高速FPGA PCB设计指南

高速FPGA PCB设计指南
高速FPGA PCB设计指南

Altera Corporation

1AN-315-1.1

Application Note Guidelines for Designing High-Speed FPGA PCBs Introduction

Over the past five years, the development of true analog CMOS processes has led to the use of high-speed analog devices in the digital arena. System speeds of 150 MHz and higher have become common for digital logic. Systems that were considered high end and high speed a few years ago are now cheaply and easily implemented. However, this integration of fast system speeds brings with it the challenges of analog system design to a digital world. This document is a guideline for printed circuit board (PCB) layouts and designs associated with high-speed systems.“High speed” does not just mean faster communication rates (e.g., faster than 1 gigabit per second (Gbps)). A transistor-transistor logic (TTL) signal with a 600-ps rise time is also considered a high-speed signal. This opens up the entire PCB to careful and targeted board simulation and design. The designer must consider any discontinuities on the board. The “Time-Domain Reflectometry” and “Discontinuity” sections explain how to eliminate discontinuities on a PCB. Some sources of discontinuities are vias, right angled bends, and passive connectors.The “Termination” section explains about terminations for signals on PCBs. The placement and selection of termination resistors are critical in order to avoid reflections.As systems require higher speeds, they use differential signals instead of single-ended signals because of better noise margins and immunity. Differential signals require special attention from PCB designers with regards to trace layout. The “Trace Layout” section addresses differential traces in terms of trace layout. Crosstalk, which can adversely affect single ended and differential signals alike, is also addressed in this section.All the dense, high-speed switching (i.e., hundreds of I/O pins switching at rates faster than 500-ps rise and fall times) produces powerful transient changes in power supply voltage. These transient changes occur because a signal switching at higher frequency consumes a proportionally greater amount of power than a signal switching at a lower frequency. As a result, a device does not have a stable power reference that both analog and digital circuits can derive their power from. This phenomenon is called simultaneous switching noise (SSN). The “Dielectric Material” section discusses how to eliminate some of these SSN problems through careful board design.February 2004, ver. 1.1

Guidelines for Designing High-Speed FPGA PCBs Time-Domain Reflectometry

The “Simultaneous Switching Noise” and “Decoupling” sections cover

power supply decoupling and PCB layer stackup. The document

discusses how to select the method and amount of decoupling as well as

the theory behind capacitive decoupling. These sections also present a

real life example of troubleshooting a decoupling problem. The “Layer

Stackup” section discusses layer stackup.

It is critical to follow the best practices described in this document to

ensure the best performance from your system. The content of this

document is based on the results of Altera's experiments with high-speed

PCBs. The simulations were done with Hspice, an analog circuit

simulator. Ansoft 2D and 3D field solvers were used to extract RLGC

parameters for different structures. Sigrity Speed2000 tool was used for

SSN simulation.

This document should be used in conjunction with the board layout

example provided on the Altera web site (https://www.360docs.net/doc/fe18502124.html,). You can also

contact Altera Applications for this example. The board layout example

is a set of specific guidelines used when designing the Stratix GX

development kit board. It includes schematics, a board specific layout

guideline, and board layout and stackup information.

You should also use the characterization report for the Altera FPGA you

are designing for with this document. This document will assist with

design guidelines required for the board design, and the characterization

report will give a picture of the device performance.

Contact Altera Applications for further assistance or questions with

regards to this document or any other issues associated with high-speed

board design.

Time-Domain Reflectometry Time domain reflectometry (TDR) is a way to observe discontinuities on a transmission path. The time domain reflectometer sends a pulse through the transmission medium. Reflections occur when the pulse of energy reaches either the end of the transmission path or a discontinuity within the transmission path. From these reflections, the designer can determine the size and location of the discontinuity. Many examples in this handbook use TDR, and this section provides an understanding of TDR.

Figure1 shows a TDR voltage plot for a cable that is not connected to a PCB. The middle line is a 50-? cable one meter long. At Point A, a pulse starts (Z o = 50 ?) and transmits through the cable, stopping at the end of the transmission line (i.e., Point B). Because the end of the transmission line is open, there is infinite impedance, Z LOAD = α. Therefore, the reflection coefficient at the load is determined with the equation:

2 Altera

Corporation

Time-Domain Reflectometry Guidelines for Designing High-Speed FPGA PCBs

Reflection coefficient = (Z LOAD– Z o)/(Z LOAD+ Z o)

Reflection coefficient in this case = (α– 50)/(α+ 50) = 1

The entire signal is reflected. At Point B, the amplitude of the signal

doubles. See Figure1.

Figure1.TDR Voltage Plot with Cable Not Connected to PCB

50?Cable

Point B

If the same meter-long cable is then connected to a PCB through an SMA

connector, the plot changes. See Figure2. Because the SMA connector is

more capacitive than inductive in nature, it appears as a capacitive load,

shown as a dip in the TDR plot.

Altera Corporation 3

4

Altera Corporation

Guidelines for Designing High-Speed FPGA PCBs Time-Domain Reflectometry Figure 2.TDR Voltage Plot with Cable Connected to PCB Figure 3 shows an expanded curve for the SMA connector. Because the rise time of the pulse sent for TDR analysis is very small (around 20ps), the TDR voltage plot shows every discontinuity on the transmission path.The SMA is a capacitive discontinuity on the transmission path, so the signal dips on the voltage plot. The impedance of an ideal transmission line is defined by the equation: Therefore, when the capacitance increases, the impedance decreases. If the discontinuity is inductive, then the impedance will increase, which appears as a bump in the TDR plot. You can calculate the capacitance and inductance from the curves on a TDR plot. If the plot shows a dip, as in Figure 3, then calculate the capacitance. Section added due to the board trace and connectors

Time-Domain Reflectometry Guidelines for Designing High-Speed FPGA PCBs Figure3.TDR Voltage Plot for the Section Around the SMA Connector on PCB

Dip due to the

dominating

capacitance of

the SMA

The equivalent circuit approximation for a dip in the TDR plot is a

capacitor to ground, as shown in Figure4.

Figure4.Equivalent Circuit for a Transmission Line with Capacitive Discontinuity

The RC equation for this type of circuit is:

R = Z o/2

RC = Z o C/2

The two transmission lines behave as if they are parallel to each other. Altera Corporation 5

6

Altera Corporation Guidelines for Designing High-Speed FPGA PCBs Time-Domain Reflectometry

You can determine the change in voltage (V) and rise time (T r ) from the

curve. Then, you can enter the values into the equation (i.e., Z o = 50 ?):

(V/250 mV) = 1 ? (T r /2RC)

Use this equation to determine the RC time constant. You can also use the

curve to approximate the RC time constant. Between 0 to 63% of the rise

is RC. Once the RC is found, you can use it to determine the capacitance

(discontinuity, as seen by the signal).

If the discontinuity looks more inductive in nature (i.e., the curve goes

up), then the signal experiences a circuit similar to Figure 5. The transmission line is split, with an inductive discontinuity in between.

Figure 5.Equivalent Circuit for a Transmission Line with Inductive Discontinuity

Use the following two equations to find inductive discontinuity (L):

R = 2Z o

L/R = L/2Z o

To determine the inductance value, use the equation for (Z o = 50 ?):

(V /250 mV) = 1 ? (T r × Z o /L)

Figure 6 shows a cross section of a PCB transmission path, which

illustrates many discontinuities.

??

?

Altera Corporation 7

Time-Domain Reflectometry Guidelines for Designing High-Speed FPGA PCBs

Figure 6.Example TDR Voltage Plot for a Cross Section of a PCB

If you experience a TDR plot similar to Figure 7, calculate the capacitive

discontinuity introduced by the SMA connector by factoring in the voltage dip.

Figure 7.TDR Plot for a Section of a PCB

You can determine T r and V for the equation

(V/250 mV) = 1 ? (T r /2RC)

from the curve as shown in Figure 8.Inductive

Discontinuity Capacitive Discontinuity 50? Transmission Line

Via,0.7pF

Driver Side

Impedance goes up to 55.9?

SMA,1.196pF

??

8

Altera Corporation

Guidelines for Designing High-Speed FPGA PCBs Discontinuity Figure 8.TDR Plot for the SMA In this example, RC = (T r × 250 mV)/2 (250 mV ? ?V) = 29.9 ps From the equation:RC = Z o C/2If Z o = 50 ?, then C = 1.196 pF The examples in this section can be used when modeling discontinuity with a simulator. However, instead of using TDR to extract the parasitic for the discontinuity, you can model the discontinuity in the 2D- and 3D-field solvers.Discontinuity

Discontinuity on a transmission path degrades signals. Signals with fast rise times have higher degradation than signals with slow rise times. Thus, high-speed board designs require careful planning to avoid the problems associated with discontinuity. This section discusses inductive and capacitive discontinuities related to a transmission path.Inductive Discontinuity Figure 9 illustrates a TDR voltage plot for two different SMA connectors, one side of the SMA connector is 50 ? and the other is 58 ?. The curve rises upwards due to the increasing inductance in the region. f

The “Time-Domain Reflectometry” section discusses TDR voltage plots and how to calculate the inductance of the discontinuity illustrated in Figure 9

.

Altera Corporation 9

Discontinuity Guidelines for Designing High-Speed FPGA PCBs The two plots in Figure 9 represent two different discontinuities due to SMA connectors. The curve with the higher peak represents a connector with higher inductive discontinuity of about 3.8 nH. The curve with a lower peak represents a connector with lower inductive discontinuity of about 2.6 nH. You can calculate the inductance for the discontinuity for both these curves from the graph.Figure 9.Impedance Curves for SMA Connectors Figure 9 shows a 3.125-Gbps signal transmitted through the two SMA connectors. The rise time of the signal is approximately 70 ps. Figure 10 shows the eye opening plot when a signal passes through the lower-inductance (2.6 nH of discontinuity) SMA connector. The eye opening is 336 mV , and the jitter is 20 ps.Discontinuity due to higher inductance SMA Discontinuity due to a lower inductance SMA 58?T ransmission Path 50?Transmission Path

10

Altera Corporation Guidelines for Designing High-Speed FPGA PCBs Discontinuity Figure 10.Lower-Inductance SMA Connector Eye Opening & Expanded View of the Eye Opening

An expanded view of the eye (Figure 10) provides a better jitter reading;

the peak-to-peak jitter value is approximately 20ps.

Figure 11 shows an eye opening plot of the same signal; however, this

time the signal goes through 3.8 nH of inductive discontinuity due to the

higher-inductance SMA connector. The eye opening is approximately

332mV . When comparing the plots, the plot in Figure 11 has more jitter

than Figure 10.

An expanded view of the eye (Figure 11) provides a better jitter reading;

the peak-to-peak jitter value is approximately 24

ps.

Expanded View,Lower-Inductance SMA Connector

Eye Opening,Lower-Inductance SMA Connector

Altera Corporation 11

Discontinuity Guidelines for Designing High-Speed FPGA PCBs Figure 11.Higher-Inductance SMA Connector Eye Opening & Expanded View of the Eye Opening

1Jitter increases and the eye opening gets smaller when the

wrong type of connectors are used or other forms of inductive

discontinuities are added to the transmission path. Increasing

jitter behavior becomes a significant problem with signals with

faster rise times. Also, when the signals become more stressed

(i.e., random), jitter is more pronounced.

Capacitive Discontinuity

This section discusses the effects of capacitive discontinuity, which

usually occurs when components are introduced on the transmission

path.

The two connector plots in Figure 12 show capacitive loads, one acting as

a lower capacitive discontinuity and the other as higher capacitive

discontinuity. The capacitance (C) for the load can be calculated with the

equation:

ρ = RC = (Z o C/2)

f For more information on calculatin

g the capacitance load, see the “Time-

Domain Reflectometry” section.

A 3.125-Gbps signal (a pseudo random binary sequence (PRBS) pattern)

is sent through the first connector that looks like a lower-capacitive

connector (1.2 pF); the eye opening and jitter are observed on the other end.

Expanded View,Higher-Inductance SMA Connector

Eye Opening,Higher-Inductance SMA

Connector

12

Altera Corporation Guidelines for Designing High-Speed FPGA PCBs Discontinuity Figure 12.Lower- & Higher-Capacitive Load Connectors Illustrating the Effects of Capacitive Discontinuity

Figure 13 shows the eye opening with the connector that induces a

discontinuity of 1.2 pF. The eye opening is a 330-mV differential. The

expanded view of the eye shows the peak-to-peak jitter as approximately 27 ps.Higher Capacitance

Lower Capacitance

Transmission Lines

Altera Corporation 13

Discontinuity Guidelines for Designing High-Speed FPGA PCBs Figure 13.Lower-Capacitance Connector Eye Opening & Expanded View of the Eye Opening

Figure 13 shows a 3.125-Gbps PRBS pattern sent through the second

connector that looks like a higher-capacitive connector; the eye opening

and jitter are observed on the other end.

Figure 14 shows the eye opening for the same signal passing through an

SMA connector with a capacitance of 2.9 pF. The eye opening is

approximately 280 mV , differential. The expanded view of the eye opening shows that the peak-to-peak jitter is 43 ps.

Figure 14.Higher-Capacitance Connector Eye Opening & Expanded View of the Eye Opening

Expanded View,Lower-Capacitance Connector

Eye Opening,Lower-Capacitance

Connector Expanded View,Higher-Capacitance Connector

Eye Opening,Higher-Capacitance

Connector

Guidelines for Designing High-Speed FPGA PCBs Discontinuity

You should avoid adding connectors and components on the

transmission path whenever possible. However, if connectors are

required, select ones that create the least amount of inductive and/or

capacitive discontinuity on the transmission path. The jitter and

amplitude impact on a 3.125-Gbps signal when transmitting through a 2.9

and 1.2pF capacitor is very significant. The eye opening shows an

amplitude difference of 50 mV, and the expanded view shows a peak-to-

peak jitter difference of 16 ps.

Discontinuities Related to a Transmission Path

This section discusses some of the discontinuities related to a

transmission path, including:

■Vias

■Right-angle bends

Vias

Avoid vias and layer changes as much as possible when routing a trace

because vias slow down edges and cause reflections. Vias are both

inductive and capacitive in nature; however, they are dominantly

capacitive. A design that uses differential signals requires vias. However,

to ensure that the true and complement signals experience the same

discontinuity, vias must be in the same configuration for each signal of

the differential pair. Thus, any variation in signal due to the via-induced

discontinuity will be in a common mode. A differential mode

discontinuity will cause a reduction in the dynamic range.

Blind vias are more expensive, smaller, and act less as a discontinuity

than full-sized vias. Blind vias do not go through the PCB and are

designed to reduce discontinuity from vias. For better performance when

using full-sized vias, use vias in series with the transmission line. The via

section that is left hanging behaves like a capacitive stub.

Figure15 shows an 18-layer board. Layers 1, 3, and 16 are signal layers.

Route a trace from layer 1 down to layer 16, rather than routing through

layer 3. If you route a trace that stops at layer 3, then the part of the via

left hanging behaves like a capacitive stub.

Corporation

14 Altera

Altera Corporation 15

Discontinuity Guidelines for Designing High-Speed FPGA PCBs Figure 15.Eighteen-Layer Board with Trace Stub

The capacitive stub effects on a via become more pronounced when the

board design involves:

Higher signal speeds ■

Thicker boards ■Non-essential extra via pads

A board thickness of 93 mils—with capacitive stubs—has less impact on

a 3.125-Gbps signal as would a 200 mils-thick board running at the same

frequency. Thus, vias affect signal integrity (at 3.125 Gbps) for boards that

are too thick.

When possible, avoid vias and via stubs, and remove any unnecessary

pads on vias because the pads create parallel plate capacitance between

each other. When designing a 100-mils-thick board, you do not need to

counter-bore the vias for a 3.125-Gbps signal. However, counter-boring may be advisable for boards measurably thicker than 100 mils.

Stub (When Using

Layer 3 for Routing)Layer 1

Layer 16

16

Altera Corporation

Guidelines for Designing High-Speed FPGA PCBs Discontinuity A current flow on a transmission line creates a magnetic field. The flux lines induce a return current on the reference structure. When a transmission line has its broadside facing reference planes, most of the return current travels underneath the transmission line at a skin depth on the reference plane. The value of skin depth can be calculated with the following equation: skin depth = 1/Where: f = frequency μo = magnetic permeability of air μr = relative magnetic permeability σ = χονδυχτι?ιτψ οφ ματεριαλYou can calculate the current density at any point x in the reference plane with the following equation:I x = I o e -x/do Where:I x = current density at x I o = current density on skin depth x = distance from surface d o = skin depth You should provide a good path for return currents. Figure 16 shows a layer change (from layer 1 to 13) for a pair of differential signals (i.e., red and green structures). The signal starts at Point A (in Figure 16) and transmits to Point B (Figure 18). Figures 16 through 18 show that solid reference planes (i.e., light blue structures) are provided for the signal lines. 1Create GND islands when necessary. When creating islands of GND, ensure that other signals referencing the plane do not pass over the split. If a signal does pass over the split, its loop will increase, also increasing the inductance in the region.πf μo μr σ()

Discontinuity Guidelines for Designing High-Speed FPGA PCBs https://www.360docs.net/doc/fe18502124.html,yer Changes

Point A

At the point of the layer change, GND vias should be provided for the

return current paths. If the return path does not have GND vias, the

return currents look for the closest path, but these paths may not be close

enough. In this scenario, the current takes a longer path, increasing its

loop. Because of the number of flux lines going through the loop,

increasing the loop also increases the inductance. Although Figure16

only shows two vias, it is better to have more vias circling the signal vias.

Figure17 is a side view of the layer change view in Figure16. The signals

transmit from layer 1 to the layer 13. Each layer has via pads. Because

there is parallel plate capacitance between the pads, the unnecessary pads

add capacitive loading. Therefore, remove all of the pads except the ones

that directly connect the via to the transmission lines.

Altera Corporation 17

Guidelines for Designing High-Speed FPGA PCBs Discontinuity

Figure17.Side View of Layer Changes

In Figure18, a GND island is provided to give a good reference path for

the signal. GND vias (i.e., the light blue structures) are brought up to

avoid too much discontinuity.

The PCB in Figure18 does not have enough GND vias, so you should add

more around the signal vias, evenly distributed for the two signal lines.

In Figure18, only one side of the differential pair has a GND via close to

it.

Corporation

18 Altera

Discontinuity Guidelines for Designing High-Speed FPGA PCBs Figure18.Transmission Path to Point B

Not enough

ground vias

Point B

Figure19 shows a TDR plot that contains an example via from the

Stratix? GX development board, a 93-mils thick board. The via looks like

a capacitive discontinuity of 0.7 pF. The via connects two transmission

lines that are on layer 1 and layer 13 of an 18-layer board.

Altera Corporation 19

20

Altera Corporation Guidelines for Designing High-Speed FPGA PCBs Discontinuity Figure 19.Capacitive Discontinuity Due to a Via on a 93-mil Thick Board

Right-Angle Bends

To minimize impedance discontinuities on the transmission line, avoid

using right-angle bends. At the bend, the effective transmission line

width increases, which results in an impedance discontinuity, increasing

the capacitance.

Instead of 90° bends, use mitered 45° bends. Mitered 45° bends reduce

reflection on the signal by minimizing impedance discontinuities.

Right-angled bends also look like antennas. Figure 20 shows a 60-mils

transmission line immersed in FR4 dielectric (εr = 4.1, loss

tangent =0.022) with dimensions for 50-? impedance. The 90° and 45°

bend (see Figure 21) traces are simulated using SPICE models. The parasitics are extracted with a 3D field solver.Dip due to SMA

Dip due to via

今天终于弄懂了PCB高速电路板设计的方法和技巧

[讨论]今天终于弄懂了PCB高速电路板设计的方法和技巧受益匪浅啊 电容, 最大功率, 技巧 高速电路设计技术阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,并且得到最大功率输出的一种工作状态。高速PCB布线时,为了防止信号的反射,要求线路的阻抗为50Ω。这是个大约的数字,一般规定同轴电缆基带50Ω,频带75Ω,对绞线则为100Ω,只是取整数而已,为了匹配方便。根据具体的电路分析采用并行AC端接,使用电阻和电容网络作为端接阻抗,端接电阻R要小于等于传输线阻抗Z0,电容C必须大于100pF,推荐使用0.1UF的多层陶瓷电容。电容有阻低频、通高频的作用,因此电阻R不是驱动源的直流负载,故这种端接方式无任何直流功耗。 串扰是指当信号在传输线上传播时,因电磁耦合对相邻的传输线产生不期望的电压噪声干扰。耦合分为容性耦合和感性耦合,过大的串扰可能引起电路的误触发,导致系统无法正常工作。根据串扰的一些特性,可以归纳出几种减小串扰的方法: 1、加大线间距,减小平行长度,必要时采用jog 方式布线。 2、高速信号线在满足条件的情况下,加入端接匹配可以减小或消除反射,从而减小串扰。 3、对于微带传输线和带状传输线,将走线高度限制在高于地线平面范围要求以内,可以显著减小串扰。 4、在布线空间允许的条件下,在串扰较严重的两条线之间插入一条地线,可以起到隔离的作用,从而减小串扰。传统的PCB设计由于缺乏高速分析和仿真指导,信号的质量无法得到保证,而且大部分问题必须等到制版测试后才能发现。这大大降低了设计的效率,提高了成本,在激烈的市场竞争下显然是不利的。于是针对高速PCB设计,业界人士提出了一种新的设计思路,成为“自上而下”的设计方法,经过多方面的方针分析和优化,避免了绝大部分可能产生的问题,节省了大量的时间,确保满足工程预算,产生高质量的印制板,避免繁琐而高耗的测试检错等。利用差分线传输数字信号就是高速数字电路中控制破坏信号完整性因素的一项有效措施。在印制电路板(PCB抄板)上的差分线,等效于工作在准TEM模的差分的微波集成传输线对。其中,位于PCB顶层或底层的差分线等效于耦合微带线,位于多层PCB内层的差分线,等效于宽边耦合带状线。数字信号在差分线上传输时是奇模传输方式,即正负两路信号的相位差是180,而噪声以共模的方式在一对差分线上耦合出现,在接受器中正负两路的电压或电流相减,从而可以获得信号消除共模噪声。而差分线对的低压幅或电流驱动输出实现了高速集成低功耗的要求。

高速PCB设计指南

高速PCB设计指南 第一篇 PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理

既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个

高速PCB设计指南

高速PCB设计指南之一 第一篇PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和

高速PCB设计心得

一:前言 随着PCB系统的向着高密度和高速度的趋势不断的发展,电源的完整性问题,信号的完整性问题(SI),以及EMI,EMC的问题越来越突出,严重的影响了系统的性能甚至功能的实现。所谓高速并没有确切的定义,当然并不单单指时钟的速度,还包括数字系统上升沿及下降沿的跳变的速度,跳变的速度越快,上升和下降的时间越短,信号的高次谐波分量越丰富,当然就越容易引起SI,EMC,EMI的问题。本文根据以往的一些经验在以下几个方面对高速PCB的设计提出一些看法,希望对各位同事能有所帮助。 ●电源在系统设计中的重要性 ●不同传输线路的设计规则 ●电磁干扰的产生以及避免措施 二:电源的完整性 1.供电电压的压降问题。 随着芯片工艺的提高,芯片的内核电压及IO电压越来越小,但功耗还是很大,所以电流有上升的趋势。在内核及电压比较高,功耗不是很大的系统中,电压压降问题也许不是很突出,但如果内核电压比较小,功耗又比较大的情况下,电源路径上的哪怕是0.1V 的压降都是不允许的,比如说ADI公司的TS201内核电压只有 1.2V,内核供电电流要 2.68A,如果路径上有0.1欧姆的电阻,电 压将会有0.268V的压降,这么大的压降会使芯片工作不正常。如何尽量减小路径上的压降呢?主要通过以下几种方法。

a:尽量保证电源路径的畅通,减小路径上的阻抗,包括热焊盘的连接方式,应该尽量的保持电流的畅通,如下图1和图2的比较,很明显图2中选择的热焊盘要强于图1。 b:尽量增加大电流层的铜厚,最好能铺设两层同一网络的电源,以保证大电流能顺利的流过,避免产生过大的压降,关于电流大小和所流经铜厚的关系如表1所示。 (表1) 1 oz.铜即35微M厚, 2 oz.70微M, 类推 举例说,线宽0.025英寸,采用2 oz.盎斯的铜,而允许温升30度,

pcb设计指南

mp3的设计原理及制作 高速PCB设计指南之一 第一篇PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程 限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布 线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生 反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般 先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要 断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技 术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过 程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影 响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~ 0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm。对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个 地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用 一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑 它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人 PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们 之间互不相连,只是在PCB与外界连接的接口处(如插头等)。数字地与模拟地有一点短接,请注意,只有一个连接点。也有 在PCB上不共地的,这由系统设计来决定。 3 信号线布在电(地)层上 在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量, 成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是 保留地层的完整性。 4 大面积导体中连接腿的处理 在大面积的接地(电)中,常用元器件的腿与其连接,对连接腿的处理需要进行综合的考虑,就电气性能而言,元件腿的焊盘 与铜面满接为好,但对元件的焊接装配就存在一些不良隐患如:①焊接需要大功率加热器。②容易造成虚焊点。所以兼顾电气 性能与工艺需要,做成十字花焊盘,称之为热隔离(heat shield)俗称热焊盘(Thermal),这样,可使在焊接时因截面过分散 热而产生虚焊点的可能性大大减少。多层板的接电(地)层腿的处理相同。 5 布线中网络系统的作用 在许多CAD系统中,布线是依据网络系统决定的。网格过密,通路虽然有所增加,但步进太小,图场的数据量过大,这必然对 设备的存贮空间有更高的要求,同时也对象计算机类电子产品的运算速度有极大的影响。而有些通路是无效的,如被元件腿的 焊盘占用的或被安装孔、定们孔所占用的等。网格过疏,通路太少对布通率的影响极大。所以要有一个疏密合理的网格系统来 支持布线的进行。 标准元器件两腿之间的距离为0.1英寸(2.54mm),所以网格系统的基础一般就定为0.1英寸(2.54 mm)或小于0.1英寸的整倍数, 如:0.05英寸、0.025英寸、0.02英寸等。 6 设计规则检查(DRC) 布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的 需求,一般检查有如下几个方面: (1)、线与线,线与元件焊盘,线与贯通孔,元件焊盘与贯通孔,贯通孔与贯通孔之间的距离是否合理,是否满足生产要 求。 (2)、电源线和地线的宽度是否合适,电源与地线之间是否紧耦合(低的波阻抗)?在PCB中是否还有能让地线加宽的地 方。 (3)、对于关键的信号线是否采取了最佳措施,如长度最短,加保护线,输入线及输出线被明显地分开。 (4)、模拟电路和数字电路部分,是否有各自独立的地线。 (5)后加在PCB中的图形(如图标、注标)是否会造成信号短路。 (6)对一些不理想的线形进行修改。 (7)、在PCB上是否加有工艺线?阻焊是否符合生产工艺的要求,阻焊尺寸是否合适,字符标志是否压在器件焊盘上,以免影 响电装质量。 (8)、多层板中的电源地层的外框边缘是否缩小,如电源地层的铜箔露出板外容易造成短路。 Copyright by BroadTechs Electronics Co.,Ltd 2001-2002

ADI的高速PCB设计

The World Leader in High Performance Signal Processing Solutions A Practical Guide to High-Speed Printed Circuit Board Layout

Agenda Overview Schematic Location location location Location, location, location Power supply bypassing Parasitics Ground and power planes Packaging RF Signal routing and shielding Summary

Overview PCB layout is one of the last steps in the design process and often one of the most critical High-speed circuit performance is heavily dependant on High speed circuit performance is heavily dependant on layout A high-performance design can be rendered useless due to a poor or sloppy layout poor or sloppy layout Today’s presentation will help: p y p z Improve the layout process z Ensure expected circuit performance is achieved z Reduce design time L t z Lower cost z Lower stress for you and the PCB designer

高速PCB设计的基本知识及概念

高速PCB设计的基本知识及概念 1、“层(Layer)”的概念 与字处理或其它许多软件中为实现图、文、色彩等的嵌套与合成而引入的“层”的概念有所同,Protel的“层”不是虚拟的,而是印刷板材料本身实实在在的各铜箔层。现今,由于电子线路的元件密集安装。防干扰和布线等特殊要求,一些较新的电子产品中所用的印刷板不仅有上下两面供走线,在板的中间还设有能被特殊加工的夹层铜箔,例如,现在的计算机主板所用的印板材料多在4层以上。这些层因加工相对较难而大多用于设置走线较为简单的电源布线层(如软件中的Ground Dever和Power Dever),并常用大面积填充的办法来布线(如软件中的ExternaI P1a11e和Fill)。上下位置的表面层与中间各层需要连通的地方用软件中提到的所谓“过孔(Via)”来沟通。有了以上解释,就不难理解“多层焊盘”和“布线层设置”的有关概念了。举个简单的例子,不少人布线完成,到打印出来时方才发现很多连线的终端都没有焊盘,其实这是自己添加器件库时忽略了“层”的概念,没把自己绘制封装的焊盘特性定义为”多层(Mulii一Layer)的缘故。要提醒的是,一旦选定了所用印板的层数,务必关闭那些未被使用的层,免得惹事生非走弯路。 2、过孔(Via) 为连通各层之间的线路,在各层需要连通的导线的文汇处钻上一个公共孔,这就是过孔。工艺上在过孔的孔壁圆柱面上用化学沉积的方法镀上一层金属,用以连通中间各层需要连通的铜箔,而过孔的上下两面做成普通的焊盘形状,可直接与上下两面的线路相通,也可不连。一般而言,设计线路时对过孔的处理有以下原则: (1)尽量少用过孔,一旦选用了过孔,务必处理好它与周边各实体的间隙,特别是容易被忽视的中间各层与过孔不相连的线与过孔的间隙,如果是自动布线,可在“过孔数量最小化”(Via Minimiz8tion)子菜单里选择“on”项来自动解决。 (2)需要的载流量越大,所需的过孔尺寸越大,如电源层和地层与其它层联接所用的过孔就要大一些。 3、焊盘(Pad)

高速pcb设计指南之五

高速PCB设计指南之五 第一篇DSP系统的降噪技术 随着高速DSP(数字信号处理器)和外设的出现,新产品设计人员面临着电磁干扰(EMI)日益严重的威胁。早期,把发射和干扰问题称之为EMI或RFI(射频干扰)。现在用更确定的词“干扰兼容性”替代。电磁兼容性(EMC)包含系统的发射和敏感度两方面的问题。假若干扰不能完全消除,但也要使干扰减少到最小。如果一个DSP系统符合下面三个条件,则该系统是电磁兼容的。 1.对其它系统不产生干扰。 2.对其它系统的发射不敏感。 3.对系统本身不产生干扰。 干扰定义 当干扰的能量使接收器处在不希望的状态时引起干扰。干扰的产生不是直接的(通过导体、公共阻抗耦合等)就是间接的(通过串扰或辐射耦合)。电磁干扰的产生是通过导体和通过辐射。很多电磁发射源,如光照、继电器、DC电机和日光灯都可引起干扰。AC电源线、互连电缆、金属电缆和子系统的内部电路也都可能产生辐射或接收到不希望的信号。在高速数字电路中,时钟电路通常是宽带噪声的最大产生源。在快速DSP中,这些电路可产生高达300MHz的谐波失真,在系统中应该把它们去掉。在数字电路中,最容易受影响的是复位线、中断线和控制线。 传导性EMI 一种最明显而往往被忽略的能引起电路中噪声的路径是经过导体。一条穿过噪声环境的导线可检拾噪声并把噪声送到另外电路引起干扰。设计人员必须避免导线捡拾噪声和在噪声产生引起干扰前,用去耦办法除去噪声。最普通的例子是噪声通过电源线进入电路。若电源本身或连接到电源的其它电路是干扰源,则在电源线进入电路之前必须对其去耦。 共阻抗耦合 当来自两个不同电路的电流流经一个公共阻抗时就会产生共阻抗耦合。阻抗上的压降由两个电路决定。来自两个电路的地电流流经共地阻抗。电路1的地电位被地电流2调制。噪声信号或DC补偿经共地阻抗从电路2耦合到电路1。 辐射耦合 经辐射的耦合通称串扰,串扰发生在电流流经导体时产生电磁场,而电磁场在邻近的导体中感应瞬态电流。 辐射发射 辐射发射有两种基本类型:差分模式(DM)和共模(CM)。共模辐射或单极天线辐射

PCB设计工程师最基本的技巧

PCB设计工程师最基本的技巧 布线(Layout)是PCB设计工程师最基本的工作技能之一。走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过Layout得以实现并验证,由此可见,布线在高速PCB设计中是至关重要的。下面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化的走线策略。主要从直角走线,差分走线,蛇形线等三个方面来阐述。 1.直角走线 直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。 直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI。 传输线的直角带来的寄生电容可以由下面这个经验公式来计算: C=61W(Er)1/2/Z0 在上式中,C就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr指介质的介电常数,Z0就是传输线的特征阻抗。举个例子,对于一个4Mils的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量: T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps 通过计算可以看出,直角走线带来的电容效应是极其微小的。 由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算反射系数:ρ=(Zs-Z0)/(Zs+Z0),一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为0.1左右。而且,从下图可以看到,在W/2线长的时间内传输线阻抗变化到最小,再经过W/2时间又恢复到正常的阻抗,整个发生阻抗变化的时间极短,往往在10ps之内,这样快而且微小的变化对一般的信号传输来说几乎是可以忽略的。 很多人对直角走线都有这样的理解,认为尖端容易发射或接收电磁波,产生EMI,这也成为许多人认为不能直角走线的理由之一。然而很多实际测试的结果显示,直角走线并不会比直线产生很明显的EMI。也许目前的仪器性能,测试水平制约了测试的精确性,但至少说明了一个问题,直角走线的辐射已经小于仪器本身的测量误差。 总的说来,直角走线并不是想象中的那么可怕。至少在GHz以下的应用中,其产生的任何诸如电容,反射,EMI等效应在TDR测试中几乎体现不出来,高速PCB设计工程师的重点还是应该放在布局,电源/地设计,走线设计,过孔等其他方面。当然,尽管直角走线带来的影响不是很严重,但并不是说我们以后都可以走直角线,注意细节是每个优秀工程师必备的基本素质,而且,随着数字电路的飞速发展,PCB工

高速ADC供电指南.

高速ADC供电指南 高速ADC供电指南 类别:模拟技术 简介为使高速模数转换器发挥最高性能,必须为其提供干净的直流电源。高噪声电源会导致信噪比(SNR)下降和/或ADC输出中出现不良的杂散成分。本文将介绍有关ADC电源域和灵敏度的背景知识,并讨论为高速ADC供电的基本原则。模拟电源和数字电源当今的大部分高速模数转换器至少都有两个电源域:模拟电源(AVDD)和数字与输出驱动器电源(DRVDD)。一些转换器还有一个附加模拟电源,通常应作为本文所讨论的额外AVDD电源来处理。转换器的模拟电源和数字电源是分离的,以防数字开关噪声(特别是输出驱动器产生的噪声)件模拟端的模拟采样和处理。根据采样信号的不同,此数字输出开关噪声可能包含显着的频率成分,如果此噪声返回器件的模拟或时钟输入端,或者通过电源返回芯片的模拟端,则噪声和杂散性能会很容易受其影响而降低。对于大多数高速模数转换器,建议将两个独立的电源分别用于AVDD和DRVDD。这两个电源之间应有充分的隔离,防止DRVDD电源的任何数字开关噪声到达转换器的AVDD电源。AVDD和DRVDD电源常常采用各自的调节器,然而,如果在这两个电源之间实现了充分的滤波,则采用一个调节器通常也能获得足够好的性能。ADC电源灵敏度 - PSRR 确定高速ADC对电源噪声的灵敏度的一个方法是将一个已知频率施加于转换器的电源轨,并测量转换器输出频谱中出现的信号音,从而考察其电源抑制性能。输入信号与输出频谱中出现的信号的相对功率即为转换器在给定频率下的电源抑制比(PSRR)。下图显示了典型高速ADC的PSRR与频率的关系。此图中数据的测量条件是将器件安装于配有旁路电容的估板上,这种方法能够显示典型应用中器件如何响应电源噪声。注意在这种情况下,转换器的PSRR在低频时相对高得多,当频率高于约10MHz时会显着下降。图1.典型ADC电源抑制比与频率的关系利用此PSRR信息,设计人员可以确定为了防止噪声损害转换器的性能,电源所容许的纹波水平。例如,如果一个电源在500kHz时具有5mVp-p的纹波,则从下面的PSRR图可知,转换器在此频率提供大约58dB的抑制。转换器的满量程为 2Vp-p,因此原始5mV信号比输入满量程低52dB。此信号将进一步衰减58dB,从而比转换器的满量程功率低110dB。这样,设计人员就能使用转换器的PSRR 数据来确定在给定频率下转换器电源的容许纹波。如果转换器的电源在已知频率具有纹波,例如来自上游开关转换器,则可以利用该方法确定将此噪声衰减至容许水平所需的额外滤波。上述分析假设给定电源上仅出现一个频率。事实上,根据电源获得方式的不同以及该电源供电对象的不同,电源上的噪声可能具有额外频率成分。如果是这种情况,设计人员必须确保为电源提供充分的滤波来衰减此噪声。请注意,由于ADC输入的宽带特性,在其它奈奎斯特频率区中,处在ADC输入的目标频带之外的噪声可能会进入目标频带。关于线性调节器的讨论传统上使用线性调节器来为转换器的AVDD和DRVDD轨提供干净的电源。低压差线性调节器能够出色地抑制约1MHz以下的低频噪声。

高速pcb设计指南之六

高速p c b设计指南之六 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

高速PCB设计指南之六 第一篇混合信号电路板的设计准则 模拟电路的工作依赖连续变化的电流和电压。数字电路的工作依赖在接收端根据预先定义的电压电平或门限对高电平或低电平的检测,它相当于判断逻辑状态的“真”或“假”。在数字电路的高电平和低电平之间,存在“灰色”区域,在此区域数字电路有时表现出模拟效应,例如当从低电平向高电平(状态)跳变时,如果数字信号跳变的速度足够快,则将产生过冲和回铃反射现象。 对于现代板极设计来说,混合信号PCB的概念比较模糊,这是因为即使在纯粹的“数字”器件中,仍然存在模拟电路和模拟效应。因此,在设计初期,为了可靠实现严格的时序分配,必须对模拟效应进行仿真。实际上,除了通信产品必须具备无故障持续工作数年的可靠性之外,大量生产的低成本/高性能消费类产品中特别需要对模拟效应进行仿真。 现代混合信号PCB设计的另一个难点是不同数字逻辑的器件越来越多,比如GTL、LVTTL、LVCMOS及LVDS逻辑,每种逻辑电路的逻辑门限和电压摆幅都不同,但是,这些不同逻辑门限和电压摆幅的电路必须共同设计在一块PCB上。在此,通过

透彻分析高密度、高性能、混合信号PCB的布局和布线设计,你可以掌握成功策略和技术。 一、混合信号电路布线基础 当数字和模拟电路在同一块板卡上共享相同的元件时,电路的布局及布线必须讲究方法。图1所示的矩阵对混合信号PCB的设计规划有帮助。只有揭示数字和模拟电路的特性,才能在实际布局和布线中达到要求的PCB设计目标。 图1:模拟和数字电路:混合信号设计的两个方面 在混合信号PCB设计中,对电源走线有特别的要求并且要求模拟噪声和数字电路噪声相互隔离以避免噪声耦合,这样一来布局和布线的复杂性就增加了。对电源传输线的特殊需求以及隔离模拟和数字电路之间噪声耦合的要求,使混合信号PCB 的布局和布线的复杂性进一步增加。 如果将A/D转换器中模拟放大器的电源和A/D转换器的数字电源接在一起,则很有可能造成模拟部分和数字部分电路的相互影响。或许,由于输入/输出连接器位置的缘故,布局方案必须把数字和模拟电路的布线混合在一起。 在布局和布线之前,工程师要弄清楚布局和布线方案的基本弱点。即使存在虚假判断,大部分工程师倾向利用布局和布线信息来识别潜在的电气影响。

PCBDesignGuideline(PCB设计指南)

江苏天宝汽车电子有限公司 Jiangsu Toppower Automotive Electronics Co., Ltd. 编号No :TP-PD-DES-GD-05 版本Version:A Page 1 of 26 编制 Prepared by: 批准 Approved by: 修订记录 Rev. Record : Rev Level 版本号 Revision Date 编制日期 Description of Changes 修订内容 A 3-Nov-2009 首 次 发 布 First Issue

江苏天宝汽车电子有限公司 Jiangsu Toppower 编号No:TP-PD-DES-GD-05版本Version:A Page 2 of 26 Automotive Electronics Co., Ltd. 目录: 1. 目的: (3) 2. 原理图设计文件的导入 (3) 2.1 起始文件设置 (3) 2.2与原理图同步或导入网络表 (3) 3. PCB文件的配置和PCB分层 (3) 3.1 原起始文件不符合的地方进行调整 (3) 3.2不同层数的PCB各层的网络分布 (4) 4.PCB板的整体布局 (4) 4.1结构图的导入 (4) 4.2结构上要求定位元件及各类敏感元件 (4) 5. PCB设计中与EMC相关的设计 (5) 5.1 PCB的EMC设计方法 (5) 5.2 PCB板分割的EMC优化法 (5) 5.3 大电流网络布线 (5) 5.4电源和地的处理 (5) 5.5 敏感元件的分布和走线 (6) 5.5高速和敏感电路布线 (6) 6. PCB中各模块的布局和布线 (6) 6.1各模块以其主元件为中心的布局和封装核对 (6) 6.2各网络走线的布局 (6) 7. PCB的优化设计(提高设计质量的基本布线原则) (8) 7.1提高PCB的整体美观感 (8) 7.2提高PCB的性能指标 (8) 8. 地线的设计: (12) 8.1 接地方法: (12) 8.2 对地线设计的注意要点: (14) 9. 生产和测试的相关要求 (14) 9.1 对插件元件放置要求: (14) 9.2 对贴片元件放置要求: (16) 9.3 贴片焊盘设计要求 (18) 9.4 PCB尺寸要求如下图所示: (19) 9.5 关于MARK 点设计: (20) 9.6 元器件放置要求及各设计细节: (20) 10. 完成之后的PCB检查和评审 (21) 10.1 PCB的DRC检查 (21) 10.2 PCB评审项目 (21)

高速PCB设计新手 入门及进阶教程(上)

https://www.360docs.net/doc/fe18502124.html, 高速PCB设计新手入门及进阶教程(上) 高速PCB设计指南之一----PCB布局,布线,高速设计 第一篇PCB布线 在PCB设计中,布线是完成产品设计的重要步骤,可以说前面的准备工作都是为它而做的,在整个PCB中,以布线的设计过程限定最高,技巧最细、工作量最大。PCB布线有单面布线、双面布线及多层布线。布线的方式也有两种:自动布线及交互式布线,在自动布线之前,可以用交互式预先对要求比较严格的线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰。必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合。 自动布线的布通率,依赖于良好的布局,布线规则可以预先设定,包括走线的弯曲次数、导通孔的数目、步进的数目等。一般先进行探索式布经线,快速地把短线连通,然后进行迷宫式布线,先把要布的连线进行全局的布线路径优化,它可以根据需要断开已布的线。并试着重新再布线,以改进总体效果。 对目前高密度的PCB设计已感觉到贯通孔不太适应了,它浪费了许多宝贵的布线通道,为解决这一矛盾,出现了盲孔和埋孔技术,它不仅完成了导通孔的作用,还省出许多布线通道使布线过程完成得更加方便,更加流畅,更为完善,PCB 板的设计过程是一个复杂而又简单的过程,要想很好地掌握它,还需广大电子工程设计人员去自已体会,才能得到其中的真谛。 1 电源、地线的处理 既使在整个PCB板中的布线完成得都很好,但由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,有时甚至影响到产品的成功率。所以对电、地线的布线要认真对待,把电、地线所产生的噪音干扰降到最低限度,以保证产品的质量。 对每个从事电子产品设计的工程人员来说都明白地线与电源线之间噪音所产生的原因,现只对降低式抑制噪音作以表述: (1)、众所周知的是在电源、地线之间加上去耦电容。 (2)、尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:0.2~0.3mm,最经细宽度可达0.05~0.07mm,电源线为1.2~2.5 mm 对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路的地不能这样使用) (3)、用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源,地线各占用一层。 2 数字电路与模拟电路的共地处理 现在有许多PCB不再是单一功能电路(数字或模拟电路),而是由数字电路和模拟电路混合构成的。因此在布线时就需要考虑它们之间互相干扰问题,特别是地线上的噪音干扰。 数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整人PCB对外界只有一个结点,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,

高速PCB设计的基本常识(全面)

高速PCB设计的基本常识 (一)、电子系统设计所面临的挑战 随着系统设计复杂性和集成度的大规模提高,电子系统设计师们正在从事100MHZ以上的电路设计,总线的工作频率也已经达到或者超过50MHZ,有的甚至超过100MHZ。目前约50% 的设计的时钟频率超过50MHz,将近2020的设计主频超过12020z。 当系统工作在50MHz时,将产生传输线效应和信号的完整性问题;而当系统时钟达到12020z时,除非使用高速电路设计知识,否则基于传统方法设计的PCB将无法工作。因此,高速电路设计技术已经成为电子系统设计师必须采取的设计手段。只有通过使用高速电路设计师的设计技术,才能实现设计过程的可控性。 (二)、什么是高速电路 通常认为如果数字逻辑电路的频率达到或者超过45MHZ~ 50MHZ,而且工作在这个频率之上的电路已经占到了整个电子系统一定的份量(比如说1/3),就称为高速电路。 实际上,信号边沿的谐波频率比信号本身的频率高,是信号快速变化的上升沿与下降沿(或称信号的跳变)引发了信号传输的非预期结果。因此,通常约定如果线传播延时大于1/2数字信号驱动端的上升时间,则认为此类信号是高速信号并产生传输线效应。

信号的传递发生在信号状态改变的瞬间,如上升或下降时间。信号从驱动端到接收端经过一段固定的时间,如果传输时间小于 1/2的上升或下降时间,那么来自接收端的反射信号将在信号改变状态之前到达驱动端。反之,反射信号将在信号改变状态之后到达驱动端。如果反射信号很强,叠加的波形就有可能会改变逻辑状态。 (三)、高速信号的确定 上面我们定义了传输线效应发生的前提条件,但是如何得知线延时是否大于1/2驱动端的信号上升时间?一般地,信号上升时间的典型值可通过器件手册给出,而信号的传播时间在PCB设计中由实际布线长度决定。下图为信号上升时间和允许的布线长度(延时)的对应关系。PCB 板上每单位英寸的延时为 0.167ns.。但是,如果过孔多,器件管脚多,网线上设置的约束多,延时将增大。通常高速逻辑器件的信号上升时间大约为0.2ns。如果板上有GaAs芯片,则最大布线长度为7.62mm。 设Tr 为信号上升时间, Tpd 为信号线传播延时。如果Tr≥4Tpd,信号落在安全区域。如果2Tpd≥Tr≥4Tpd,信号落在不确定区域。如果Tr≤2Tpd,信号落在问题区域。对于落在不确定区域及问题区域的信号,应该使用高速布线方法。 (四)、什么是传输线

PCI-E的高速PCB布线规则

PCI-E 布线规则 1、从金手指边缘到PCIE芯片管脚的走线长度应限制在4英寸(约100MM)以内。 2、PCIE的PERP/N,PETP/N,PECKP/N是三个差分对线,注意保护(差分对之间的距离、差分对和所有非PCIE信号的距离是20MIL,以减少有害串扰的影响和电磁干扰(EMI)的影响。芯片及PCIE信号线反面避免高频信号线,最好全GND)。 3、差分对中2条走线的长度差最多5MIL。2条走线的每一部分都要求长度匹配。差分线的线宽7MIL,差分对中2条走线的间距是7MIL。 4、当PCIE信号对走线换层时,应在靠近信号对过孔处放置地信号过孔,每对信号建议置1到3个地信号过孔。PCIE差分对采用25/14的过孔,并且两个过孔必须放置的相互对称。 5、PCIE需要在发射端和接收端之间交流耦合,差分对的两个交流耦合电容必须有相同的封装尺寸,位置要对称且要摆放在靠近金手指这边,电容值推荐为0.1uF,不允许使用直插封装。 6、SCL等信号线不能穿越PCIE主芯片。 合理的走线设计可以信号的兼容性,减小信号的反射和电磁损耗。PCI-E 总线的信号线采用高速串行差分通信信号,因此,注重高速差分信号对的走线设计要求和规范,确保PCI-E 总线能进行正常通信。 PCI-E是一种双单工连接的点对点串行差分低电压互联。每个通道有两对差分信号:传输对Txp/Txn,接收对Rxp/Rxn。该信号工作在2.5 GHz并带有嵌入式时钟。嵌入式时钟通过消除不同差分对的长度匹配简化了布线规则。 随着PCI-E串行总线传输速率的不断增加,降低互连损耗和抖动预算的设计变得格外重要。在整个PCI-E背板的设计中,走线的难度主要存在于PCI-E的这些差分对。图1提供了PCI-E高速串行信号差分对走线中主要的规范,其中A、B、C和D四个方框中表示的是常见的四种PCI-E差分对的四种扇入扇出方式,其中以图中A所示的对称管脚方式扇入扇出效果最好,D为较好方式,B和C为可行方式。接下来本文将对PCI-E LVDS信号走线时的注意事项进行总结:

高速PCB设计指南之三:信号隔离技术

高速PCB设计指南之三:信号隔离技术 信号隔离使数字或模拟信号在发送时不存在穿越发送和接收端之间屏障的电流连接。这允许发送和接收端外的地或基准电平之差值可以高达几千伏,并且防止了可能损害信号的不同地电位之间的环路电流。信号地的噪声可使信号受损。隔离可将信号分离到一个干净的信号子系统地。在另一种应用中,基准电平之间的电连接可产生一个对于操作人员或病人不安全的电流通路。信号的性质可以为电路设计人员指明系统可考虑的那些正确的IC。 第一类隔离器件依赖于无发送器和接收器来跨越隔离屏障。这种器件曾用于数字信号,但线性化问题迫使模拟信号隔离采用变压器,用调制载波使模拟信号跨越这个屏障。变压器怎么说总是难弄的,而且通常不可能制成IC,所以想出了用电容器电路来耦合调制信号以跨越屏障。作用在隔离屏障上的高转换率瞬态电压可做为单电容屏障器件的信号,所以已开发出双电容差分电路以使误差最小。现在电容屏障技术已应用在数字和模拟隔离器件中。 1、隔离串行数据流 隔离数字信号有很大选择范围。假若数据流是位串行的,则选择方案范围从简单光耦合器到隔离收发器IC。主要设计考虑包括: ?所需的数据速率 ?系统隔离端的电源要求 ?数据通道是否必须为双向 基于LED的光耦合器是用于隔离设计问题的第一种技术。现在有几件基于LED IC可用,其数据速率为10Mbps及以上。一个重要的设计考虑是LED光输出随时间减小。所以在早期必须为LED提供过量电流,以使随时间推移仍能提供足够的输出光强。因为在隔离端可能提供电很有限,所以需要提供过量电流是一个严重的问题。因为LED需要的驱动电流可以大于从简单逻辑输出级可获得的电流,所以往往需要特殊的驱动电路。 对于高速应用和在逻辑信号控制下使数据流反向转送的情况,可用Burr-Brown公司的ISO 150数字耦合器。图1示出ISO150的双向应用电路。通道1控制通道2的传送方向,并配置为从A端传送到B端。加到DIA引脚的信号确定信号的流向。送到B端的高电平把通道2的那一端置为接收模式。而加到通道2A端Mode引脚的低电平则把通道置成发送模式。方向

PCB系统设计指南

高速PCB设计指南之八 第一篇掌握IC封装的特性以达到最佳EMI抑制性能 将去耦电容直接放在IC封装内可以有效控制EMI并提高信号的完整性,本文从IC内部封装入手,分析EMI的来源、IC封装在EMI控制中的作用,进而提出11个有效控制EMI的设计规则,包括封装选择、引脚结构考虑、输出驱动器以及去耦电容的设计方法等,有助于设计工程师在新的设计中选择最合适的集成电路芯片,以达到最佳EMI抑制的性能。现有的系统级EMI控制技术包括: (1)电路封闭在一个Faraday盒中(注意包含电路的机械封装应该密封)来实现EMI 屏蔽; (2)电路板或者系统的I/O端口上采取滤波和衰减技术来实现EMI控制; (3)现电路的电场和磁场的严格屏蔽,或者在电路板上采取适当的设计技术严格控制PCB走线和电路板层(自屏蔽)的电容和电感,从而改善EMI性能。 EMI控制通常需要结合运用上述的各项技术。一般来说,越接近EMI源,实现EMI控制所需的成本就越小。PCB上的集成电路芯片是EMI最主要的能量来源,因此如果能够深入了解集成电路芯片的内部特征,可以简化PCB和系统级设计中的EMI控制。 PCB板级和系统级的设计工程师通常认为,它们能够接触到的EMI来源就是PCB。显然,在PCB设计层面,确实可以做很多的工作来改善EMI。然而在考虑EMI控制时,设计工程师首先应该考虑IC芯片的选择。集成电路的某些特征如封装类型、偏置电压和芯片的工艺技术(例如CMOS、ECL、TTL)等都对电磁干扰有很大的影响。本文将着重讨论这些问题,并且探讨IC对EMI控制的影响。 1、EMI的来源?数字集成电路从逻辑高到逻辑低之间转换或者从逻辑低到逻辑高之间转换过程中,输出端产生的方波信号频率并不是导致EMI的唯一频率成分。该方波中包含频率范围宽广的正弦谐波分量,这些正弦谐波分量构成工程师所关心的EMI频率成分。最高EMI频率也称为EMI发射带宽,它是信号上升时间而不是信号频率的函数。计算EMI发射带宽的公式为: F=0.35/Tr 其中:F是频率,单位是GHz;Tr是单位为ns(纳秒)的信号上升时间或者下降时间。 从上述公式中不难看出,如果电路的开关频率为50MHz,而采用的集成电路芯片的上升时间是1ns,那么该电路的最高EMI发射频率将达到350MHz,远远大于该电路的开关频率。而如果IC的上升时间为500ps,那么该电路的最高EMI发射频率将高达700MHz。众所周知,电路中的每一个电压值都对应一定的电流,同样每一个电流都存在对应的电压。当IC的输出在逻辑高到逻辑低或者逻辑低到逻辑高之间变换时,这些信号电压和信号电流就会产生电场和磁场,而这些电场和磁场的最高频率就是发射带宽。电场和磁场的强度以及对外辐射的百分比,不仅是信号上升时间的函数,同时也取决于对信号源到负载点之间信号通道上电容和电感的控制的好坏,在此,信号源位于PCB板的IC内部,而负载位于其它的IC内部,这些IC可能在PCB上,也可能不在该PCB上。为了有效地控制EMI,不仅需要关注IC 芯片自身的电容和电感,同样需要重视PCB上存在的电容和电感。?当信号电压与信号回路之间的耦合不紧密时,电路的电容就会减小,因而对电场的抑制作用就会减弱,从而使EM

相关文档
最新文档