函数与极限练习题

函数与极限练习题
函数与极限练习题

第一章 函数与极限

§1 函数

一、是非判断题

1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。 [ ]

2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有

B x f A ≤≤)( [ ]

3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。 [ ]

4、定义在(∞+∞-,)上的常函数是周期函数。 [ ]

5、任一周期函数必有最小正周期。 [ ]

6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。 [ ]

7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。 [ ] 8

f(x)=1+x+

2x 是初等函数。

[ ]

二.单项选择题

1、下面四个函数中,与y=|x|不同的是

(A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中 既是奇函数,又是单调增加的。 (A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是

(A )x 2log (B )x 2 (C )22log x (D )2x 4、若)(x f 为奇函数,则 也为奇函数。

(A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D)

)].([x f f -

三.下列函数是由那些简单初等函数复合而成。

1、 y=)

1arctan(+x e

2、 y=x x x ++

3、 y=x

ln ln ln

四.设f(x)的定义域D=[0,1],求下列函数的定义域。

(1) f()2x

(2) f(sinx)

(3) f(x+a) (a>0)

(3) f(x+a)+f(x-a) (a>0)

五.设??

?=,,2)(x x x f 00≥

??-=,3,5)(x x x g 00≥

六.利用x x f sin )(=的图形作出下列函数的图形:

1.|)(|x f y = 2。|)(|x f y =

3.2)(+=x f y 4。)2(+=x f y

5.)(2x f y = 6。)2(x f y =

§2 数列的极限

一 是非判断题

1、当n 充分大后,数列n x 与常数A 越来接近,则.lim A x n x =∞

[ ]

2、如果数列n x 发散,则n x 必是无界数列。

[ ]

3。如果对任意,0>ε存在正整数N ,使得当n>N 时总有无穷多个n x 满足|n x ε<-|a , 则

.lim a x n n =∞

[ ]

4、如果对任意,0>ε数列n x 中只有有限项不满足|n x ε<-|a ,则

.lim a x n n =∞

→ [ ]

5、若数列n x 收敛,列n y 发散,则数列n n y x +发散。 [ ]

二.单项选择题

1、根据 a x n n =∞

→lim 的定义,对任给,0>ε存在正整数N ,使得对n>N 的

一切x n ,不等式ε<-a x n 都成立这里的N 。

(A )是ε的函数N(ε),且当ε减少时N (ε)增大; ( B )是由ε所唯一确定的

(C )与ε有关,但ε给定时N 并不唯一确定 (D )是一个很大的常数,与ε无关。

2、?????=-为偶数当为奇数

当n n n x n ,10,1

7则 。

(A );0lim =∞

→n n x (B );10lim 7-∞

→=n n x

(C );,10,

,0lim 7???=-∞→为偶数

为奇数n n x n n (D) 不存在n n x ∞

→lim

3、数列有界是数列收敛的 。 (A )充分条件; (B )必要条件;

(C )充分必要条件; (D )既非充分又非必要条件。 4、下列数列n x 中,收敛的是 。 (A )n n x n

n 1)1(--=(B )1+=n n x n (C )2

sin π

n x n =(D )n n n x )1(--=

三.根据数列极限的定义证明。 (1) 01lim

2=∞

→n n (2)3

2

1312lim =++∞→n n n

(3)0sin lim

=∞

→n

n

n (4)21

)21(

lim 2

22=+++∞

→n

n n n n

四、若0lim =∞

→n n x ,又数列n y 有界,则0lim =∞

→n n n y x 。

五、若a x n n =∞

→lim ,证明||||lim a x n n =∞

→。反过来成立吗成立给出证明,不

成立举出 反例。

§3 函数的极限

一 是非判断题

1、如果)(0x f =5,但则,4)0()0(00=+=-x f x f )

(lim 0

x f x x →不存在。

[ ]

2、)(lim x f x ∞

→存在的充分必要条件是)(lim x f x +∞

→和)(lim x f x -∞

→都存在。

[ ]

3、如果对某个,0>ε存在,0>δ使得当0<δ<-||0x x 时,有,|)(ε<-A x f 那末

.)(lim 0

A x f x x =→

[ ]

4、如果在0x 的某一去心邻域内,,0)(>x f 且.0,)(lim 0

>=→A A x f x

x 那末

[ ]

5、如果A x f x =∞

→)(lim 且,0>A 那么必有,0>X 使x 在[]X X ,-以外时

.0)(>x f [ ]

二.单项选择题

1、从1)(lim 0

=→x f x

x 不能推出 。

(A )1)(lim 0

=+→x f x x (B )1)0(0=-x f (C )1)(0=x f (D )0]1)([lim 0

=-→x f x x 2、)(x f 在0x x =处有定义是)(lim 0

x f x

x →存在的 。

(A )

充分条件但非必要条件; (B )必要条件但非充分条件

(C ) 充分必要条件; (D )既不是充分条件也不是必

要条件

3、若,11

)(,1

)1()(2

2+-=--=x x x g x x x f 则 。 (A ))()(x g x f = (B ))()(lim 1

x g x f x =→

(C ))(lim )(lim 1

1

x g x f x x →→= (D )以上等式都不成立

4、)(lim )(lim 000

x f x f x x x x +→-→=是)(lim 0

x f x

x →存在的 。

(A )充分条件但非必要条件; (B )必要条件但非充分条件 (C )充分必要条件; (D )既不是充分条件也不是必要条件

四.根据函数极限的定义证明

(1)8)13(lim 3

=-→x n (2)444

lim

22-=+--→x x x

(3)2

1

21lim

33=+∞→x x x (4)2)4(lim 2-=--+∞

→x x x x

五.求x

x x 0

lim

六.设f(x)=?

??<>-1;21

;13x x x x

求(1))(lim 1

x f x → (2))(lim 2

x f x → (3))(lim 0

x f x →

七.设函数|

|35|

|3)(x x x x x f -+=

,求

(1))(lim x f x +∞

→ (2))(lim x f x -∞

→ (3))(lim 0

x f x +→ (4))(lim 0

x f x -→(5))(lim 0

x f x →

§4无穷小与无穷大

一、是非题

1、零是无穷小。[ ]

1是无穷小。2、

x

[ ]

3、两个无穷小之和仍是无穷小。[ ]

4、两个无穷小之积仍是无穷小。[ ]

5、两个无穷大之和仍是无穷大。[ ]

6、无界变量必是无穷大量。[ ]

7、无穷大量必是无界变量。[ ]

8、0,x x →是βα时的无穷小,则对任意常数A 、B 、C 、D 、E , ββαβE Da C B Aa ++++22也是0x x →时的无穷小。

[ ]

二.单项选择题

1、若x 是无穷小,下面说法错误的是 。

(A )x 2是无穷小;(B )2x 是无穷小; (C )x-0.0001是无穷小;(D )-x 是无穷小。

2、在X →0时,下面说法中错误的是 。 (A )xsinx 是无穷小(B )是无穷小x

x 1sin (C)

x 1sin x

1

是无穷大; (D)x

1

是无穷大。

3、下面命题中正确的是 。

(A )无穷大是一个非常大的数; (B )有限个无穷大的和仍为无穷大;

(C )无界变量必为无穷大; (D )无穷大必是无界变量。 三.下列函数在指定的变化趋势下是无穷小量还是无穷大量

(1)

lnx )1(→x 及)0(+→x (2))21

(sin +x

x )0(→x

(3) x

e )(+∞→x 及)(-∞→x (4) x

e 1 )0(+→x 、)0(-→x 及

)0(→x

四.证明函数x x y cos =在),0(+∞内无界,但当+∞→x 时,这函数不是无穷大。

§5 极限的运算法则 一.是非题 1、R )

()

()(x Q x p x =

是有理分式,且)(,0)(x T x Q ≠是多项式, 那末 []).()()()(lim 000

x T x R x T x R x x +=+→

[ ] 2、.0lim ...2lim 1lim ...321lim

2222

=+++=++++∞→∞→∞→∞

→n n

n n n n n n n n [ ]

3、

0011

lim sin

lim .limsin 0x x x x x x x

→→→== [ ]

4、 若则可断言且存在,0)(lim ,)()(lim 0

0=→→x g x g x f x x x x 0)(lim 0=→x f x x [ ]

二.计算下列极限

(1) 35lim 22-+→x x x (2)1

1

2lim 221-+-→x x x x

(3)h x h x h 220)(lim -+→ (4)1

21lim 22---∞→x x x x

5)13lim 2420+-+→x x x x x (6)4

586lim 224+-+-→x x x x x

(7))2

1

4121

1(lim n n +

+++∞

→ (8)2

)

1(321lim

n n n -++++∞→

(9) )1311(

lim 3

1

x

x x ---→ (10) 35)

3)(2)(1(lim

n

n n n n +++∞→

(11) x e x x arctan lim +∞

→ (12)

x

x x 1sin

1sin lim 0

+?→ (13) )11(lim 22--+∞

→x x x (14)1

2lim

++++∞

→x x x x x

四.已知 22lim

222=--++→x x b

ax x x ,求常数,a 和b 。 五.已知 1)1

1(lim

23=--++∞→b ax x x x ,求常数,a 和b 。 §6极限存在准则,两个重要极限 一.是非题

1、,lim lim a z y n n n n ==∞

→∞

→且当

n>N

时有.lim ,a x z x y n x n n n =≤≤∞

→那么

[ ]

2、如果数列n x 满足:(1)为常数a n a x n ...,2,1(=<;(2)x n >x n+1(n=1,2…).则 x n 必有 极限

[ ] 3、

1sin lim

=∞→x

x

x [ ] 4

、1)1

1(lim =+∞→n n n

[ ]

5

∞=+→x

x x 10

)1(lim

[ ] 二.单项选择题

1、下列极限中,极限值不为0的是 。

(A );lim x arctgx x ∞→ (B )x

x x x cos 3sin 2lim +∞→ (C )x x x 1sin lim 02

→ (D )242lim x x x x +→ο

2、若且),()(x x f ?>则必有b

x a

x B x A x f →→==,)(lim ,)(lim ? 。

(A )A>B (B)A ≥B (C)|A|>B (D)|A|≥|B| 3、1000)11(lim +∞

→+n x n

的值是 。

(A)e (B)e 1000 (C)e ·e 1000 (D)其它值 4、=→x

tgx

x sin lim

π

。 (A)1 (B) -1 (C)0 (D)∞ 5、=-→)sin 11sin (lim 0

x x

x

x x 。

(A)-1 (B)1 (C)0 (D)不存在 三.计算下列极限

(1) x x x 20sin lim → (2) x

x

tg x 3lim

0→

(3) ax

h h cos 1lim

-+→ (4) x

x x

x sin 2cos 1lim

0-→

(5) x

x x 10)1(lim

-→ (6)x x x 21lim 0

+→

(7) x x x x 2)1(

lim +∞

→ (8)kx x x

)1

1(lim -∞→ (k 为正整数)

(9)x x x

32)11(lim -∞

→ (10) x

x x cos 20)sin 31(lim -→

(11)x

x

x x 3sin 11lim

--+→ (12)x

x x x x x )cos 1(1

sin 3sin lim

20++→

三.利用夹逼准则证明:1)1

2111(

lim 2

22=++++++∞

→n

n n n n n

四.设01>=a x ,)2

(2

11n

n n x x x +

=+ ,3,2,1=n ,利用单调有界准则证明:数列}{n x 收敛,并求其极限。

§7无穷小的比较 一,.是非题

1、γβα,,是同一极限过程中的无穷小,且,~,~γββα则必有γα~。 [ ] 2

0→x 时

0lim sin sin lim

,~sin 303=-=-∴→∞→x

x

x x x tgx x x x x [ ]

3、已知11cos lim

0=-→x

x

x ,由此可断言,当)1(cos ,0x x x -→与时为等价无穷小。[ ]

4.当0→x 时,x 3sin 与1-x e 是同阶无穷小 。 [ ]

5.当1→x 时,31x - 是1-x 的高阶无穷小。 [ ] 二.单项选择题

1、x →0时,1—cosx 是x 2的 。

(A)高阶无穷小 (B)同阶无穷小,但不等价 (C)等价无穷小 (D)低阶无穷小

2、当x →0时,(1—cosx )2是sin 2x 的 。

(A)高阶无穷小 (B)同阶无穷小,但不等价 (C)等价无穷小 (D)低阶无穷小 3、如果应满足则高阶的无穷小是比时c b a x c

bx ax x ,,,11

1,

2+++∞→ 。

(A)1,1,0===c b a (B) 为任意常数c b a ,1,0=≠ (C) 为任意常数c b a ,,0≠ (D) 都可以是任意常数c b a ,,

4、1→x 时与无穷小x -1等价的是 。

(A)

()3121x - (B) ()

x -121 (C) ()212

1x -

(D) x -1

5.下列极限中,值为1的是 。 (A) x

x

x sin 2

lim

π∞

→ (B) x

x

x sin 2

lim

π→ (C) x

x

x sin 2

lim

2

ππ

(D)

x

x

x sin 2

lim

ππ

三.证明:当0→x 时,2~)2cos (cos 3

2x x x -。

四.确定α的值,使αx x x 4

1~sin 1tan 1+-+ ()0→x

§8 函数的连续性与间断点

一.是非题

1、)(x f 在其定义域(a,b )内一点x 0处连续的充分必要条件是)(x f 在x 0既左连续又右 连

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

数学实验二_极限与连续

实验二:极限与连续 第一题:数列极限 In[1]= f[n_]:=Sum[1/j^3,{j,1,n}]; xn=Table[N[f[n],10],{n,30}] Out[1]= {1.000000000,1.125000000,1.162037037,1.177662037,1.185662037,1.190291667,1. 193207119,1.195160244,1.196531986,1.197531986,1.198283300,1.198862004,1.199 317170,1.199681602,1.199977898,1.200222039,1.200425580,1.200597048,1.200742 842,1.200867842,1.200975822,1.201069736,1.201151926,1.201224264,1.201288264 ,1.201345159,1.201395965,1.201441518,1.201482521,1.201519558} In[2]=ListPlot[xn,PlotStyle→PointSize[0.02]] 第二题:递归数列 In[3]=Clear[f]; f[1]=1; f[n_]:=f[n]=N[(f[n-1]+3/f[n-1])/2,20]; fn=Table[f[n],{n,30}]

Out[3]= {1,2.00,1.00,1.29,1.05,1.53,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.3 5,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35,1.35} In[4]=ListPlot[fn,PlotStyle→PointSize[0.02]] Out[4]= Graphics 第三题:多次自复合 In[5]= Plot[{Sin[x],Nest[Sin,x,5],Nest[Sin,x,10],Nest[Sin,x,30]},{x,-2Pi,2Pi},PlotStyle→{R GBColor[0,0,1],RGBColor[1,1,0],RGBColor[1,0,0],RGBColor[0,1,0]}] Out[5]=

第一章函数与极限复习提纲

第一章函数与极限复习提纲 一、函数 知识点:1、函数的定义域、性质的判断(有界性、奇偶性、单调性、周期性) 2、基本初等函数的表示形式 3、复合函数的分解必须会!! 4、函数关系的建立 如1、下列函数中属于偶函数的是( D. ) A. x x y sin +=; B. x x y sin 2+=; C . x x y cos +=; D. x x y cos 2+=。 2、下列复合函数由哪些基本初等函数构成? (1)x x f 2ln )(= 解:u y ln =,x u 2= (2)x y 2cos = 解:2u y = ,x u cos = (3)5)13(+=x y 解:5u y =, 13+=x u (4)3 2 1-= x y 解:3 1u y =,12-=x u (5)x y 2cos ln = 解:u y ln =,v u cos =,x v 2= 3、旅客乘坐火车时,随身携带物品,不超过20公斤免费;超过20公斤部分,每公斤收费0.20元;超过50公斤部分再加收50%。试列出收费与物品重量的函数关系式。 解 0, 0.2(20), 2050 0.3(50)6, 50 x y x x x x ≤≤?? =-<≤??-+>? 4、某公司生产某种产品,总成本为C 元,其中固定成本为200元,每多生产一单位产品,成本增加10元,又设该产品价格P 与需求量x 之间的关系为2 25x P -=,求x 为多少时公司总利润最大? 解 成本函数C (x )=固定成本+可变成本 所以x x C 10200)(+= 收入函数x x x x x p x R 2521 )225()(2+-=?- =?= 利润函数200152 1)10200(2521)()()(2 2-+-=+-+-=-=x x x x x x C x R x L 令015)('=+-=x x L 得15=x 因为驻点唯一,又根据01)("<-=x L 可知函数最大值存在,所以当15=x 时,() L x

高考数学常考知识点之极限

高考数学常考知识点之极限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

实验二极限与连续数学实验课件习题答案

天水师范学院数学与统计学院 实验报告 实验项目名称极限与连续 所属课程名称数学实验 实验类型上机操作 实验日期 2013-3-22 班级 10数应2班 学号 291010836 姓名吴保石 成绩

【实验过程】(实验步骤、记录、数据、分析) 1.数列极限的概念 通过计算与作图,加深对极限概念的理解. 例2.1 考虑极限3321 lim 51 x n n →∞++ Print[n ," ",Ai ," ",0.4-Ai]; For[i=1,i 15,i++,Aii=N[(2i^3+1)/(5i^3+1),10]; Bii=0.4-Aii ;Print[i ," ",Aii ," ",Bii]] 输出为数表 输入 fn=Table[(2n^3+1)/(5n^3+1),{n ,15}]; ListPlot[fn ,PlotStyle {PointSize[0.02]}] 观察所得散点图,表示数列的点逐渐接近直线y=0 .4 2.递归数列 例2.2 设n n x x x +==+2,211.从初值21=x 出发,可以将数列一项项地计算出来,这样定义的数列称为 数列,输入 f[1]=N[Sqrt[2],20]; f[n_]:=N[Sqrt[2+f[n-1]],20]; f[9] 则已经定义了该数列,输入 fn=Table[f[n],{n ,20}] 得到这个数列的前20项的近似值.再输入 ListPlot[fn ,PlotStyle {PointSize[0.02]}] 得散点图,观察此图,表示数列的点越来越接近直线2y =

例2.3 考虑函数arctan y x =,输入 Plot[ArcTan[x],{x ,-50,50}] 观察函数值的变化趋势.分别输入 Limit[ArcTan[x],x Infinity ,Direction +1] Limit[ArcTan[x],x Infinity ,Direction -1] 输出分别为2 π 和2π-,分别输入 Limit[sign[x],x 0,Direction +1] Limit[Sign[x],x 0,Direction -1] 输出分别为-1和1 4.两个重要极限 例2.4 考虑第一个重要极限x x x sin lim 0→ ,输入 Plot[Sin[x]/x ,{x ,-Pi ,Pi}] 观察函数值的变化趋势.输入 Limit[Sin[x]/x ,x 0] 输出为1,结论与图形一致. 例2.5 考虑第二个重要极限1 lim(1)x x x →∞+,输入 Limit[(1+1/n)^n ,n Infinity] 输出为e .再输入 Plot[(1+1/n)^n ,{n ,1,100}] 观察函数的单调性 5.无穷大 例2.6 考虑无穷大,分别输人 Plot[(1+2x)/(1-x),{x ,-3,4}] Plot[x^3-x ,{x ,-20,20}] 观察函数值的变化趋势.输入 Limit[(1+2x)/(1-x),x 1] 输出为-∞ 例2.7 考虑单侧无穷大,分别输人 Plot[E^(1/x),{x ,-20,20},PlotRange {-1,4}] Limit[E^(1/x),x 0,Direction +1] Limit[E^(1/x),x 0,Direction -1] 输出为图2.8和左极限0,右极限∞.再输入 Limit[E^(1/x),x 0] 观察函数值的变化趋势. 例2.8 输入 Plot[x+4*Sin[x],{x ,0,20Pi}] 观察函数值的变化趋势. 输出为图2 .9.观察函数值的变化趋势,当x →∞时,这个函数是无穷大,但是,它并不是单调增加.于是,无并不要求函数单调 例2.9 输入

同济第六版《高等数学》教案WORD版-第01章 函数与极限

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限 之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限 的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a?M. 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A?{a, b, c, d, e, f, g}. 描述法: 若集合M是由元素具有某种性质P的元素x的全体所组成, 则M可表示为

函数与极限测试题及标准答案(二)

函数与极限测试题(二) 一. 选择题 1.设F()x 是连续函数()f x 的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有( ). (A )F()x 是偶函数?()f x )是奇函数. (B )F()x 是奇函数?()f x 是偶函数. (C )F()x 是周期函数?()f x 是周期函数. (D )F()x 是单调函数?()f x 是单调函数 2.设函数,1 1)(1 -= -x x e x f 则( ) (A ) 0x =,1x =都是()f x 的第一类间断点. (B ) 0x =,1x =都是()f x 的第二类间断点 (C ) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点. (D ) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 3.设()1x f x x -= ,01x ≠、,,则1 [ ]() f f x = ( ) A ) 1x - B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) 0 lim 11(1+ )x x x + →= B )0lim 1(1+ ) x x e x + →= C ) lim 1(1)x x e x →∞ =-- D )lim 1(1) x x e x -→∞ =+ 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 。 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2.

函数与极限练习题

题型 一.求下列函数的极限 二.求下列函数的定义域、值域 三.判断函数的连续性,以及求它的间断点的类型 内容 一.函数 1.函数的概念 2.函数的性质——有界性、单调性、周期性、奇偶性 3.复合函数 4.基本初等函数与初等函数 5.分段函数 二.极限 (一)数列的极限 1.数列极限的定义 2.收敛数列的基本性质 3.数列收敛的准则 (二)函数的极限 1.函数在无穷大处的极限 2.函数在有限点处的极限 3.函数极限的性质 4.极限的运算法则 (三)无穷小量与无穷大量 1.无穷小量 2.无穷大量 3.无穷小量的性质 4.无穷小量的比较 5.等价无穷小的替换原理 三.函数的连续性 x处连续的定义 1.函数在点0 2.函数的间断点 3.间断点的分类 4.连续函数的运算 5.闭区间上连续函数的性质 例题详解 题型I函数的概念与性质 题型II求函数的极限(重点讨论未定式的极限) 题型III求数列的极限 题型IV已知极限,求待定参数、函数、函数值 题型V无穷小的比较 题型VI判断函数的连续性与间断点类型 题型VII与闭区间上连续函数有关的命题证明

自测题一 一. 填空题 二. 选择题 三. 解答题 3月18日函数与极限练习题 一.填空题 1.若函数121)x (f x -??? ??=,则______)x (f lim x =+∞ → 2.若函数1 x 1 x )x (f 2--=,则______)x (f lim _1x =→ 3. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________ 4. 设 cos 0()0 x x f x x x ≤??=? >?? ,则 (0)f = __________ 5.已知函数 2 ()1 ax b x f x x x +

第一章 函数与极限的练习解答

一、P21:1;5 1.设),(),(∞+∞=55--A ,) ,【310-B =,写出 B A B A B A -=\,A B ,及)()\(\B A A B A A --=的表达式。 解:),5()3,(+∞-∞= B A )5,10[-=B A ),5)10,(\+∞--∞=-=( B A B A )5,10[)()\(\--=--=B A A B A A 5.下列各题中,函数)(x f 和)x g (是否相同?为什么? (1) x x g x x f lg 2)(,lg )(2== 解:不同。定义域不同,),0()0,(+∞-∞= f D ),0(+∞=g D 。 (2) 2 )(,)(x x g x x f == 解:不同。对应法则不同,即:值域不同。),0[,+∞==g f R R R 。 (3) 3 3 4 )(x x x f -=, 3 1)(-?=x x x g 解:相同。因为定义域和对应法(或值域)则相同。 (4) x x x g x f 2 2tan sec )(,1)(-== 解:不同。定义域不同,R D f = },1,0,2 { ±=+ ≠=k k x x D g π π。 二、P21:4(1)、(3)、(5)、(7)、(9);6;7(2); P22:10(1)、(4)、(5);11(1)、(3)、(5);15(1)、(3);16. 4.求下列函数的自然定义域:

(1) 23+=x y ; 解:32023-≥?≥+x x 。即:),3 2 [+∞-=D 。 (3)211x x y --=; 解:???≤≤-≠????≥-≠1 10 0102 x x x x 。即:]1,0()0,1[ -=D 。 (5) x y sin =; 解:0≥x 。即:),0[+∞=D (7))3arcsin(-=x y ; 解:42131≤≤?≤-≤-x x 。即:]4,2[=D 。 (9))1ln(+=x y 解:101->?>+x x 。即:),1(+∞-=D 6.设,3 ,3,0,sin )(ππ?≥

函数与极限测试题及答案(一)

函数与极限测试题(一) 一、 填空题 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+与2sin a 等价,则常数a =_____。 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量 2 11 sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e =+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????, 则()lim x f x →∞ 为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在

例:()()()11 ,,22 1 x x f x x g x x x x ?==+ =+ ++ 三、 求下列极限 1 、 lim x 2、()2 21212lim 1x x x x x -→?? ?+?? 四、 确定,a b 的值,使() 32 2ln 10 011ln 0 1ax x f x b x x x x x x x ?+<==??-+?>++?? 在(),-∞+∞内连续。 五、 指出函数()1 11x x x e e f x e e --= -的间断点及其类型。 六、 设1234,,,a a a a 为正常数,证明方程 31240123 a a a a x x x x +++=---有且仅有三个实根。 七、 设函数()(),f x g x 在[],a b 上连续,且满足()()()(),f a g a f b g b ≤≥,证明: 在[],a b 内至少存在一点ξ,使得()()f g ξξ=。 函数与极限测试题答案(一) 一、1、 11x x e -+; 2、 11, 2 2a b ++?? ???? ; 3、 4-; 4、0 ; 二、1—4、DCBD 三、1 、解:原式lim 3x ==;

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

极限与连续基础练习题含解答

第二章 极限与连续 基础练习题(作业) §2.1 数列的极限 一、观察并写出下列数列的极限: 1.468 2, ,,357 极限为1 2.1111 1,,,,,2345 --极限为0 3.21 2212?-??=?+???n n n n n n a n 为奇数为偶数极限为1 §2.2 函数的极限 一、画出函数图形,并根据函数图形写出下列函数极限: 1.lim →-∞ x x e 极限为零 2.2 lim tan x x π → 无极限 3.lim arctan →-∞ x x 极限为2 π- 4.0 lim ln x x + → 无极限,趋于-∞ 二、设2 221, 1()3,121,2x x f x x x x x x +??=-+? ,问当1x →,2x →时,()f x 的极限是否存在? 2 1 1 lim ()lim(3)3x x f x x x ++→→=-+=;11 lim ()lim(21)3x x f x x -- →→=+= 22 2 lim ()lim(1)3x x f x x ++ →→=-=;222 lim ()lim(3)53x x f x x x --→→=-+=≠ 2 lim ()x f x →∴不存在。 三、设()1 11x f x e = +,求 0x →时的左、右极限,并说明0x →时极限是否存在.

lim ()x f x →∴不存在。 四、试讨论下列函数在0x →时极限是否存在. 1.绝对值函数()||=f x x ,存在极限为零 2.取整函数()[]=f x x 不存在 3.符号函数()sgn =f x x 不存在 §2.3 无穷小量与无穷大量 一、判断对错并说明理由: 1.1 sin x x 是无穷小量. 错,无穷小量需相对极限过程而言,在某个极限过程中的无穷小量在其它极限过程中可能不再是无穷小量。当 0x →时,1sin 0x x →;当1x →时,1 sin sin1x x →不是无穷小量。 2.同一极限过程中两个无穷小量的商,未必是该极限过程中的无穷小量. 对,两个无穷小量的商是“0/0”型未定式,即可能是无穷小量,也可能是无穷大量或其它有极限但极限不为零的变量。 3.无穷大量一定是无界变量,而无界变量未必是无穷大量. 对,无穷大量绝对值无限增大因此一定是无界变量,但无界变量可能是个别点无限增大,变量并不能一致地大于任意给定的正数。 二、下列变量在哪些极限过程中是无穷大量,在哪些极限过程中是无穷小量: 1. 22 1 x x +-, 2x →-时,或x →∞时,为无穷小量; 1x →时,或1x →-时,为无穷大量。 2.1ln tan x , k Z ∈ ()2x k ππ-→+时,tan x →+∞,则ln tan x →+∞,从而+1 0ln tan x →为无穷小量; x k π+→时,tan 0x +→,则ln tan x →-∞,从而1 0ln tan x -→为无穷小量; 4x k ππ→+时,tan 1x →,则ln tan 0x →,从而1 ln tan x →∞为无穷大量; 三、当0+ →x 时,2 x ,阶的无穷小量分别是谁? 2 00lim lim 01x x x ++→→==,所以当0+→x 时,2x 22 300lim lim 0 1 x x x x ++→→==,所以当0+→x 时,2x 的高阶无穷小量。

1第一章 函数与极限答案

第一章 函数与极限 第一节 映射与函数 1.填空题: (1)函数)(x f y =与其反函数)(x y ?=的图形关于 x y = 对称. (2 )函数 2 1 ()1f x x = +-的定义域为__________________________; (3)若)(x f 的定义域是[0,1],则)1(2+x f 的定义域是 {0} . (4)设b ax x f +=)(,则=-+= h x f h x f x ) ()()(? a . (5)若,11)(x x f -=则=)]([x f f x x 1- ,=)]}([{x f f f x . (6)函数2 x x e e y --=的反函数为 。 (7 )函数y =: x ≥0,值域: 0≤y <1 ,反函数: x =-ln(1-y 2), 0≤y <1 2. 选择题: (1)下列正确的是:(B ,C ) A.2 lg )(x x f =与x x g lg 2)(=是同一函数. B.设)(x f 为定义在],[a a -上的任意函数,则)()(x f x f -+必为偶函数,)()(x f x f --必为奇函数. C.?? ? ??<-=>==0,10,00,1sgn x x x x y 是x 的奇函数. D.由任意的)(u f y =及)(x g u =必定可以复合成y 为x 的函数. . (2))sin()(2 x x x f -=是( A ). A.有界函数; B. 周期函数; C. 奇函数; D. 偶函数. (3)设54)(2 ++=bx x x f ,若38)()1(+=-+x x f x f ,则b 为( B ). A.1; B.–1; C.2; D.–2. (4)函数 2 1 arccos 1++-=x x y 的定义域是( )

函数与极限习题与答案

第一章 函数与极限 (A ) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222 n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→352352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设?? ?>≤+=0 ,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f = = ; (3)x x x g x f 22tan sec )(, 1)(-== ; 3、判定函数的奇偶性 (1))1(2 2 x x y -= ; (2)3 2 3x x y -= ;

极限知识点(2020年10月整理).pdf

高中数学第十三章-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1?=a ,则n n n n a )1(lim lim ?=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim ②b a b a n n n ?=?∞ →)(lim

高等数学习题详解-第2章-极限与连续

习题2-1 1. 观察下列数列的变化趋势,写出其极限: (1) 1 n n x n = + ; (2) 2(1)n n x =--; (3) 13(1)n n x n =+-; (4) 211n x n =-. 解:(1) 此数列为12341234,,,,,,23451 n n x x x x x n =====+L L 所以lim 1n n x →∞=。 (2) 12343,1,3,1,,2(1),n n x x x x x =====--L L 所以原数列极限不存在。 (3) 1234111131,3,3,3,,3(1),234n n x x x x x n =-=+=-=+=+-L L 所以lim 3n n x →∞ =。 (4) 123421111 11,1,1,1,,1,4916n x x x x x n =-= -=-=-=-L L 所以lim 1n n x →∞=- 2.下列说法是否正确: (1)收敛数列一定有界 ; (2)有界数列一定收敛; (3)无界数列一定发散; (4)极限大于0的数列的通项也一定大于0. 解:(1) 正确。 (2) 错误 例如数列{} (-1)n 有界,但它不收敛。 (3) 正确。 (4) 错误 例如数列21(1) n n x n ?? =+-??? ? 极限为1,极限大于零,但是11x =-小于零。 *3.用数列极限的精确定义证明下列极限: (1) 1 (1)lim 1n n n n -→∞+-=; (2) 22 2 lim 11 n n n n →∞-=++; (3) 3 2 3125lim -=-+∞→n n n 证:(1) 对于任给的正数ε,要使1(1)111n n n x n n ε-+--= -=<,只要1 n ε >即可,所以可取正整数1 N ε ≥ . 因此,0ε?>,1N ε?? ?=???? ,当n N >时,总有 1(1)1n n n ε-+--<,所以

函数与极限练习题

第一章 函数与极限 §1 函数 一、是非判断题 1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。 [ ] 2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有 B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。 [ ] 4、定义在(∞+∞-,)上的常函数是周期函数。 [ ] 5、任一周期函数必有最小正周期。 [ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。 [ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。 [ ] 8、f(x)=1+x+ 2 x 是初等函数。 [ ] 二.单项选择题 1、下面四个函数中,与y=|x|不同的是 (A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中 既是奇函数,又是单调增加的。 (A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是 (A )x 2log (B )x 2 (C )22log x (D )2 x 4、若)(x f 为奇函数,则 也为奇函数。 (A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。 1、 y=) 1arctan(+x e 2、 y=x x x ++ 3、 y=x ln ln ln

(完整版)大一高数第一章函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

相关文档
最新文档