布,由图可知关于A 、B 两点的 磁场方向的说法中正确的是(BD) A .A 处的磁场比 B 处的强 B .A 处的磁场比B 处的弱 C .A 处的磁场方向与B 处的磁场方向相同 D .A 处的磁场方向与B 处的磁场方向不同 2.将条形磁铁从中间切断分成两半,然后再拉开一小段距离,如下图所示.如果在其空隙处O 点放置一个小磁针,小磁针的N 极将(A) 向左偏转 B .向右偏转 C .不会偏转 D .向上或向下偏转 3.磁铁在高温下或者受到敲击时会失去磁性,根据安培 的分子电流假说,其原因是(C) A .分子电流消失 B .分子电流取向变得大致相同 C .分子电流取向变得杂乱 D .分子电流减弱 解析:根据安培的分子电流假说,当分子电流取向变得大致相同时,对外显示磁性;当温度升高或者受到敲击时,分子运动加剧,分子电流变得紊乱无序,对外不显示磁性. 课堂小结(15min ) 本节课学习了磁场的基本物理量。 磁通:用来定量描述在磁场中一定面积上磁力线的分布情况 磁感应强度:是描述某一空间各点磁场的强弱和方向的物理量 磁导率:为了描述不同物质的导磁能力,引入了磁导率这个物理量 磁场强度:磁场中某点的磁场强度等于该点磁感应强度与介质磁导率的比值 五、布置作业(10min ) 课本P85自我测评2、3题 μ B H =

地磁磁场的基本特征及应用

地磁磁场的基本特征及应用 地球磁场:地球周围存在的磁场,包括磁层顶以下的固体地球内部和外部所有场源产生的磁场。地球磁场不是孤立的,它受到外界扰动的影响,宇宙飞船就已经探测到太阳风的存在。因为太阳风是一种等离子体,所以它也有磁场,太阳风磁场对地球磁场施加作用,好像要把地球磁场从地球上吹走似的。尽管这样,地球磁场仍有效地阻止了太阳风长驱直入。在地球磁场的反抗下,太阳风绕过地球磁场,继续向前运动,于是形成了一个被太阳风包围的、彗星状的地球磁场区域,这就是磁层。 地球磁层位于距大气层顶600~1000公里高处,磁层的外边界叫磁层顶,离地面5~7万公里。在太阳风的压缩下,地球磁力线向背着太阳一面的空间延伸得很远,形成一条长长的尾巴,称为磁尾。在磁赤道附近,有一个特殊的界面,在界面两边,磁力线突然改变方向,此界面称为中性片。中性片上的磁场强度微乎其微,厚度大约有1000公里。中性片将磁尾部分成两部分:北面的磁力线向着地球,南面的磁力线离开地球。 地磁学:是研究地磁场的时间变化、空间分布、起源及其规律的学科。固体地球物理学的一个分支。

时间范围:已可追溯到太古代(约35亿年前)——现代 空间范围:从地核至磁层边界(磁层顶),磁层离地心最近的距离: 8~ 13个地球半径组成和变化规律及应用: 磁偶极子:带等量异号磁量的两个磁荷,如果观测点距离远大于它们之间的距离,那么这两个磁荷组成的系统称为磁偶极子。 地磁场的构成 地球磁场近似于一个置于地心的同轴偶极子的磁场。这是地球磁场的基本特征。这个偶极子的磁轴和地轴斜交一个角度,。如图1.1所示,N、S 分别表示地磁北极和地磁南极。按磁性来说,地磁两极和磁针两极正好相反。同时,磁极的位置并不是固定的,每年会移动数英里,两个磁极的移动彼此之间是独立的,关于地磁极的概念有两种不同的思路和结果:理论的和实测的。理论的地磁极是从地球基本磁场中的偶极子磁场出发的。实测的地磁极是从全球地磁图(等偏角地磁图和等倾角地磁图)上找出的磁倾角为90°的两个小区域,这两个地点不在地球同一直径的两端,大约偏离2500千米。由

边界单元法全空间无解析奇点重磁场正演

Abstract The forward problem is to calculate the distribution attribute (abnormal feature and size) of the field in the observation point by the known properties of the field source (physical property and geometric size), and the inverse problem is to calculate the property of the source by the distribution attribute of the known field in the observation point. Forward is the basis of inversion, so it is essential for forward in the gravity and magnetic survey. There are two kinds of complex object forward methods in the gravity and magnetic field, which mainly are the finite element method and the boundary element method. The finite element method has its obvious advantages for the inhomogeneous physical property in the gravity and magnetic field, and the boundary element method has its obvious advantages to the homogeneous forward in the gravity and magnetic field. Because of the less external surface of the field source, compared with the finite element method, it has the characteritics of less calculation, high velocity. In the traditional analytic formula of forward, the "analytic singularity" problem exists in both the finite element method and the boundary element method. In recent years, many scholars have studied more about the forward problem without "analytic singularity" of the finite element method in the gravity and magnetic field, and have obtained the forward formula without "analytic singularity" in the point element method and the surface element method in the gravity and magnetic field. However, there is less research on the forward calculation formula without "analytic singularity" of the boundary element method in the whole space. This paper will study this problem. The basic idea of the forward of the boundary element method in the gravity and magnetic field is to convert the volume integral of complex object into surface integral by Gauss formula, and then transform the surface of the field into parallel with the coordinate plane through coordinate rotation, and use the trapezoid model to the solve surface integral directly. Finally, the whole gravity and magnetic field can be obtained by cumulative sum. By analyzing the forward formula of the traditional boundary element method in the gravity and magnetic field, this paper finds out the cause of "analytic singularity" in the boundary element method. Through the study of the value domain of the natural logarithmic function and the arc ii

常用的EMC标准及试验配置

常用的EMC标准及试验配置

EMS部份为EN55024包含7项测试: EN61000-4-2:1998; EN61000-4-3:1998; EN61000-4-4:1995, EN61000-4-5:1995; EN61000-4-6:1996; EN61000-4-8: 1993; EN61000-4-11:1994。 EMC检测主要项目: 空间辐射 (Radiation): EN55011,13,22 FCC Part 15&18, VCCI 传导干扰 (Conduction): EN55011,13,14-1,15,22, FCC Part 15&18, VCCI 喀呖声(Click): EN55014-1 功率辐射(Power Clamp): EN55013,14-1 磁场辐射(Magnetic Emission): EN55011,15 低频干扰(Low Frequency Immunity): EN50091-2 静电放电(ESD): IEC61000-4-2、EN61000-4-2、GB/T17626.2 辐射抗扰度(R/S): IEC61000-4-3、EN61000-4-3 、GB/T17626.3 脉冲群抗扰度(EFT/B): IEC61000-4-4、EN61000-4-4 、GB/T17626.4 浪涌抗扰度(SURGE): IEC61000-4-5、EN61000-4-5、GB/T17626.5 传导骚扰抗扰度(C/S): IEC61000-4-6、EN61000-4-6 、GB/T17626.6

工频磁场抗扰度(M/S): IEC61000-4-8、EN61000-4-8、GB/T17626.8 电压跌落(DIPS): IEC61000-4-11、EN61000-4-11、GB/T17626.11 谐波电流(Harmonic): IEC61000-3-2、EN61000-3-2 电压闪烁(Flicker): IEC61000-3-3、EN61000-3-3 辐射干扰(Radiated Interference)是通过空间并以电磁波的特性和规律传播的。但不是任何装置都能辐射电磁波的。传导干扰(Conducted Interference)是沿着导体传播的干扰。所以传导干扰的传播要求在干扰源和接收器之间有一完整的电路连接。 电磁兼容三要素:任何电磁兼容性问题都包含三个要素,即干扰源、敏感源和耦合路径,这三个要素中缺少一个,电磁兼容问题就不会存在。 产生电磁干扰的条件: 突然变化的电压或电流,即dV/dt或dI/dt很大;辐射天线或传导导体。 电磁兼容标准对设备的要求有两个方面:一个是工作时不会对外界产生不良的电磁干扰影响,另一个是不能对外界的电磁干扰过度敏感。前一个方面的要求称为干扰发射要求,后一个方面的要求称为敏感度要求。 电磁能量从设备内传出或从外界传入设备的途径只有两个,一个是以电磁波的形式从空间传播,另一个是以电流的形式沿导线传播。因此,电磁干扰发射可以分为:传导发射和辐射发射;敏感度也可以分为传导敏感度和辐射敏感度。 电磁兼容标准分为基础标准、通用标准、产品类标准和专用产品标准。 基础标准:描述了EMC现象、规定了EMC测试方法、设备,定义了等级和性能判据。基础标准不涉及具体产品。 产品类标准:针对某种产品系列的EMC测试标准。往往引用基础标准,但根据产品的特殊性提出更详细的规定。 通用标准:按照设备使用环境划分的,当产品没有特定的产品类标准可以遵循时,使用通用标准来进行EMC测试。对使设备的功能完全正常,也要满足这些标准的要求。 关于制订电磁兼容标准的组织和标准的介绍: IEC(国际电工委员会):有两个平行的组织制订EMC标准,CISPR和TC77。 CISPR(国际无线电干扰特别委员会):1934年成立。目前有七个分会:A分会(无线电干扰测量方法与统计方法)、B分会(工、科、医疗射频设备的无线电干扰)、C分会(电力线、高压设备和电牵引系统的无线电干扰)、D分会(机动车和内燃机的无线电干扰)、E 分会(无线接收设备干扰特性)、F分会(家电、电动工具、照明设备及类似电器的无线电干扰)、G分会(信息设备的无线电干扰)。

EMC测试标准

EMC检测主要标准 EN55011 《工科医(ISM)射频设备的干扰限值和测量方法》CISPR11、GB4824 EN55013《声音和电视广播接收机及有关设备的无线电干扰特性限值和测量方法》CISPR13、GB13837 EN55014-1《家用电器、电动工具及类似器具的无线电干扰限值和测量方法》CISPR14-1 GB4343 EN55015《电气照明和类似设备的无线电干扰特性限值和测量方法》CISPR15、GB17743 EN55022 《信息技术设备的无线电干扰限值和测量方法》 CISPR22、GB9254 EN61000-6-1《通用标准--家用、商业、轻工业环境的无线电设备的抗扰度限值和测量方法》 EN61000-6-2《通用标准--工业环境的无线电设备抗扰度限值和测量方法》 EN61000-6-3 《通用标准--家用、商业、轻工业环境的干扰限值和测量方法》 EN61000-6-4 《通用标准--工业环境的干扰限值和测量方法》 EN61547 《电气照明和类似设备的无线电抗扰度限值和测量方法》 EN55014-2《家用电器、电动工具及类似器具的无线电抗扰度限值和测量方法》 GB4343.2 EN55024 《信息技术设备的抗扰度限值和测量方法》 GB17618 EN61000-3-2 《低压电气及电子设备发出的谐波电流限值(单项输入电流≦16A)》EN61000-3-3 《输入电流≦16A的低压供电系统电压波动和闪烁》 EN50091-2 《UPS的EMC限制》 FCC Part 15 《射频设备的无线电干扰限值和测量方法》(美国) FCC Part 18 《工科医类产品的干扰限值和测量方法》(美国) EMC检测主要项目 空间辐射(Radiation) EN55011,13,22 FCC Part 15&18, VCCI 传导干扰(Conduction) EN55011,13,14-1,15,22, FCC Part 15&18, VCCI 喀呖声(Click) EN55014-1 功率辐射(Power Clamp) EN55013,14-1 磁场辐射(Magnetic Emission) EN55011,15

EMC测试国际标准

EMC测试 EMC即电磁兼容性,是指“一种器件、设备或系统的性能,它可以使其在自身环境下正常工作并且同时不会对此环境中任何其它设备产生电磁干扰。”意指电子机器有两面性,一个为干扰源对其他电子仪器造成的影响,一个为受到周围电子仪器发生的干扰影响,才有EMC的论题出现。EMC的产品认证,目前主要依据的法规有FCC,CISPR,ANSI,VCCI及EN┅等国际规范,而这些EMC标准对于产品的测试要求,可分为两大测试题,一为电磁干扰(EMI)测试,另一为电磁耐受性(EMS)测试。 EMC测试主要分类 1.EMI(Electro-Magnetic Inte rf erence)---电磁骚扰测试 此测试之目的为:检测电器产品所产生的电磁辐射对人体、公共电网以及其他正常工作之电器产品的影响。EMI测试主要包含什么内容? Radiated Emission -辐射骚扰测试 Conducted Emission-传导骚扰测试 Harmonic-谐波电流骚扰测试 Flicker-电压变化与闪烁测试 2. EMS(Electro-Magnetic Susceptibility)---电磁抗扰度测试 此测试之目的为:检测电器产品能否在电磁环境中稳定工作,不受影响。

EMS测试主要包含什么内容? ESD-静电抗扰度测试 RS-射频电磁场辐射抗扰度测试 CS-射频场感应的传导骚扰抗扰度测试 DIP-电压暂降,短时中断和电压变化抗扰度测试 SURGE-浪涌(冲击)抗扰度测试 EFT-电快速瞬变脉冲群抗扰度测试 PFMF-工频磁场抗扰度测试 杂散定义:指用标准测试信号调制时在除载频和由于正常调制和切换瞬态引起的边带及邻道以外离散频率上的辐射(既远端辐射)。杂散辐射按其来源可分为传导型和辐射型两种。 传导杂散:指在天线的接头处50欧姆负载上测得的任意离散信号的电平功率。 辐射杂散:测试设备的机壳、结构及互连电缆引起的杂散骚扰。测试条件首选在电波暗室内进行,或是在户外进行。 EMC测试的条件与方法 测试依赖3个方面因素:方法、技术、设备。方法由测量原理和测试设备的使用方法两者来确定,技术是为了得到正确的测试结果(较高的准确度)而采取的一切测试手段,设备则是体现上述两个因素为测试服务的一切技术装置。这些都必须标准化,以保证测试具有重现性和真实性。 EMC测试条件由测试方法决定。具体测试方法分为在实验室条件下进行的试验台法和在实际使用条件下进行的现场法。要模拟现场可能碰到的所有干扰现象是不可能的,特别是现场法具有无法克服的局限性。但通过标准化的测试可以较全面地获取被测设备EMC性能如何的信息。为此,国际上推荐首先采用试验台法,除非无法在实验室进行,一般不用现场法。 抗扰度测试主要方法是按照设备所处的电磁环境条件,结合用户对设备采取的措施,选择合适的严酷度等级,依照有关测试方法进行测试,最后根据产品标准提出的合格判决条件评定测试结果是否合格。这是抗扰度测试与其它测试主要差异之处。 电磁环境中的电磁骚扰源、电磁骚扰源对设备的耦合方式、设备对电磁骚扰的敏感度以及用户对工作现场的防护措施直接与严酷度等级相关。即使用环境决定了干扰的形式,安装防护条件决定了干扰的严酷度等级。 GB/T13926.4具体规定了在电磁环境中与严酷度等级相对应的设备工作下的电气环境条件:

工频磁场对单相电能表的影响20130724

工频磁场对单相电能表的影响 谢永明,李英莲 (华立仪表集团股份有限公司,浙江杭州 310023) 摘要:针对单相电能表在0.5mT工频磁场干扰下存在误计量的问题,分析其主要原因在于工频磁场在电能表电流采样回路上产生了大于电能表起动的感应电流。对此,本文通过定量分析0.5mT工频磁场的影响量,根据磁通在交错的环中产生的感应电压是可抵消的,提出在不改变原有电路设计基础上,仅通过对分流器穿孔及改变双绞线焊接方式,来减小电能表电流采样回路上的感应电流。经外部工频磁场影响试验测试证明了该方法的可行性。 关键词:0.5mT工频磁场;电流采样回路;感应电流;分流器;双绞线 Power Frequency Magnetic Field Effects on Single Phase Electricity Meter Xie Yong-ming, Li Ying-lian (Holley Metering LTD , Hangzhou 310023,zhejiang, China) Abstract: Regarding the measurement error problem exists in the single phase electricity meter under the 0.5mT power frequency magnetic field interference, this paper concludes the main reason is that the current generated by the power frequency magnetic field is larger than the start current in the current sampling circuit of electricity meter. This paper analyzes quantitatively the value interfered by the 0.5mT power frequency magnetic field, based on the theory of “the induced voltage generated by magnetic flux in the alternating loop offsets each other", and proposes the method of only perforating the shunt and changing the welding position of twisted-pair cable to reduce the induced current in the current sampling circuit , but not changing the original circuit design. Actual experiments in the external power frequency magnetic field demonstration proved the feasibility of this method. Key words:0.5mT power frequency magnetic field; Current sampling circuit; Induced current; Shunt; Twisted pair 0 引言 电能表工作现场常因安装和布线不合理,使电能表处于空间工频磁场中,引起误计量,给用户带来额外的电费。为保证电能表在现场复杂的工频磁场环境中可靠工作,2013年国网新标准Q/GDW1364-2013(代替Q/GDW 364-2009)新增了一条:“0.5mT工频磁场无负载,电能表电压线路通以115%Un,电流回路无电流,将0.5mT工频磁场施加在电能表受磁场影响最敏感处,在20倍的理论起动时间内电能表不应产生多于一个的脉冲输出”[1]。工频磁场对电能表的影响主要是工频磁场产生的磁通在电能表的电流采样回路中产生感应电动势,使电能表误计量。最不利的方向即最敏感处为电磁场与电能表电流测量回路正交方向[2]。尤其是单相电能表采用分流器采样,电流采样信号小,容易受干扰。那么为什么会选用磁感应强度为0.5mT的工频磁场对电能表进行试验,其对电流测量回路的具体影响量有

工频电磁场相关资料

工频电磁场简介 工频电磁场(power frequency electromagnetic field)是由50~60Hz动力电系统产生的电磁场,工频是指其工作频率,它是由各种电压等级的输电线及各种用电器所产生的一种频率为50Hz(美国、加拿大等为60Hz)的极低频电磁场,其波长达6000km。工频电磁场为感应场,该区域内的电场与磁场无固定关系,且分别与人体耦合,在人体中产生感应电流。 工频电磁场主要来源 工频电磁场的主要来源是高压输电线及电力设备。如高压输电线路、高压变电站、电气化铁道、大容量的工频电力设备等。升压变压器、高压传输线周围有较强的电场,大功率电器及其电源线附近有较强的磁场。 表1 不同高压电力线结构的最大电场强度值 高压系统电压/kV 中距线下电场强度/(kV/m) 123 1~2 245 2~3 420 5~6 800 10~12 1200 15~17 表2 不同电力设施所产生的工频电磁场强度和人体可接受的强度值 对象名称或参数电场强度/ (V/m)磁场强度/(A/m) 500kV及750kV户外配电装置103~5×104 10~100

380kV架空输电线路103~104 1~40 330kV架空输电线路103~5×103 10~100 110kV架空输电线路102~3×103 0.1~2.0 6~35kV架空线路10~5×102 0.1~2 6kV母线桥103 40~100 6kV户内配电装置—200 住宅、楼房1~100 0.01~0.5 家用电器5~500 0.1~300 人体可接受的极限104~2×104 3×103~3× 104 心脏肌肉收缩节律破坏5×107 106 — 空气间隙绝缘强度5×105~3× 106 按器官细胞受激条件得出的安全场强计算值和试 2×104 4×103 验值 按DINVDE的场强标准7×103 320 按GOCT的场强标准5×103 — 我国输配电系统的分类 我国输配电系统的电压等级的组成:特高压:1000千伏。超高压:750千伏、500千伏、330千伏。高压:220千伏、110千伏、35千伏。中压:10千伏。低压:380/220伏。 工频电磁场的危害 工频电磁场辐射对人体的危害是极低电磁场辐射的范畴,主要以电场辐射形式作用于人体。对生物体的作用主要是热效应和非热效应。对长期作业于工频电磁场辐射的维修、巡检等作业人群调查发现其神经衰弱症候群的发生率增加,心电

磁现象磁场名师教案

第二十章电与磁 第一节磁现象磁场 教学设计 核心素养: 通过实验探究过程,培养学生实事求是地进行实验的科学态度和科学精神;通过对磁感线的理解,使学生体验模型法在物理探究中的应用,帮助学生学会用实验的方法去感受抽象的概念。 一、教学目标 1、了解简单的磁现象。 2、通过实验认识磁极及磁极间的相互作用。 3、通过实验认识磁场。 4、知道磁感线可用来形象的描述磁场,会用磁感线描述磁体周围的磁场分布状况。 5、知道地磁场。 二、教学重点 1、了解简单的磁现象 2、知道磁场的客观存在 3、知道利用磁感线描述磁场 三、教学难点 探究磁场,研究磁场方向,磁感线的建立 四、课程资源开发及课前准备 多媒体资料,小磁针,长磁针,条形磁体,小铁钉,铁屑,电风扇,磁力戒指,各种小物体 五、教学流程 1.教学流程简图

2、教学详细流程 教学环节教师活动学生活动设计意图 课前登陆优教平台,发 送预习任务完成本节课的预 习任务,反馈预习 情况 了解本节课内容, 发现薄弱点,针对 性听课 情景引入老师表演小魔术学生观看,认真思 考问题以小魔术引入新课,创设情境,激发探究学习欲望,让学生在生活中走近物理。 问题探究请各小组的同学 用神奇戒指尝试 吸引各种物体同学们进行实验,感受磁体的性质。

3.板书设计: 磁现象磁场(第一课时) 一、磁现象 1、磁体:能够吸引铁、钴、镍等物质的物体。 2、磁极:磁体上磁性最强的两个部位。 能够自由旋转的磁体,静止时指南的磁极叫做南极或S极,静止时指北的磁极叫做北极或N极 3、磁极间相互作用规律:同名磁极相互排斥,异名磁极相互吸引。 4、磁化:一些物体在磁体或电流的作用下会获得磁性,这种想象叫做磁化。 二、磁场:磁体周围存在的看不见摸不着的物质

单相谐波闪烁、工频磁场、电压中断跌落与谐波及谐间波抗扰度测试系统

谐波闪烁测试系统 一,技术要求: 组成本系统的仪器设备的测试能力应符合GB17625.1、GB17625.2 、IEC 61000-3-2/EN 61000-3-2,IEC 61000-3-3/EN 61000-3-3 , GB/T 17626.8、IEC 61000-4-8/EN 61000-4-8;GB/T17626.13、IEC 61000-4-13/EN 61000-4-13、IEC 61000-4-7、IEC 61000-4-15等标准最新版本中有关谐波闪烁测量、工频磁场抗扰度、谐波及谐间波抗扰度测试项目的要求,并同时满足以下技术要求。 本技术要求中带★条款必须满足,否则将被否决。 ★本系统配置仪器要求为国外进口设备 数量:一套,含以下设备: ★系统硬件应包含:谐波闪烁分析仪、可编程程控电源、闪烁参量参考阻抗、工频磁场线圈等。★系统软件应包括:谐波测量、闪烁测量、工频磁场抗扰度、谐波抗扰度测试功能,具备同时在时域和频域显示电压和电流;自动检测D类设备,动态计算C类和D类限值;高精度显示电压、电流RMS和Peak测试值;能实时监测AC源等功能。 1.可编程程控电源 具备直流+交流变频输出模式 交流变频模式下: ★输出总功率:不小于5kVA, 并可通过扩展并联模块增大电源的输出功率 ★电源额定输出电压(相电压L-N):具备AC 0~150V和0~300V两档 ★电源额定输出电流不小于:18 A(300V时), 36 A(150V时) ★峰值电流不小于:96 A(300V时),110 A(150V时) ★变频频率不小于:16 Hz ~ 500 Hz 直流输出模式下: ★输出功率:不小于3.5kW 输出电压:具备直流DC 0~200V和0~400V两档 输出电流不小于:26A(200V时),13A(400V时) 谐波电压最大畸变率: 在电源发生器未选有谐波和谐间波,作为纯净电源输出时,其谐波电压最大畸变率应小于: 3 次谐波 0.9% 5 次谐波 0.4% 7 次谐波 0.3% 9 次谐波 0.2% 2 次~10 次(偶次谐波)0.2% 11 次~40 次谐波 0.1%

工频电场、磁场基础问答

以下内容翻译自

1、电场和磁场基础 本章会概述一些你需要知道的术语,让你对“电场、磁场”(EMF)有一个基础的认识;同时会将其他形式的电磁能量与“电场、磁场”做比较,并简要地讨论那些“场”会如何影响我们。 问:什么是“电场和磁场”(electric and magnetic fields)? 答:电场和磁场是存在于任何电气设备周围的不可见的电力线或磁力线。输电线,电线已经电气设备都会产生电场、磁场(EMF)。当然还有很多其他的“电场、磁场”源本手册主要关注的是“工频电场、磁场”(power-frequency EMF),即在电力生产、传输和使用过程中伴随其产生的电场和磁场。 电场是由电压产生,随着电压的升高电场强度也会增大。电场计量单位是“伏特每米”(V/m);磁场是由线路或电气设备中的电流产生的,随着电流的增大磁感应强度也会增加,磁场计量单位是“高斯”(G)或“特斯拉”(T)。 对大多数电气设备而言,要产生磁场,其必须处于工作状态,有电流流动;电场却不一样,即便电气设备已经关闭,只要它的插头没有从电源插座中拔出,电场也会存在。电场、磁场瞬间增高的情况(有时称作瞬变电流)可能在电气设备打开和关闭时产生。 电场可以被导电物体屏蔽或减弱——即便是弱导体,包括树木、建筑和人体皮肤;但是磁场却不一样,他能够穿透绝大多数介质,因此它较难屏蔽。电场和磁场均随着与源的距离增加而迅速减小。 尽管电气设备、家用电器以及输电线路会同时产生电场和磁场,但从现在大多数研究来看,他们都主要关注磁场暴露带来的潜在健康影响。这样做的原因在于:一些流行病学调查通过评估磁场暴露,发现其与癌症增加有关联;但是电场暴露与癌症是没有联系的,很多电场暴露下的生物效应实验基本上都印证了这一观点。 电场和磁场的特征 电场和磁场可以用他们的波长、频率和振幅(强度)来描述。下面的图中就展示了一个交变电场或磁场的波形。场的方向从一个极向变化到了另外一个极向然后再变化回最开始时候的极向,我们把这样的一段时间称为一个周期。

相关文档
最新文档