高考数学 高频考点归类分析 错位相减法的运用(真题为例)

高考数学 高频考点归类分析 错位相减法的运用(真题为例)
高考数学 高频考点归类分析 错位相减法的运用(真题为例)

错位相减法是一种常用的数列求和方法, 形如{}n n b a 的数列,其中{n a }为等差数列,{}n b 为等比数列;分别列出n S ,再把所有式子同时乘以等比数列的公比q ,即n qS ;然后错一位,两式相减即可。适用于一个等差数列和一个等比数列对应项相乘构成的数列求和。

典型例题:

例 1. (2012年四川省文12分)已知数列{}n a 的前n 项和为n S ,常数0λ>,且

11n n a a S S λ=+对一切正整数n 都成立。

(Ⅰ)求数列{}n a 的通项公式;

(Ⅱ)设10a >,100λ=,当n 为何值时,数列1

{lg

}n

a 的前n 项和最大? 【答案】解:(Ⅰ)取n =1,得2

1112=2a S a λ=,∴11(2)0a a λ-=。

若1a =0,则1S =0, 当n 2≥时,1=0n n n a S S --=。

若1a 0≠,则12

a λ

=

当n 2≥时,2

2n n a S λ

=

+,112

2n n a S λ

--=

+,

两个相减得:12n n a a -=,∴n 2n

a λ

=

。∴数列{}n a 公比是2的等比数列。

综上所述,若1a =0, 则 n 0a =;若1a 0≠,则n 2n

a λ

=。

(Ⅱ)当10a >且100λ=时,令1

lg

n n

b a =,则2lg 2n b n =-。 ∴{}n b 是单调递减的等差数列(公差为-lg2)

则 b 1>b 2>b 3>…>b 6=01lg 64100

lg 2

100lg

6

=>=; 当n ≥7时,b n ≤b 7=01lg 128100lg 2

100lg

7

=<=。 ∴数列{lg

n a 1}的前6项的和最大,即当n =6时,数列1

{lg }n

a 的前n 项和最大。

【考点】等差数列、等比数列、对数等基础知识,分类与整合、化归与转化等数学思想的应用。

【解析】(I )由题意,n =1时,由已知可知11(2)0a a λ-=,分类讨论:由1a =0及1a 0≠,结合数列的和与项的递推公式可求。

(II )由10a >且100λ=时,令1

lg n n

b a =,则2lg 2n b n =-,结合数列的单调性可求和的最大项 。

例2. (2012年天津市理13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1121=++

+n n n n T a b a b a b -,+n N ∈,证明+12=2+10n n n T a b -+()n N ∈.

【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q ,

由1a =1=2b ,得3

44423286a d b q s d =+==+,,。

由条件44+=27a b ,44=10S b -得方程组

3

3

23227

86210

d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+

312n n n a n b n N =-=∈,,。

(Ⅱ)证明:由(1)得,231212222n

n n n n T a a a a --=+++?+ ①;[

∴234+1

12122222n n n n n T a a a a --=+++?+ ②;

由②-①得,

()()()()234112232112+222+22n n n n n n n n n n

T a a a a a a a a a a b -----=--+-+-+?-+

()()23423412+232323+2322=2+4+3222+2412=2+4+3=2+412+62=2+4+612

12

=2+1012

n n n n n n n n n n n n n n n n n a b a b a b a b a b b a b -=-?+?+?+??+?-?+++??--?

--?-----

∴+12=2+10n n n T a b -+

()n N ∈。

【考点】等差数列与等比数列的综合;等差数列和等比数列的通项公式。 【分析】(Ⅰ)直接设出首项和公差,根据条件求出首项和公差,即可求出通项。

(Ⅱ)写出n T 的表达式,借助于错位相减求和。

还可用数学归纳法证明其成立。

例3. (2012年天津市文13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记11221=++

+n n n T a b a b a a b ,+n N ∈,证明1+18=n n n T a b --+(2)n N n >∈,。

【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q ,

由1a =1=2b ,得3

44423286a d b q s d =+==+,,。

由条件44+=27a b ,44=10S b -得方程组

33

23227 86210

d q d q ?++=?

?+-=??,解得 3 2d q =??=?。 ∴+

312n n n a n b n N =-=∈,,。

(Ⅱ)证明:由(1)得,()2

3

225282132n

n T n =?+?+?+-?+ ①;

∴()2

3

4

+1

2225282132

n n T n =?+?+?+?+- ②;

由②-①得,

()()234+1122232323+2332n n n T n =-?-?+?+?-+??+

()()()()()()+12341+1+1+1+11=4+323222+2412111=4+323=4+32+1232142

=8+3=+8

n n n n n n n n n n n n a b ----?+++??---?

--?-----

∴1+18=n n n T a b --+

(2)n N n >∈,。

【考点】等差数列与等比数列的综合;等差数列和等比数列的通项公式。

【分析】(Ⅰ)直接设出首项和公差,根据条件求出首项和公差,即可求出通项。

(Ⅱ)写出n T 的表达式,借助于错位相减求和。

还可用数学归纳法证明其成立。

例 4. (2012年广东省理14分)设数列{}n a 的前n 项和为S n ,满足

11221,,n n n S a n N +*+=-+∈且123,5,a a a +成等差数列。

(1)求a 1的值;(2)求数列{}n a 的通项公式。(3)证明:对一切正整数n ,有

12

11132

n a a a +++

<. 【答案】解:(1)∵11221,,n n n S a n N +*

+=-+∈且123,5,a a a +成等差数列

∴1

1232

1232

1

3

2222272(5)

S a a a S a a a a a a ,解得1

2

3

1519

a a a 。 即1

1a 。

(2)∵1

1221n n n S a ++=-+………………………………………………①

∴ 1221n

n n S a -=-+……………………………………………………②

①-②,得1

32(2)n

n n

a a n

。 ∵21

5

32

5a a ,∴1

32(*)n

n

n

a a n

N 。

11

312222n n n n a a ,11

31

(1)2

22

n n

n n a a 。

∴数列{12n n

a }成首项为1

1

31

22a ,公比为3

2

的等比数列, ∴

3

1

()22n n

n

a 。∴3

()122

n n n

a 。 32n n n a 。

(3)∵1

1

1

1

133232322(32)

0n

n n n n

n n

n n

a (当n=1

时,取等号。)

∴1

30n

n

a , ∴

1

1

13n

n

a (当且仅当n=1时,取等号)。

2112

1

1()11111131331[1()]133

323213

n

n n n a a a --+++

<++++=

=-<-。

【考点】数列与不等式的综合,等差数列和等比数列的应用,数列递推式。

【解析】(1)在1

1221n n n S a ++=-+中,令分别令n =1,2,由123,5,a a a +成等差数列,得

到关于123,,a a a 的三元方程,解之即可可求得1a 。

(2)由11221n n n S a ++=-+,1221n

n n S a -=-+,两式相减即可得

11

31

(1)222n n

n

n

a a ,可知,数列{

12n

n

a }成首项为

11

31

22a ,公比为32

的等比数列,从而可求数列{}n a 的通项公式。

(3)构造13n n

a ,证得其大于等于0,从而1

30n

n

a ,即

1

1

13

n n

a (当且

n=1

。因

2112

1

1()11111131331[1()]133

323213

n

n n n a a a --+++

<++++=

=-<-。 例5. (2012年广东省文14分)设数列{}n a 的前n 项和n s ,数列{}n s 的前n 项和为{}n T ,满足

2*2,n n T S n n N =-∈.

(1)求1a 的值;

(2)求数列{}n a 的通项公式.

【答案】解:(1)当1n =时,1121T S =-。

∵111T S a ==,∴1121a a =-,解得11a =。

(2)∵2

2n S T n n -= ①,

当2n ≥时, 2

11)1(2--=--n S T n n ②,

∴①-②得:122+-=n a S n n ③ ,此式对1=n 也成立。 ∴当2n ≥时,1)1(2211+--=--n a S n n ④。

∴③-④得:221+=-n n a a ,即 )2(221+=+-n n a a 。 ∴{}2n a +是以321=+a 为首项,2为公比的等比数列。

∴1232n n a -+=?,即1322n n a -=?-,*

n ∈N 。

【考点】数列递推式,等比数列的性质。

【解析】(1)当1n =时,1121T S =-。由111T S a ==得1121a a =-解得11a =。

(2)两次递推后得到以321=+a 为首项,2为公比的等比数列{}2n a +,由此能求出数列{}n a 的通项公式。

例6. (2012年江西省理12分)已知数列{}n a 的前n 项和2

12

n S n kn =-+(其中k N +∈)

,且n S 的最大值为8。 (1)确定常数k ,并求n a ; (2)求数列92{

}2

n

n

a -的前n 项和n T 。 【答案】解:(1)当n =k N +∈时,S n =-12n 2+kn 取最大值,即8=S k =-12k 2+k 2

=12

k 2,

∴k 2

=16,∴k =4。

∴1n n n a S S -=-=9

2-n (n ≥2)。

又∵a 1=S 1=72,∴a n =9

2

-n 。

(2)∵设b n =9-2a n 2n =n 2n -1,T n =b 1+b 2+…+b n =1+22+322+…+n -12n -2+n

2n -1,

∴T n =2T n -T n =2+1+12+…+12n -2-n 2n -1=4-12n -2-n 2n -1=4-n +2

2

n -1。

【考点】数列的通项,递推、错位相减法求和,二次函数的性质。 【解析】(1)由二次函数的性质可知,当n =k N +∈时,2

12

n S n kn =-

+取得最大值,代入可求k ,然后利用1n n n a S S -=-可求通项,要注意1n n n a S S -=-不能用来求解首项1a ,

首项1a 一般通过11a S =来求解。

(2)设b n =9-2a n 2n =n

2

n -1,可利用错位相减求和即可。

例7. (2012年江西省文12分)已知数列{}n a 的前n 项和n

n S kc k =-(其中c ,k 为常

数),且263=4=8a a a , (1)求n a ;

(2)求数列{}n na 的前n 项和n T 。

【答案】解:(1)∵n n S kc k =-,∴当1n >时,11()n n n n n a S S k c c --=-=-。

则6

5

6()a k c c =-,3

2

3()a k c c =-,65

363238a c c c a c c

-===-。∴c =2。

∵2=4a ,即21

()4k c c -=,解得k =2。∴2n n a =(1n >)。

当n =1时,112a S ==。

综上所述*

2()n n a n N =∈。 (2)∵2n

n na n =, ∴23

222322n n T n =+?+?+

+①,

23412122232(1)22n n n T n n +=

?+?+?+

+-+②。

①-②得,23

122222n n n T n +-=+++

+-,即12(1)2n n T n +=+-。

【考点】数列的求和,等比数列的通项公式。

【解析】(1)先根据前n 项和求出数列的通项表达式;再结合263=4=8a a a ,求出c ,k ,即可求出数列的通项。

(2)直接利用错位相减法求和即可。

例8. (2012年浙江省文14分)已知数列{a n }的前n 项和为S n ,且S n =2

2n n +,n ∈N ﹡,数列{b n }满足a n =4log 2b n +3,n ∈N ﹡. (1)求a n ,b n ;

(2)求数列{a n ·b n }的前n 项和T n .

【答案】解:(1)由S n =2

2n n +,得

当n =1时,113a S ==;

当n ≥2时,1n n n a S S -=-=22

22(1)(1)41n n n n n ??+--+-=-??,

n ∈N ﹡。

由a n =4log 2b n +3,得1

2n n b -=,n ∈N ﹡。 (2)由(1)知1

(41)2n n n a b n -=-?,n ∈N ﹡,

∴()2

1

372112 (412)

n n T n -=+?+?++-?,

()2323272112...412n n T n =?+?+?++-?。

∴()2

1

2412[34(22 (2)

)]n

n n n T T n --=-?-++++(45)25n n =-+。

∴(45)25n

n T n =-+,n ∈N ﹡。

【考点】等比数列、等差数列的概念、通项公式以及求和公式,对数的定义。

【解析】(1)由S n =2

2n n +,作1n n n a S S -=-即可求得a n ;代入a n =4log 2b n +3,化为指数

形式即可求得b n 。 (2)由

a n ,

b n 求出数列{a n ·b n }的通项,得到

()21372112...412n n T n -=+?+?++-?,从而作2n n T T -即可求得T 。

例9. (2012年重庆市理12分)设数列n a 的前n 项和n S 满足121n n S a S a +=+,其中20a ≠. (I )求证:n a 是首项为1的等比数列;(5分) (II )若21a >-,求证:12()2

n n

S a a ≤

+,并给出等号成立的充要条件.(7分) 【答案】证明:(Ⅰ)∵121n n S a S a +=+,∴*211(2,)n n S a S a n n N -=+≥∈。 ∴1221(2)n n n n S S a S a S n +--=-≥。∴12(2)n n a a a n +=≥。 ∵20a ≠,∴0n a ≠。∴

1

2n n

a a a +=。 ∵2211S a S a =+,∴12121a a a a a +=+。∴122a a a =。∴11a =。

2

21

a a a =。 ∴*1

,

2n n

a n N a +?∈=。∴n a 是首项为1,公比为2a 的等比数列。 (II )当n =1或n =2时,易知)(2

1n n a a n

S +=

成立。 当12=a 时,)(2

1n n a a n

n S +=

=成立。 当12≠a 时,1

222

1,1n n n n a S a a a --==-, ∴1()2

n n n S a a <+。∴

1

2221(1)(3)12n n a n a n a --<+≥- 。 当

1

12<<-a 时,上面不等式可化为

1

222(2)(2)(3)n n n a na na n n --+-<-≥ ,

设1

2222()(2)n n f a n a na na -=-+-, ①当210a -<<时, 2

2

10n a >--。 ∴2

22

222()(2)(1)(2)||2n n n f a n a na a n a n -=-+-<-<-。 ∴当210a -<<时,所要证的不等式成立。

②当201a <<时,12

222()[(2)(1)1]n n f a n n a n a --=-+-- 令12

22

2()(2)(1)1n n h a n a n a --=-+--, 则3

222

()(2)(1)(1)()0n h a n n a a -'=---<。 ∴2()h a 在(0,1)上递减。∴2()(1)0h a h >=。∴22()()0f a nh a '=>。 ∴2()f a 在(0,1)上递增。∴2()(1)2f a f n <=-。 ∴当201a <<时,所要证的不等式成立。

③ 当12>a 时,)1,0(12∈a ,由已证结论得:1222

1

1()1

[1()]121n

n a n a a --<+-。

11122222

11(

)1[1()]121n n n n a n a a a a ----?

1

221221(1)()122

n n a n n a a a a --<+<+-。 ∴当201a <<时,所要证的不等式成立。 综上所述,当21a >-且20a ≠时,1()2

n n n

S a a ≤

+。当且仅当n =1,2或12=a 时等号成立。

【考点】数列与不等式的综合,数列与函数的综合,等比数列的性质,等比关系的确定。 【分析】(I )根据121n n S a S a +=+,得*211(2,)n n S a S a n n N -=+≥∈,两式相减,即可证得

n a 是首项为1,公比为2a 的等比数列。

(II )当n =1或n =2时和当12=a 时, )(2

1n n a a n

S +=

成立。 当12≠a 时,分210a -<<,201a <<,12>a 三种情况分别证明即可。

本题也可用数学归纳法证明。

最新错位相减法求和附答案

错位相减法求和专项 错位相减法求和适用于{a n`b n }型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意: ①项的对应需正确; ②相减后应用等比数列求和部分的项数为(n-1)项; ③若等比数列部分的公比为常数,要讨论是否为1 1. 已知二次函数的图象经过坐标原点,其导函数,数列的前项和为,点均在函数的图象上. (Ⅰ)求数列的通项公式; (Ⅰ)设,是数列的前项和,求. [解析]考察专题:2.1,2.2,3.1,6.1;难度:一般 [答案] (Ⅰ)由于二次函数的图象经过坐标原点, 则设,, Ⅰ,Ⅰ, 又点均在函数的图象上, Ⅰ. Ⅰ当时,, 又,适合上式, Ⅰ............(7分)

(Ⅰ)由(Ⅰ)知,, Ⅰ, Ⅰ, 上面两式相减得: . 整理得..............(14分) 2.已知数列的各项均为正数,是数列的前n项和,且 . (1)求数列的通项公式; (2)的值. [答案]查看解析 [解析] (1)当n = 1时,解出a1 = 3, 又4S n = a n2 + 2a n-3① 当时4s n-1 = + 2a n-1-3② ①-②, 即,

Ⅰ , (), 是以3为首项,2为公差的等差数列,6分 . (2)③ 又④ ④-③ = 12分 3.(2013年四川成都市高新区高三4月月考,19,12分)设函数,数列前项和,,数列,满足. (Ⅰ)求数列的通项公式; (Ⅰ)设数列的前项和为,数列的前项和为,证明:. [答案] (Ⅰ) 由,得 是以为公比的等比数列,故.

(Ⅰ)由 得 , …, 记…+, 用错位相减法可求得: . (注:此题用到了不等式:进行放大. )4.已知等差数列中,;是与的等比中项. (Ⅰ)求数列的通项公式: (Ⅰ)若.求数列的前项和 [解析](Ⅰ)因为数列是等差数列,是与的等比中项.所以,又因为,设公差为,则, 所以,解得或, 当时, ,; 当时,. 所以或.(6分)

错位相减法-(含答案)

— 1. 设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a (Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足 *12 12 1 1,2 n n n b b b n N a a a +++ =-∈ ,求{}n b 的前n 项和n T 2. (2012年天津市文13分) 已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1122=++ +n n n T a b a b a b ,+n N ∈,证明1+18=n n n T a b --+(2)n N n >∈,。 … 【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q , 由1a =1=2b ,得3 44423286a d b q s d =+==+,,。

由条件44+=27a b ,44=10S b -得方程组 3 3 23227 86210 d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+ 312n n n a n b n N =-=∈,,。 (Ⅱ)证明:由(1)得,()23225282132n n T n =?+?+?+-?+ ①; ∴()234+12225282132n n T n =?+?+?+?+- ②; 由②-①得, : ()()234+1122232323+2332n n n T n =-?-?+?+?-+??+ ()()()()()()+12341+1+1+1+11=4+323222+2412111=4+323=4+32+1232142 =8+3=+8 n n n n n n n n n n n n a b ----?+++??---? --?----- ∴1+18=n n n T a b --+ (2)n N n >∈,。 3.(2012年天津市理13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1121=++ +n n n n T a b a b a b -,+n N ∈,证明:+12=2+10n n n T a b -+()n N ∈. 【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q , 由1a =1=2b ,得3 44423286a d b q s d =+==+,,。 & 由条件44+=27a b ,44=10S b -得方程组 3 3 23227 86210 d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+ 312n n n a n b n N =-=∈,,。 (Ⅱ)证明:由(1)得,231212222n n n n n T a a a a --=+++?+ ①;[

数列求和方法-错位相减法-分组求和

错位相减法求和 如:{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 例1. 已知数列)0()12(,,5,3,112≠--a a n a a n ,求前n 项和。 例2 求和S n = n n n n 2 12232252321132-+-++++- 例3:求数列a,2a 2,3a 3,4a 4,…,na n , …(a 为常数)的前n 项和。 例4设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且 1(1)21n a n d n =+-=-,112n n n b q --==.求数列n n a b ?????? 的前n 项和n S .

例5.设数列{a n }满足a 1+3a 2+32a 3+…+3 n-1a n = 3n ,n ∈N *. (1)求数列{a n }的通项; (2)设n n a n b = ,求数列{b n }的前n 项和S n . 分组求和 所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。 例1:S n =-1+3-5+7-…+(-1)n (2n-1) 例2已知数列{}n a 的前五项是111111,2,3,4,5,392781243 (1)写出该数列的一个通项公式; (2)求该数列的前n 项和n S . 例3 求下面数列的前n 项和: 1147(3n 2)+,+,+,…,+-,…11121a a a n -

例4 求数列:1223 131311,,31311,311,1n +++++++ 的前n 项的和. 例5求2222121234(1)n S n -=-+-+ +-(n N +∈) 例6、求和:??? ? ??+++???? ??++???? ?? +n n y x y x y x 11122 ()1,1,0≠≠≠y x x 例7 求数列{n(n+1)(2n+1)}的前n 项和.

错位相减法求和附答案解析

错位相减法求和专项.}{a分别是等差数列和等比数列,在应用过{ab}型数列,其中错位相减法求和适用于nn`nn 程中要注意: 项的对应需正确; 相减后应用等比数列求和部分的项数为(n-1)项; 若等比数列部分的公比为常数,要讨论是否为1 数列的前项已知二次函数的图象经过坐标原点,其导函数,1. 均在函数,点的图象上.和为 )求数列Ⅰ(的通项公式; 是数列的前项和,求.(Ⅱ)设, [解析]考察专题:,,,;难度:一般 [答案] (Ⅰ)由于二次函数的图象经过坐标原点,

,,则设 ∴,∴, 又点均在函数的图象上, ∴. 时,,当∴ 又,适合上式,∴............(7分) ,)知,Ⅰ)由(Ⅱ (. ∴, ∴, 上面两式相减得:

. 整理得..............(14分) 是数列的前n2.项和,且已知数列的各项均为正数, . )求数列的通项公式;1 ( )的值.(2][答案查看解析 时,解出an = 1 = 3,] [解析(1)当12-①34S又= a + 2a nnn = + 2a-4s3 ②当时n-1n1- 即,, -①② , ∴. (),

是以3为首项,2为公差的等差数列,6分 . )2③ ( 又④ ③④- = 12分 设函数,19,12分)(2013年四川成都市高新区高三4月月考,3. ,数列前数列.项和,满足, )求数列的通项公式;(Ⅰ

,证明:的前,数列.项和为(Ⅱ)设数列的前项和为 ,得由Ⅰ[答案] () 为公比的等比数列,故.是以 )由(Ⅱ得, …, …+,记

用错位相减法可求得: (注:此题用到了不等式:进行放大. . ) 与的等比中项.4.已知等差数列是中,; )求数列的通项公式:(Ⅰ 项和Ⅱ)若的前.求数列 ( 的等比中项.所以,是([解析]Ⅰ)因为数列与是等差数列,

数列求和之错位相减法练习

数列求和之错位相减法专项练习 一、解答题 1.已知正项数列{a a}是递增的等差数列,且a2?a4=6,a6=4. (1)求数列{a a}的通项公式; }的前n项和. (2)求数列{a a 2a?1 2.在数列{a a}中,前n项和为a a,a a+a a=a,a1=a1,a a=a a? a a?1(a≥2). 3.(1)设a a=a a?1,求证:{a a}为等比数列. 4.(2)求{(a+1)a a}的前n项和a a. 5. 6. 7. 8. 9. 10. 11. 12.设数列{a a}的前n项和为a a,且a a=2(a a?1)

(1)求数列{a a}的通项公式; (2)若a a=a(a a?1),求数列{a a}的前n项和a a. 13.已知等差数列{a a}的公差是1,且a1,a3,a9成等比数列. (1)求数列{a a}的通项公式; (2)求数列{a a 2a a }的前n项和a a . 14.已知{a a}是公差不为零的等差数列,满足a2+a4+a5=19,且a2是a1与a5的 等比中项,a a为{a a}的前n项和. (1)求a a及a a; (2)若a a=a a+1?3a a,求数列{a a}的前n项和.

15.已知数列{a a}是首项为1的等差数列,数列{a a}是首项a1=1的等比数列,且 a a>0,又a3+a5=21,a5+a3=13.(Ⅰ)求数列{a a}和{a a}的通项公 式; 16.(Ⅱ)求数列{2a a a a}的前n项和a a. 17. 18. 19. 20. 21. 22. 23. 24.已知数列{a a}的前n项和a a=3a2+8a,{a a}是等差数列,且a a=a a+ a a+1. (1)求数列{a a}的通项公式; (2)令a a=(a a+1) (a a+2)a a+1 ,求数列{a a}的前n项和.

错位相减法(提高篇)

数列求和之错位相减法 [例1] 已知数列{a n }的前n 项和为S n ,且有a 1=2,3S n =11543(2)n n n a a S n ---+≥ (I )求数列a n 的通项公式; (Ⅱ)若b n =n ·a n ,求数列{b n }的前n 项和T n 。 解析:(Ⅰ)113354(2)n n n n S S a a n ---=-≥,11 22n n n n a a a a --∴==,,……(3分) 又12a =,{}22n a ∴是以为首项,为公比的等比数列,……………………………(4分) 1222n n n a -∴=?=. ……………………………………………………………………(5分) (Ⅱ)2n n b n =?, 1231222322n n T n =?+?+?++?, 23121222(1)22n n n T n n +=?+?+ +-?+?.…………………………(8分) 两式相减得:1212222n n n T n +-=++ +-?, 12(12)212n n n T n +-∴-=-?-1(1)22n n +=-?-,………………………………………(11分) 12(1)2n n T n +∴=+-?.…………………………………………………………………(12分) [例2] 等比数列{a n }的前n 项和为S n .已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=-3 2,求数列{n ·a n }的前n 项和T n . 解析:(1)由已知得2S 3=S 1+S 2, ∴2(a 1+a 2+a 3)=a 1+(a 1+a 2), ∴a 2+2a 3=0,a n ≠0, ∴1+2q =0,∴q =-1 2 . (2)∵a 1-a 3=a 1(1-q 2)=a 1(1-14)=34a 1=-3 2, ∴a 1=-2,∴a n =(-2)·(-12)n -1=(-12 )n - 2,

利用错位相减法解决数列求和的答题模板

利用错位相减法解决数列求和的答题模板 数列求和是高考的重点,题型以解答题为主,主要考查等差、等比数列的求和公式,错位相减法及裂项相消求和;数列求和常与函数、方程、不等式联系在一起,考查内容较为全面,在考查基本运算、基本能力的基础上又注重考查学生分析问题、解决问题的能力. [典例] ( 满分12分)已知数列{a n }的前n 项和S n =-12 n 2+kn ,k ∈N *,且S n 的最大值为8. (1)确定常数k ,求a n ; (2)求数列???? ??9-2a n 2n 的前n 项和T n . 规范审题模板 1.审条件,挖解题信息 观察条件―→S n =-12 n 2+kn 及S n 的最大值为8 n S n ???????→是于的二次函关数 当n =k 时,S n 取得最大值 2.审结论,明解题方向 观察所求结论 ―→求k 的值及a n ――――→应建立关于k 的方程S n 的最大值为8,即S k =8,k =4n S ?????→可求的表式达 S n =-12n 2+4n 3.建联系,找解题突破口 根据已知条件,可利用a n 与S n 的关系求通项公式 ―――――→注意公式的使用条件a n =S n -S n -1=92-n n ,a 1=S 1=72 ―――――→验证n =1时,a n 是否成立a n =92-n 教你快速规范审题

1.审条件,挖解题信息 观察条件―→a n =92-n 及数列???? ??9-2a n 2n 922n n a ?????????????→-可化列简数 9-2a n 2n =n 2 n -1 2.审结论,明解题方向 观察所求结论―→求数列??????9-2a n 2n 的前n 项和T n 12n n ???????→-分析通的特项点 可利用错位相减法求和 3.建联系,找解题突破口 ――――→同乘以2 ――――→错位相减

高考数学易错题5.3 通项遗漏导致错位相减法求和错误-2019届高三数学提分精品讲义

专题五 数列 误区三:通项遗漏导致错位相减法求和错误 一、易错提醒 数列求和问题是高考的重点,而错位相减法求和又是数列求和中的重点: 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的.笔者通过多年高三教学发现,高三学生都知道什么样的数列求和,可用错位相减法,但每次考试时,又有相等一部分学生在利用错位相减法求和时,出现运算错误.这一点应引起高三备考学生注意.在应用错位相减法求和时要注意以下问题: (1)要善于识别题目类型,特别是等比数列公比为负数的情形. (2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式,特别要注意出现项数遗漏的情况.学=科网 (3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 等比数列求和问题是高考的重点,求解等比数列求和问题“1q =”该不该考虑?,许多同学在解题不关心或不清楚,致使答案错误,到底那个题该考虑?那个题不考虑?认真审题,弄清题意是关键. 二、典例精析 【例1】【2017届福建闽侯县三中高三上期中数学】已知数列}{n a 满足)2,(1221≥∈-+=*-n N n a a n n n 且 51=a . (1)求32,a a 的值; (2)若数列}2{ n n a λ +为等差数列,请求出实数λ; (3)求数列}{n a 的通项公式及前n 项和为n S 【分析】(1)根据)2,(1221≥∈-+=*-n N n a a n n n 由51=a 可得2,a 进而可得3a ;(2)由}2 {n n a λ +为等差数列,得 )2 (2222 2331λ λλ+=+++a a a ,进而解得=1λ-;(3)由(2)得112n n a n -=+,进而可得12)1(++=n n n a ,利用分组求和及错位相减求和可得数列}{n a 的通项公式及前n 项和为n S . 【解析】(1)∵1221-+=-n n n a a ,51=a ,1312222 12=?-+=a a a ,331223323=?-+=a a a .(2)

错位相减法数列求和法

特定数列求和法一错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归 纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求 和的方法一一错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学 习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过 程: 数列a n 是由第一项为a i ,且公比为q 的等比数列,它的前n 项和是 由已知有 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简 化了,从而得到等比数列的求和公式, 这种方法叫错位相减法,那我们是不是遇 到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过 程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的 复杂数列的。可以归纳数学模型如下: S n a i a i q a i q 2 a i q n i ,求S n 的通项公式。 两端同乘以 q ,有 i 时, i 时, 于是 S n a i a i q a i q 2 ... qs n aiq 2 aiq 3 a i q n ... (1 q)s n a i n a i q 由①可得 由③可得 S n s n S n n a i (q i)或者 na i i)

已知数列4是以a i 为首项,d 为公差的等差数列,数列 0是以b i 为首 项,q(q 1)为公比的等比数列,数列C n a n b n ,求数列C n 的前n 项和. 解 由已知可知 许许多多的高考试题以及课后习题证明了不是所有的数列题目都会很直接 地写明所求数列是一个等比数列乘以一个等差数列的形式, 通过对最近几年高考 中的数列题的分析总结出了以下几种错位相减法求和类型: 所求数列中的等差数列是已知 这第一种类型的题顾名思义是所求的复杂数列中直接给出其中一个是等差 数列,则只要证明或者求出另一个是等比数列, 那么就可以用错位相减法来求解 该题,同时如果另一个不能被证明是等比数列就不能用错位相减法来求解, 得另 找他法了 ■ 例1.(2013湖南文)设S n 为数列{a n }的前n 项和,已知: a 1 0,2a n a 1 S 1 S n , n N (1)求a 1,并求数列{a n }的通项公式 (2)求数列{na n }的前n 项和. 两端同乘以q 可得 qC n a1?q :a 1b 2 a 2 b 2q a ? b 3 asdq 83 匕4 .. . ...a n 1 b n 1 q a n b n q a n 1b n a n b n q 由①-②得 (1 q)C n a 1 b 1 d(b 2 b 3 ...b n 1 b n ) a n b n q 化简得 C n Cd d(b 2 b 3 ... b n 1 b n ) a n b n q / (q C n a i b 1 a 2b 2 a 3b 3 ■■- i q

错位相减法数列求和法(供参考)

特定数列求和法—错位相减法 在高中所学的数列求合的方法有很多,比如倒序相加法、公式法、数学归纳法、裂项相消法、错位相减法等等,在此处我们就只着重讲解一种特定数列求和的方法——错位相减法。那到底什么是错位相减法呢?现在咱们来回忆当初学习等比数列时老师是怎么一步步推导出等比数列的求和公式的,下面是推导过程: 数列{}n a 是由第一项为1a ,且公比为q 的等比数列,它的前n 项和是 111121...n n a a q a q a q s -=++++ ,求 n s 的通项公式。 解 由已知有 111121...n n a a q a q a q s -=++++, ○ 1 两端同乘以q ,有 ○ 1-○2得 当1q =时,由○ 1可得 当1q ≠时,由○ 3可得 于是 1(1)n s na q == 或者 11(1)1n n a a q s q q -=≠- 通过上述推导过程老师运用了一种特殊的推导方法将本来很复杂的运算简化了,从而得到等比数列的求和公式,这种方法叫错位相减法,那我们是不是遇到复杂的运算就都可以用这种方法呢?答案当然不是,我们仔细观察这推导过程,就会发现其实错位相减法是用来计算一个等比数列乘以一个等差数列而成的复杂数列的。可以归纳数学模型如下: 已知数列{}n a 是以1a 为首项,d 为公差的等差数列,数列{}n b 是以1b 为首项,(1)q q ≠为公比的等比数列,数列n n n c a b =,求数列{}n c 的前n 项和. 解 由已知可知 两端同乘以q 可得 = 11223311...n n n n n qc a b q a b q a b q a b q a b q --=+++++

(word完整版)错位相减法13年间的高考题

专项训练:错位相减法 目录 1.(2003北京理16) (2) 2.(2005全国卷Ⅰ) (2) 4.(2005湖北卷) (2) 5.(2006安徽卷) (2) 6.(2007山东理17) (2) 7.2007全国1文21) (2) 8.(2007江西文21) (2) 9.(2007福建文21) (2) 10.(2007安徽理21) (3) 11.(2008全国Ⅰ19) (3) 12.(2008陕西20) (3) 13.(2009全国卷Ⅰ理) (3) 14.(2009山东卷文) (3) 15.(2009江西卷文) (3) 16.(2010年全国宁夏卷17) (3) 17.(2011辽宁理17) (4) 18.(2012天津理) (4) 19.2012年江西省理 (4) 20.2012年江西省文 (4) 21.2012年浙江省文 (4) 22.(2013山东数学理) (4) 23.(2014四川) (4) 24.(2014江西理17) (5) 25.(2014安徽卷文18) (5) 26.(2014全国1文17) (5) 27.(2014四川文19) (5) 28.(2015山东理18) (5) 29.(2015天津理18) (5) 30.(2015湖北,理18) (5) 31.(2015山东文19) (5) 32.(2015天津文18) (6) 33.(2015浙江文17) (6) 专项训练错位相减法答案 (7)

已知数列{}n a 是等差数列且12a =,12312a a a ++= (1)求数列{}n a 的通项公式; (2)令()n b a x x R =?∈ 数列{}b 的前n 项和的公式 在等差数列{}n a 中,11a =,前n 项和n S 满足条件 242 ,1,2,1 n n S n n S n +==+L , (1)求数列{}n a 的通项公式; (2)记(0)n a n n b a p p =>,求数列 b 的前n 项和n T ? 设{}n a 为等比数列,11a =,23a =. (1)求最小的自然数n ,使2007n a ≥; (2)求和:212321232n n n T a a a a = -+--L . 9.(2007福建文21) 数列{}n a 的前n 项和为n S ,11a =,* 12()n n a S n +=∈N . (1)求数列{}n a 的通项n a ; (2)求数列{}n na 的前n 项和n T .

错位相减法求和作业练习

错位相减法求和作业练习 1、{2}.n n n ?求数列前项和 2、已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令211n n b a = -(n N +∈),求数列{}n b 的前n 项和n T . 3、已知等差数列{}n a 的前3项和为6,前8项和为-4 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1*(4)(0,)n n n b a q q n N -=-≠∈,求数列{}n b 的前n 项和n S 4、已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;(Ⅱ)令b n = 211 n a -(n ∈N *),求数列{}n b 的前n 项和n T .

5、已知二次函数()y f x =的图像经过坐标原点,其导函数为' ()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *∈均在函数()y f x =的图像上。 (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1 1n n n b a a += ,n T 是数列{}n b 的前n 项和,求使得20n m T <对所有n N *∈都成立的最小正整数m 6、(){213}.n n n -?求数列前项和 7、已知数列{n a }满足:}{,2)32()12(3121n n n b n a n a a 数列+?-=-+++ 的前n 项和 n n n n W n b a n n S 项和的前求数列}{.222?-+=.

粉笔资料分析听课笔记(整理版)

粉笔资料分析听课笔记(整理版)一、常用分数、百分数、平方 1 3=33.3% 1 4=25% 1 5=20% 1 6=16.7% 1 7=14.3% 1 8=12.5% 1 9=11.1% 1 10=10% 1 11=9.1% 1 12=8.3% 1 13=7.7% 1 14=7.1% 1 15=6.7% 1 16=6.3% 1 1.5=66.7% 1 2.25=44% 1 2.5=40% 1 3.5=28.6% 1 4.5=22% 1 5.5=18.2% 1 6.5=15.4% 1 7.5=13.3% 1 8.5=11.8% 1 9.5=10.5% 1 10.5=9.5% 1 11.5=8.7% 1 12.5=7.8% 1 13.5=7.4% 1 14.5=6.9% 1 15.5=6.5% 1 16.5=6.1% 22=2 32=942=1652=2562=3672=4982=64 92=81 102=100112= 121122=144132=169 142=196152=225 162=256 172=289182=324192=361202=400212=441 222=484232=529 242=576252 =625 262=676272=729 282=784292=841 二、截位直除速算法 三、其他速算技巧 1、一个数×1.5,等于这个数本身加上这个数的一半。 2、一个数×1.1等于这个数错位相加. 3、一个数×0.9等于这个数错位相减. 4、一个数÷5,等于这个数乘以2,乘积小数点向前移1位。

5、一个数÷25,等于这个数乘以4,乘积小数点向前移2位。 6、一个数÷125,等于这个数乘以8,乘积小数点向前移3位。 7、比较类:①分母相同,分子大的大;分子相同,分母小的大。 ②分子大分母小>分子小分母大。③当分母大分子大,分母小分子小时,看分母与分母的倍数,分子与分子的倍数,谁倍数大听谁的,谁小统统看为1,再比较。 四、统计术语 1、基期:相对于今年来说,去年的就是基期。 2、现期:相对于去年来说,今年的就是现期。 3、基期量:相对于今年来说,去年的量就是基期量。 4、现期量:相对于去年来说,今年的量就是基期量。 5、增长量:现期量和基期量的差值,就是增长量。 6、增长率:增长量与基期量的比值,就是增长率。 7、倍数:A 是B 的多少倍;A 为B 的多少倍,等于增长率加1。 辨析:A 比B 增长了500%,那么就是A 比B 增长(多)5倍,A 是B 的6倍。 8、比重:A 占B 的比重,A 占B 为多少;都等于 A B 。 A 占B 的比重比C 的比重为:A B - C B 。 9、平均数:在一组数据中所有数据之和再除以数据的个数。 10、同比:同比看年,今年与去年同期比。 11、环比:环比看尾,“年”“月”“日”等。

错位相减法 (含答案)

1.设等差数列{}n a 的前n 项和为n S ,且244S S =,122+=n n a a (Ⅰ)求数列{}n a 的通项公式 (Ⅱ)设数列{}n b 满足 *12 12 1 1,2 n n n b b b n N a a a ++ + =-∈ ,求{}n b 的前n 项和n T 2. (2012年天津市文13分) 已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b ,44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1122=++ +n n n T a b a b a b ,+n N ∈,证明1+18=n n n T a b --+(2)n N n >∈,。 【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q , 由1a =1=2b ,得3 44423286a d b q s d =+==+,,。 由条件44+=27a b ,44=10S b -得方程组

3 3 23227 86210 d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+ 312n n n a n b n N =-=∈,,。 (Ⅱ)证明:由(1)得,()23225282132n n T n =?+?+?+-?+ ①; ∴()234+12225282132n n T n =?+?+?+?+- ②; 由②-①得, ()()234+1122232323+2332n n n T n =-?-?+?+?-+??+ ()()()()()()+12341+1+1+1+11=4+323222+2412111=4+323=4+32+1232142 =8+3=+8 n n n n n n n n n n n n a b ----?+++??---? --?----- ∴1+18=n n n T a b --+ (2)n N n >∈,。 3.(2012年天津市理13分)已知{n a }是等差数列,其前n 项和为n S ,{n b }是等比数列,且1a =1=2b ,44+=27a b , 44=10S b -. (Ⅰ)求数列{n a }与{n b }的通项公式; (Ⅱ)记1121=++ +n n n n T a b a b a b -,+n N ∈,证明:+12=2+10n n n T a b -+()n N ∈. 【答案】解:(1)设等差数列的公差为d ,等比数列的公比为q , 由1a =1=2b ,得3 44423286a d b q s d =+==+,,。 由条件44+=27a b ,44=10S b -得方程组 3 3 23227 86210 d q d q ?++=??+-=??,解得 3 2d q =??=?。 ∴+ 312n n n a n b n N =-=∈,,。 (Ⅱ)证明:由(1)得,231212222n n n n n T a a a a --=+++?+ ①;[ ∴234+1 12122222n n n n n T a a a a --=+++?+ ②; 由②-①得,

资料分析

资料分析 第一节速算技巧 一、计算型 1.速算技巧: (1)一个数*1.5→本身+本身的一半。例:86.4*1.5=86.4+43.2=129.6。 (2)一个数*1.1→错位相加。例:12345*1.1=12345+1234.5=13579.5。 (3)一个数*0.9→错位相减。例:12345*0.9=12345-1234.5=11110.5。 (4)练一练:①124.6*1.5=124.6+62.3=186.9。 ②13579*1.1=13579+1357.9=14936.9。 ③13579*0.9=13579-1357.9=12221.1。 2.截位直除: (1)一步除法:建议只截分母。 (2)多步计算:建议上下都截。 截几位: (1)选项差距大,截两位。①选项首位不同。②选项首位相同,次位差大于首位(2)选项差距小,截三位。首位相同且次位差小于等于首位。 总结:(截位直除) (1)差距大,截两位;差距小,截三位。 (2)一步除法,截分母;多步计算,上下截。 注意:除前看选项,差距比较大,存在10倍以上的差别,位数和小数点不能忽略,保留两位计算。 二、比较型 1.分数比较 (1)一大一小,直接比,分子大,分数大; (2)同大同小,竖着直接除,横着看速度(倍数)。谁快谁牛皮,慢的看成 1。例:

①7/24和 3/12如何比较。分子:7>3,分母:24>12,分子大分母也大,同大同小。方法一:竖着直接除,看首位商几。 方法二:横着看速度,速度相当于倍数,24是 12的 2倍,7是 3的 2+倍, 分子的倍数大,慢的看成 1,即分母看成 1,7/1>3/1,因此 7/24>3/12。 ②3/5和 6/15横着比较。分子:3和 6之间为 2倍的关系,分母:5和 15 之间为 3倍的关系,谁快谁牛皮,分母快,把分子看成 1,分母小的分数大, 1/5>1/15,因此 3/5>6/15。 第二节快速找数 1.文字材料就找关键词!!! (1)5~10秒内,每段总结出 1~2个关键词。 (2)要求:与众不同的。 (3)举例:商场的负一层是停车场,一层卖化妆品、手表,二层卖男装,三层卖装,四层卖运动装,五层卖吃的。如果要买女装,不需要逐层爬,可以坐直梯直奔三楼,这样速度更快,想找吃的到五楼,想找运动装到四楼,想看男装去二楼,直奔题。即:标记段落主题词,与题干进行匹配;注意相近词、时间、单位等。 2.表格材料:横纵标目、标题、单位、备注。 3.图形材料:标题、单位、图例。(饼形图构成原则:12点钟方向顺时针依次排布) 4.综合材料:不同类型材料之间的关系、材料结构。 【注意】坑点: 1.表格材料,“总计”坑。 例:材料四中,按消费类别分,增长率大于 7%的有几个,类别不包含总计, 总计大于 7%也不能算,共 5个。 2.单位坑(民航、人口)。 (1)运输方式有公路、水路、铁路、民航,飞机比较少,运输量小,故而民航的运输单位通常是万吨,其他运输方式的单位通常是亿吨,相差较大,需要留意。 (2)人口:涉及出生率、死亡率、自然增长率等,人口量较多,通常按照 千分比计算(不是百分比)。

高中数学数列求和-错位相减法

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式.形如An=BnCn,其中Bn为等差数列,Cn为等比数列;分别列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可. 目录 简介 举例 错位相减法解题 编辑本段简介 错位相减较常用在数列的通项表现为一个等差数列与一个等比数列的乘积,如an=(2n-1)*2^(n-1),其中2n-1部分可以理解为等差数列,2^(n-1)部分可以理解为等比数列. 编辑本段举例 例如:求和Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1)(x≠0)当x=1时,Sn=1+3+5+…+(2n-1)=n^2;当x不等于1时,Sn=1+3x+5x^2+7x^3+…+(2n-1)*x^(n-1);∴xSn=x+3x^2+5x^3+7x^4+…+(2n-1)*x^n;两式相减得(1-x)Sn=1+2x[1+x+x^2+x^3+…+x^(n-1)]-(2n-1)*x^n;化简得Sn=(2n-1)*x^(n+1)-(2n+1)*x^n+(1+x)/(1-x)^2 编辑本段错位相减法解题 错位相减法是求和的一种解题方法.在题目的类型中:一般是a前面的系数和a的指数是相等的情况下才可以用.这是例子(格式问题,在a后面的数字和n都是指数形式):S=a+2a2+3a3+……+(n-2)an-2+(n-1)an-1+nan (1)在(1)的左右两边同时乘上a.得到等式(2)如下:aS= a2+2a3+3a4+……+(n-2)an-1+(n-1)an+nan+1 (2)用(1)—(2),得到等式(3)如下:(1-a)S=a+(2-1)a2+(3-2)a3+……+(n-n+1)an-nan+1 (3)(1-a)S=a+a2+a3+……+an-1+an-nan+1 S=a+a2+a3+……+an-1+an用这个的求和公式.(1-a)S=a+a2+a3+……+an-1+an-nan+1 最后在等式两边同时除以(1-a),就可以得到S 的通用公式了.例子:求和Sn=3x+5x^2+7x^3+……..+(2n-1)·x的n-1次方(x不等于0)当x=1时,Sn=1+3+5+…..+(2n-1)=n^2;; 当x不等于1时,Sn=3x+5x^2+7x^3+……..+(2n-1)·x 的n-1次方所以xSn=x+3x^2+5x^3+7x四次方……..+(2n-1)·x的n次方所以两式相减的(1-x)Sn=1+2x(1+x+x^2+x^3+...+x的n-2次方)-(2n-1)·x的n次方.化简得:Sn=(2n-1)·x地n+1次方-(2n+1)·x的n次方+(1+x)/(1-x)平方Cn=(2n+1)*2^n Sn=3*2+5*4+7*8+...+(2n+1)*2^n 2Sn=3*4+5*8+7*16+...+(2n-1)*2^n+(2n+1)*2^(n+1) 两式相减得-Sn=6+2*4+2*8+2*16+...+2*2^n-(2n+1)*2^(n+1) =6+2*(4+8+16+...+2^n)-(2n+1)*2^(n+1) =6+2^(n+2)-8-(2n+1)*2^(n+1) (等比数列求和) =(1-2n)*2^(n+1)-2 所以Sn=(2n-1)*2^(n+1)+2 错位相减法这个在求等比数列求和公式时就用了Sn= 1/2+1/4+1/8+.+1/2^n 两边同时乘以1/2 1/2Sn= 1/4+1/8+.+1/2^n+1/2^(n+1)(注意跟原式的位置的不同,这样写看的更清楚些)两式相减1/2Sn=1/2-1/2^(n+1) Sn=1-1/2^n

数列求和裂项法错位相减法分组求和法

数列求和裂项法错位相减法分组求和法 Modified by JEEP on December 26th, 2020.

数列求和的三种特殊求法 例1、已知数列{a n }的通项公式为a n =12-n +3n ,求这个数列的前n 项和 例2、求下列数列的前n 项和: (1)211,412,813,……n n 21+,…… (2)1,211+,3211 ++…… n +??+++3211 …… (3)5,55,555.……,55……5,……(4),,,……,……5,…… 例3、已知数列的的通项,求数列的前n 项和: (1) )1(1+= n n a n (2)) 2(1 +=n n b n (3){a n }满足a n = 1 1++n n ,求S n (4)求和:+?+?= 5 34 3122 2 n S ……+) 12)(12()2(2 +-n n n (5)求和) 2)(1(1 43213211+++??+??+??=n n n S n 例4、求数列 ,,,3,2,32n na a a a (a 为常数)的前n 项和n S 。 练习:求和:21,223,325,……n n 2 1 2-,…… 知识演练: 1. (2009年广东第4题)已知等比数列}{n a 满足 )3(2,,2,1,02525≥=?=>-n a a n a n n n 且 ,则当1≥n 时,=+++-1221212log log log n a a a A .)12(-n n B .2)1(+n C .2n D .2)1(-n 2. (2010年山东第18题)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 11 n a -(n ∈N * ),求数列{}n b 的前n 项和n T . 3. (2005年湖北第19题)设数列}{n a 的前n 项和为S n =2n 2,}{n b 为等比数列,且 .)(,112211b a a b b a =-= (Ⅰ)求数列}{n a 和}{n b 的通项公式; (Ⅱ)设n n n b a c =,求数列}{n c 的前n 项和T n 小结:数列求和的方法 分组求和,裂项相消(分式、根式),错位相减(差比数列) 数列求和的思维策略: 从通项入手,寻找数列特点

数列题型(错位相减法)

数列专练(裂项相消法) 1. 已知数列{}n a 的前项和2 2n S n n =+; (1)求数列的通项公式n a ;(2)设1234 1 23111 1 n n n T a a a a a a a a +=++++ ,求n T . 2. 已知数列{}n a 的前项和为n S ,且满足213 (1,) 22n S n n n n N *=+≥∈ (1)求数列{}n a 的通项公式; (2)设n T 为数列? ?? ??? +11n n a a 的前n 项和,求使不等式20121005>n T 成立的n 的最小值. 2. 已知数列{}n a 的前n 项和为n S ,且11a =,()11 1,2,3, 2 n n a S n +==. (1)求数列{}n a 的通项公式; (2)当()312 log 3n n b a +=时,求证:数列11n n b b +??? ??? 的前n 项和1n n T n = +. 3. 已知数列{}n a 的前n 项和为n S ,点), (n s n n 在直线2 1121+=x y 上,数列{}n b 满足0212=+-++n n n b b b ,() *N n ∈,113=b ,且其前9项和为153. (1)求数列{}n a ,{}n b 的通项公式; (2)设) 12)(112(3 --=n n n b a c ,求数列{}n c 前n 项的和n T . 4. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-,(1,2,3)n =???;数列{}n b 中,11,b = 点 1(,)n n P b b +在直线20x y -+=上.

相关文档
最新文档