浅谈船用雷达的检查

浅谈船用雷达的检查
浅谈船用雷达的检查

随着世界经济的飞速发展,船舶大型化和现代化的趋势成为必然。因生活水平的提高,加速人们对新事物的追求欲和现代化仪器的欲望,船舶离岸越来越远,特别是大型船舶船长,根本不希望在“有人烟”的海域开船,使船员的思想更放松,认为船舶驾驶是最容易的事,自动化导航仪器、宽阔的海域、“荒无人烟”的海面。久而久之,山头在雷达上的回波认为是“天上的积雨云”,小渔船变成回波干扰,大船变成假回波,进港的航道用GPS来导航,雷达的使用成了“老土”仪器。以至于海上碰撞、触礁、搁浅事故的发生成了不可避免。作为PSC检查官,如何检查雷达状况,考核船员雷达实操,细查、维护、保养、清洁成了迫在眉捷的事。船用雷达已有50多年的历史,早已成为船舶主要的助航设备,常被称为“船长的眼睛”。船用雷达可用于船舶避碰、定位和导航,尤以避碰应用为重。然而船用雷达在避碰中的应用尚不尽人意,在避碰应用历史上甚至有过装了雷达不但没有减少船舶碰撞,反而增加碰撞事故的统计记录。

1、法律依据

1974SOLAS公约88修正案第Ⅴ章第12条(船上装设的航行设备)规定:

.1 1984年9月1日或以后建造的500总吨及以上的船舶,以及1984年9月1日以前建造的1,600总吨及以上的船舶,应装设1台雷达装置。自1995年2月1日起雷达装置应能在9GHz频带上工作。此外,1995年2月1日以后从事国际航行的所有客船和300总吨及以上的货船,应装设能在9GHz频带上工作的雷达装置。对小于500总吨的客船和300总吨及以上但小于500总吨的货船,如果所安装的雷达装置和搜救县雷达应答器完全兼容,则可以由主管机关决定免除本条(3)的要求。

.2 10000总吨及以上的船舶,应装设2台能各自独立工作的雷达装置。自1995年2月1日起,其中至少有1台雷达装置能在9GHz频带上工作。

.3 按本条规定装设的所有设备,应为主管机关所认可的型号。在1984年9月1日或以后安装在船上的设备,应符合不低于本组织通过的相应的性能标准,即《关于雷达设备性能标准的建议案》,经海安会MSC.64(67)决议案4附件修正的A.477(Ⅻ)决议(船用雷达设备推荐性能标准),以及A.222(Ⅻ)和A.278(Ⅷ)决议,及A.614(15)决议《关于工作在9300-9500MHz频带上雷达配备》。对于有关的性能标准通过以前安装的设备,主管机关在充分考虑了本组织可能通过的与有关标准相关的衡准后,可能免除完全符合这些标准的要求。

2、船用雷达工作原理

2.1 测距原理

因为超高频无线电波在空间传播时具有等速、直线传播的特性,并且遇到物标有良好的反射现象,如果记录雷达脉冲波离开天线的时间和无线电脉冲遇到物标反射回到天线的时间,则物标离天线的距离为电磁波在空间的传播速度乘于霎时间差的二分之一。

在实际雷达中,用发射机产生超高频无线电脉冲波,用天线向外发射和接收无线电脉冲波,用显示器进行计算,显示物标的距离,并用触发电路产生的触发脉冲使它们同步工作。

2.2 测方位原理

因为超高频无线波在空间的传播是直线的,所以,只要把无线做成定向天线,即只向一个方向发射,也只接收这一个方向目标的回波,那么,天线所指的方向就是物标的方向。如果天线旋转,

依次向四周发射与接收,当在某个方向收到物标回波时,只需记下此时天线方向就可知道物标的方向。

在实际雷达中,用方位扫描系统把天线的瞬时位置随时准确地送给显示器,使荧光屏上的扫描线和无线同步旋转,于是物标回波也就按它的实际方位显示在荧光屏上了。

3、船用雷达检查

船用雷达型号各异,但其工作原理基本相似,现就如何对其进行检查作一些探讨。

3.1初步检查

初步检查是检查船舶安全设备证书上记载的船用雷达的型号、数量是否与实际配备相符;ISM操作手册上是否有该型号的操作程序;雷达的操作手册;使用记录(雷达日记);保养记录;驾驶台是否有粘贴操作步骤及注意事项;设备的外观情况;雷达天线是否有异常情况以及雷达的盲区图标示是否张贴。如果这些检查均满意,则可初步判定该轮雷达系统处于正常状态,否则,船用雷达很可能处于不正常状态,应进一步的检查。

3.2 操作性检查

让驾驶人员按操作程序启动电源,听听电源声音,开启“准备”状态,三分钟后是否进行可用状态(设备从冷态接通后,应能在4min内正常工作),从开启到能用不能大于四分钟,开启后观察雷达天线的转动情况。

询问船员是否掌握船用雷达的操作程序,让船员口述或实际操作雷达,视其口述或实际操作是否正确、熟练,同时借助附近固定或移动目标,根据天气及海况,要求驾驶人员对雷达进行调节,对物标进行探测、跟踪和测量,来判断雷达的功况是否正常,操作人员是否合格。抽查驾驶员作雷达标绘图。

3.3 雷达维护保养检查

查看雷达的维护保养计划和记录,看看其是否定期对雷达进行维护保养:

3.3.1 天线及波导的维护

3.3.1.1 隙缝天线辐射面罩(或抛物面及辐射窗口)上的油灰至少每半年清除一次,不准加涂油漆。

3.3.1.2 波导法兰(扼流关节)和波导支架紧固情况至少每半年检查一次。检查波导是否开裂(若开裂,立即更换),检查波导法兰处的密封情况和波导、电缆穿过甲板的水密情况等。

3.3.1.3 天线基座(减速齿轮箱)每半年油漆一次,并对固定螺栓的锈蚀情况作仔细检查,以免因锈蚀降低其强度,摔坏无线部件。

3.3.1.4 每年按说明书规定对基座内各齿轮涂一次油脂或更新天线齿轮箱润滑油,并紧固基座内部的螺栓(当直流驱动要电刷磨损时需及时修整或更换)。

3.3.1.5 在天线基座内发现水迹时,必须及时采取措施消除,并通知专业修理人员找出原因,予以解决。当接收机及显示器工作正常而回波明显减弱时,应检查波导内有无积水现象。

3.3.1.6 对安装在露天的波导和电缆,应仔细检查其是否紧固牢靠及有无损坏情况,并经常涂漆。

3.3.2 收发机的维护

3.3.2.1 每三个月检查一次各种电缆接头和连接器是否牢固可靠。

3.3.2.2 至少每三个月检查一次雷达测试电表各项指示是否在正常范围内。每次测试应在雷达工作半小时后进行。

3.3.2.3 每半年用软毛刷清除一次收发机的灰尘 (就应在断电的情况下进行) 。

3.3.2.4 当更换磁控管后,应“预热”半小时以上再加高压(“老练”)。

3.3.2.5 当更换磁控管、调制管、速调管等主要器件后,就按技术说明书要求对收发机进行重新调试,并将器件的更换日期、更换人员及各测试数据重新记入雷达使用记录本(雷达日记)。

3.3.3 显示器的维护

3.3.3.1 每半年用软毛刷清除一次显示器的灰尘。

3.3.3.2 应定期轻轻用软布蘸酒精或清水擦抹安全玻璃罩和标绘玻璃罩

3.3.3.3 应小心地按照雷达说明书的规定打开显示器面罩,用蘸有酒精或清水的软布轻轻擦抹方位尺表面。

3.3.3.4 检查各连接电缆和插头是否牢固可靠和接触良好。

3.3.3.5 对旋转式扫描线圈的显示器应定期按说明书规定对转动部分加油,并用无水酒精除去集流环上的尘污等。

3.3.3.6 当发现显像管高压帽的周围打火时,应在对地充分放电后,再用蘸有无水酒精的软布清除高压帽周围的尘污。

3.3.4 中频变流机组的维护

3.3.

4.1 按照说明书规定的要求对中频变流机组的轴系加注润滑油。

3.3.

4.2 当中频变流机组的电刷磨损严重时,应及时换新,并用蘸有无水酒精等清洁剂的湿布清除电刷上的尘污。

3.3.

4.3 每半年应检查一次中频变流机组的各种电缆连接是否牢固可靠。

3.3.5 中频逆变器的维护

3.3.5.1 每三个月应检查一次各种电缆接头是否牢固可靠。

3.3.5.2 定期用软毛刷去除逆变器内的尘灰。

3.4 雷达日记记录检查

3.4.1 安装年、月、日,承装单位及负责人名单。

3.4.2 安装完好后所测得的船首线误差、测距误差、测方位误差、阴影扇形区、最大作用距离表、最小作用距离等性能情况。船舶进坞或进厂大、中修后,应重新确认上述数据。

3.4.3 天线高度

3.4.4 每次使用雷达的实际工作时间。

3.4.5 记录磁控管电流、晶体电流、收发开关管预游离电流及测试表指示的其他技术数据。

3.4.6 雷达故障发生的时间,故障现象,实际修理情况,承修单位及修理人员等。

3.4.7 各交接班驾驶员将雷达现状和性能的情况核对后的记录。

3.5 雷达整机工作状态判断

3.5.1 应能在规定时间从(不大于4min)将雷达从冷态开到工作(发射)状态。

3.5.2 开机后各部位均无打火、冒烟、出现异味及异常声响,转动部分声音和谐,无碰擦等噪音。天线应以符合要求的转速顺时针匀速转动(从空中向下看一般15-30r/min)

3.5.3 各量程、不同脉冲宽度的回波图像应都符合要求(在≤2海里的量程上,设备应能分别显示位于所用量程50-100%之间两个方位相同、相隔距离≤50m的相似小物标;在1.5nm或2nm的量程上,设备应能分别显示位于所用量程50-100%之间两个方位相同、相隔距离≤50m但方位在2.5°上的相似小物标)。

3.5.4 机内测试电表各挡测试值应在规定范围内(说明书规定)。

3.5.5 各量程的距标圈圈数应符合要求,间距应相等。(0.5nmile

3.5.6 活动距标圈读数在各量程上应与固定距标读数一致。

3.5.7 船首线位置应准确,方位误差应在允许范围内(不大于1°)。

3.5.8 测距误差在允许范围内(固定距离圈和可变距离圈来测量目标的距离,其误差不超过所用量程1.5%或70m取大者)。

3.5.9 正常PPI显示的电子方位标志读数应与固定方位刻度一致。

3.5.10 北向上显示方式时,船首线指向应与罗经显示器的读数,主罗经的航向值一致。

3.5.11 检查各控钮、开关转动应灵活,作用应正常(如:增益、调谐、扫描亮度、STC、FTC、RIC、雷达电源开关、量程转换开关、船艏线按钮等)。

4、缺陷的处理

雷达在船舶定位仪避让中处于重要地位,严重地关系到人命、财产安全,因此对其缺陷的处理应更严厉,但IMO港口国监督的指导中并未对雷达缺陷的处理作出指导,故作为PSCO应尽可能利用所学的专业知识作出正确的判断,以免造成对船舶不适当的滞留。

建议对如下缺陷,PSCO应考虑对船舶实施滞留:

.1 驾驶员不会作雷达标绘图;

.2 询问驾驶员雷达操作程序或操作不熟练;

.3 驾驶员不能对固定和移动物标的辨识或操作不熟练并不会对物标辨认;

.4 是否在规定的时间内从冷态到工作状态、开机后各部位是否打火、冒烟、异味及异

常响声、噪声,回波图像是否符合要求;

.5 活动距标圈是否符合要求、读数是否正确、测距及方位误差较大

.6 检查各控钮、开关转动是否灵活,作用是否正常;

.8 机内测试电表各档测试值是否在规定的范围内。

船用雷达

船用雷达是一种传统的无线电导航设备,在船舶近海定位、引导船舶进、出港,窄航道航行以及在避碰中发挥作用。GPS导航仪在海洋船舶中已普遍使用,它与雷达相比具有全球、连续、实时、高精度、多功能等优点。随着海用信标差分GPS(DGPS)基台的不断建立,可将使用GPS C/A码的定位精度提高到米量级。因此,还可应用DGPS或GPS导航仪来改善雷达的使用性能,测定雷达测距、测向精度,弥补雷达在避碰和锚位监视等方面的某些局限性。 2 GPS与雷达的定位与导航功能 2.1 定位功能 船用雷达发射无线电波,并接收该电波从目标反射的回波,在显示器上一目了然地显示周围物标相对于本船的图像。测定一个或几个固定物标相对于本船的方位和距离,可在海图上作出船位。由此可见,雷达对于船舶在近岸海区或窄航道上安全航行发挥重要作用,特别是在雾航中更加显示它的重要性。但是,由于受到雷达电波传播的视距所限,探测物标的距离通常只有几至几十海里,不能用于远洋定位。GPS导航仪同时跟踪3颗或4颗卫星信号,测定到达卫星的伪距,通过导航仪内部计算机解算,实现实时、连续、全球、高精度定位,可弥补雷达不能实现远洋定位以及定位不连续、定位操作工作量大等缺点。 2.2 导航功能 30m左右的中型引航船。考虑到天津港冬季多大风, 锚地无遮蔽,以及在海况好时的工作方便,可考虑配置1艘不小于40m的大型子母引航船。天气及海况不好时,可单独执行任务;海况好时,可将其携带的2艘高速艇放下,共同执行任务。如子母船的设想不能成立,也可只配置1艘大型引航船,另配置2艘高速艇。无论任何型号的引航船(艇),在设计上必须考虑到靠船的要求和引航员上、下船的方便。 3.3 对速度和操纵性能的要求引航船在速度上不能低于16kn。高速艇一般不能低于20kn。从操纵灵活的要求出发,采用可变螺距船;驾驶操纵系统,应以方便1人操作为原则;大型引航船,还应加装首侧推器。 3.4 要配置先进的雷达及通信设备 另外,船身应为白色,并在明显处标注英文“引航(PILOT)”。 以上仅是对引航船提出一些的初步设想,根据规范化及国际大港口的要求来考虑,配置专用引航船是非常必要的。 普通船用雷达要获得航速、航向航迹等航行数据,需通过几次定位,由人工标绘实现。自动雷达标绘仪(ARPA)虽然自动显示上述数据,但存在跟踪延迟和雷达、计程仪、罗经等传感器引入的误差。另外,由于ARPA设备昂贵,不能在所有的船上安装。GPS导航仪采用现代电子计算机技术,可实时计算并显示航速,航向,航迹偏差,风、流压差,还具有设置航路点、计划航线、显示到达航路点的距离、时间等导航功能。 3 GPS的避碰功能 船用雷达测定海上运动物标和静止物标的距离、方位等相对参数,通过人工标绘得到最近会遇距离(CPA)和到达最近会遇点的时间(TCPA)等避碰数据,驾驶员根据这些数据及时采取避让措施。但是,有些物标反射回波微弱,操作人员难以看清它们的回波图像,ARPA有可能对它们漏跟踪或错误跟踪而不能提供避碰数据。在气象条件恶劣时,出现严重的海浪回波干扰或雨、雪回波干扰,上述丢失物标的现象时有出现。对于未露出海面的暗礁、沉船、浅滩等潜在物标,雷达更是无能为力。根据海图和航海通告事先查出在航线附近水面危险的小物标和水下的潜在障碍物,把它们作为航路点在GPS导航仪中存贮,并根据障碍物和船舶状

雷达定位与导航习题及答案

雷达定位与导航 第一节物标的雷达图像 2203. 船用导航雷达的显示器属于哪种显示器__________。 A.平面位置B.距离高度 C.方位高度D.方位仰角 2204. 船用导航雷达发射的电磁波属于哪个波段__________。 A.长波B.中波 C.短波D.微波 2205. 船用导航雷达可以测量船舶周围水面物标的__________。 A.方位、距离B.距离、高度 C.距离、深度D.以上均可 2206. 船用导航雷达显示的物标回波的大小与物标的__________有关。 A.总面积B.总体积 C.迎向面垂直投影D.背面水平伸展的面积 2207. 船用导航雷达发射的电磁波遇到物标后,可以__________。 A.穿过去B.较好的反射回来 C.全部绕射过去D.以上均对 2208. 本船雷达天线海面以上高为16米,小岛海面以上高为25米,在理论上该岛在距本船多远的距离内才能探测得到__________。 A.20米B.20海里 C.20千米D.以上均不对 2209. 本船雷达天线海面以上高度为16米,前方有半径为4海里的圆形小岛,四周平坦,中间为山峰,海面以上高度为25米。当本船驶向小岛时,雷达荧光屏上首先出现的回波是小岛那个部分的回波__________。 A.离船最近处的岸线B.离船最远处的岸线 C.山峰D.A、C一起出现 2210. 本船雷达天线海面以上高度16米,前方有半径为2海里的圆形小岛,四周低,中间为山峰,海面以—上高度为49米门当本船离小岛4海里时,雷达荧光屏上该岛回波的内缘(离船最近处)对应于小岛的__________。 A.山峰B.离船最近的岸线 C.山峰与岸线间的某处D.以上均不对 2211. 对于一个点目标,造成其雷达回波横向扩展的因素是__________。 A.目标闪烁B.水平波束宽度 C.CRT光点直径D.A+B+C

船用雷达的发展历史、现状及未来展望

船用雷达的发展历史、现状及未来展望

船用雷达的发展历史、现状及未来展望 摘要:船用雷达用于测定船位、引航和避让,是船长的眼睛。船用雷达的出现是航海技术发展的重大里程碑。本文主要介绍船用雷达的发展历史、现状以及未来发展趋势。 关键词:船用雷达、发展历史、现状、趋势 The devel opment of marine radar, history, current status and future trends Abstract: Marine radar is used to determine the ship's position, the pilot and avoidance, it is the captain's eyes. The emergence of marine radar is a major milestone in the development of maritime technology. This paper describes the development of marine radar, history, current status and future trends. Key Word: marine radar, history, current status, future trends 船用雷达又称航海雷达,是装于船上用于航海活动,进行航行避让、船舶定位、狭水道引航。 船用雷达由天线、发射机、接收机、显示器和电源5部分组成。天线是用来发射、接收电磁波,现代雷达发射和接收一般合用一个天线,由收发开关转换。天线由马达驱动,作360°连续环扫。发射机,采用脉冲体制。近距离档用较短脉冲,以提高距离分辨力;远距离档用较长脉冲,以增大作用距离。工作波段以X波段和S波段为主,前者有较高的方位分辨力,有利于近距离探测;后者受雨雪杂波和海浪杂波的干扰较小,电磁波经过

浅析船用雷达和AIS的综合应用的优势与局限性

船用导航雷达和AIS综合应用的优势与局限性 摘要:船用导航雷达和船舶自动识别系统(AIS)是两部重要的助航仪器,本文分析了导航雷达和AIS在单独使用时各自的功能和特点,并指出二者在综合应用中所表现出的优势和局限性以及针对其局限性的注意事项。 关键词:导航雷达、AIS、综合应用 目前,全球经济趋于一体化,航运业迅猛发展,船舶数量急剧增加,于此同时海难、海损事故也随之增加,给广大海员的生命安全、国家财产和海洋环境造成严重威胁。为加强航行安全,保护海洋环境,船舶间、船岸间信息的充分、快速、准确交换就显得尤为重要和突出。 一、船用导航雷达的功能和特点 1.雷达在应用中的优势 伴随船舶数量的激增,船舶碰撞事故的事故率也居高不下,因此,如何实现船舶间的协调行动,避免船舶碰撞就显得异常重要。雷达作为船舶避碰的主要助航仪器,从出现至今一直发挥着重要的作用。雷达是自主式导航设备,可以扫描到海面上的具有一定大小的物标并将其回波显示在雷达显示器上,从而将海面上物表和本船的相对位置关系清晰显示,让操作者获得较为全面的交通形式图像。通过对物标船的标绘,可以判断物标船和本船是否存在碰撞危险,更可以求取避让措施,核实避让行动的效果。 传统的船舶避碰是用眼睛实际观察周围船舶的运动态势,进而凭借经验采取改向或变速措施来实现船舶间的安全避让。不难发现,传统的避让方法受受能见度的影响较大,比如海上大雾天气,航海员仅凭肉眼能观测到的距离大大减小,有时会减小到几十米,就不能实现安全航行的目标。而有了雷达就大不相同,雷达受能见度影响小,精度高(30米左右),决策时间短(通过雷达自动标绘仪—ARPA跟踪物标并求取避让措施仅需3-5分钟时间),雷达的探测距离可以达到10—20海里,驾驶员的工作负担大大减轻。 另一方面,当船舶发生碰撞事故时,在避让行动中得雷达观测信息可以作为海事调查的证据,给海事处理也带来了很大方便。 2.雷达在应用中的局限性 尽管雷达在应用中有上述的优势,但其局限性也不容忽视。在恶劣海况下,雷达容易受海浪干扰产生杂波;恶劣天气下会受雨雪干扰产生雨雪干扰杂波;相同频率的雷达在距离较近时也会产生同频雷达干扰杂波;雷达存在30—50米的固定盲区;受船上大桅等的影响会产生扇形阴影区;受复杂情况影响雷达会产生多次扫描假回波、二次扫描假回波、间接反射假回波以及旁瓣回波等假回波。上述所有的这些干扰杂波和假回波在实际使用时往往会让操作者难以分辨或影响观测,进而对航行安全产生错误的导向。 雷达在设计上存在固有的缺陷,雷达的方位分辨力弱,测方位精度差,一般方位误差在1°左右,且随量程变化而变化。依附于雷达的ARPA(雷达自动标绘仪)存在错误录取、漏录取、录取和显示容量限制、目标信息量少、目标丢失、目标交换、无法识别目标等固有缺陷,并且雷达对驾驶员操作维护能力要求较高,有效的雷达观测和雷达自动标绘需要维护良好的设备和精良的操作技术基础上。所有这些在一定程度上构成了雷达使用的局限性。 二、船用AIS在避碰中得优势与局限性 1.船用AIS的功能优势 自动识别系统(Automatic Identification System,AIS),是基于卫星定位的设备,精度稳定在5—30米。该系统无需人工维护和参与,能够自动发射和接收船舶识别和航行相关信息,通信可靠性高,不受气象海况影响,不会因杂波干扰而丢失小物标。信号覆盖范围可以扩大到河道和水流弯曲处以及障碍物之后等雷达无法探测到的区域,跟踪稳定性和可靠

21世纪的船用雷达改(新)

浅析21世纪的船用雷达 摘要:本文以英国船商公司的船用雷达为例,分析了现代雷达的优缺点,重点讨论了AIS和ENC系统在雷达方面的应用,指出了未来雷达技术的发展方向。 关键词:雷达电子海图AIS 1 前言 安装在船舶上的雷达是船长的眼睛。它能辅助船舶航行,在能见度较低或在拥挤水道时能辅助避碰。近30年来,雷达系统的天线单元和收发机单元的技术实际并没有实质性的变化,而显示单元的生产技术却经历了显著的变革。一些使用计算机类型显示器的彩色雷达已经面世,但到现在为止市场上还未出现计算机雷达(指雷达显示单元全部基于PC机)。未来雷达技术将向哪个方向发展呢?本文就这一问题以英国船商有限公司(Transas)在雷达专业领域的最新进展及代表性产品为例进行一些讨论。 2新型雷达概况 在船用雷达更新换代之际,船商公司集过去数年的研究成果和实践提出了一个崭新的概念,即:一部性能优异的ARPA雷达=普通天线收发机+ 普通PC机及显示器+ 船商雷达信号处理卡。船商的雷达信号处理卡(RadarIntegrator Board)目前已发展到第二代,它直接安插在普通PC机的PCI插槽上,与雷达收发天线单元相接后具有直接处理雷达视频信号、录取和跟踪移动目标、控制收发机等功能;安插雷达信号处理卡的计算机能将雷达图像与矢量电子海图相叠加,利用计算机连网可将雷达图像和电子海图传输到船上任一部位;利用船商扩展串行接口,计算机还能处理包括AIS(又称船舶自动识

别系统)在内的所有船用传感器的信息。此外,计算机还能把航行过程中的信息压缩并保存在硬盘上,这些信息不仅包括所有目标的动态数据,而且还包括数月连续航行中雷达天线旋转每一圈所得到的整个雷达图像。 3ENC在雷达方面的应用 IEC允许在雷达屏幕上显示电子导航海图(ENC)上的一些要素,包括岸线、安全区、预警区和线条、孤立的危险物、浮标和灯塔。根据船商公司多年研制和销售电子海图的经验(船商海图数据库已包括全球海域近6000幅矢量电子海图),我们认为上述物标已占ENC数据量的70%。例如,在使用一些国家(如挪威、瑞典、芬兰等)的纸海图制作电子海图过程中我们曾遇到过数百幅海图,图上包含的上述海图要素由一百万条以上线(或点)组成;有些海图竟有11000块礁石。假如我们使用芬兰的第25号海图,用原始比例尺显示在21英寸显示器上,屏幕上将显示出840个岛屿。根据S57标准,一幅ENC海图的容量不能超过5Mb,但如果船舶航行到海图连接处将要显示四幅海图时,这意味着非常庞大的信息量。这些说明在雷达图像上显示ENC绝非易事,至今世界上还没一部雷达能同时显示ENC 和雷达图像。 然而,在雷达图像上叠加显示ENC所有数据将非常有助于安全航行。例如,浮标图形的显示可以使驾驶人员方便地区别浮标回波和目标回波;如果ENC显示的岸线与雷达岸线图像重合,则整个海图要素的参照都是正确的,驾驶人员可迅速判断出本船和其它所有目标

航海雷达介绍

目录 目录 .................................................................................................................................................. I 图录 ................................................................................................................................................ I V 表格目录.......................................................................................................................................... V 缩略语 ............................................................................................................................................ V I 1.雷达/ARPA产品概述 (1) 1.1.概述 (1) 1.2.航海雷达/ARPA系统结构图 (3) 1.3.天线收发单元 (4) 1.4.雷达显示单元 (4) 1.5.其他配件 (5) 1.5.1.电缆线 (5) 1.5.2.电源线 (6) 1.5.3.输入信号数据线 (7) 2.航海雷达安装 (9) 2.1.天线收发单元安装 (9) 2.1.1.天线收发单元安装注意事项 (9) 2.1.2.天线收发单元安装步骤 (10) 2.2.显示单元安装 (13) 2.2.1.注意事项 (13) 2.2.2.安装步骤 (14) 2.3.配线 (16) 2.3.1.布线要求 (16) 2.3.2.收发机接线 (16) 2.3.3.电源线接线 (20) 2.3.4.输入信号线接线 (20) 2.4.对外接口 (22) 2.4.1.电源接口 (22) 2.4.2.电缆接口 (22) 2.4.3.输入信号接口 (23) https://www.360docs.net/doc/fe3128291.html,B接口 (23) 2.4.5.RS-232接口 (23) 2.5.调试和验收 (23) 2.5.1.开机 (23) 2.5.2.日期时间设置 (24) 2.5.3.方位调整 (24) 2.5.4.距离调整 (24) 2.5.5.按键检查 (24) 2.5.6.系统检测 (24) 3.雷达系统操作 (25) 3.1.控制面板介绍 (25) 3.2.雷达界面介绍 (27) 3.3.雷达开机 (28) 3.4.雷达待机 (28) I

船用导航雷达关键技术研究

目录 摘要 (i) ABSTRACT ......................................................................................................... i i 第一章绪论 (1) 1.1 研究的背景及意义 (1) 1.2 国内外研究现状 (2) 1.2.1 国内外船用导航雷达系统ARPA算法发展现状 (2) 1.2.2 国内船用导航雷达系统海杂波抑制技术发展现状 (4) 1.3 论文的研究内容 (5) 第二章自动雷达标绘仪算法和海杂波抑制技术概述 (7) 2.1 自动雷达标绘仪(ARPA) (7) 2.1.1 相关概念 (8) 2.1.2 目标录取 (9) 2.1.3 目标跟踪 (9) 2.1.4 报警和试操船 (11) 2.1.5 传统ARPA算法局限性 (12) 2.2 海杂波抑制技术 (12) 2.2.1 海杂波特性 (12) 2.2.2 典型海杂波幅度模型 (13) 2.2.3 常见海杂波抑制技术 (15) 2.3 本章小结 (15) 第三章基于自适应变窗滤波算法的研究 (16) 3.1 机器学习概述 (16) 3.2 基于自适应变窗滤波的ARPA算法 (16) 3.2.1 自适应变窗滤波的ARPA算法目标录取机理 (17) 3.2.2 自适应变窗滤波 (18) 3.2.3 自适应变窗滤波算法适用范围 (20) 3.3 传统ARPA算法和自适应变窗滤波算法性能模拟测试和分析 (20) 3.3.1 测试方法 (20) 3.3.2 目标参数计算精度测试 (22) 3.3.3 本船机动测试 (24) 3.3.3 本船和目标机动测试 (26)

船用导航雷达简介

船用导航雷达简介 摘要:本文简单介绍了雷达的工作原理,并以此为基础重点介绍了船用导航雷达与普通雷达的区别、相关规范要求、基本组成及作用,技术指标。 关键词:雷达雷达的工作原理船用导航雷达盲区基本组成及作用技术指标自动雷达标绘仪 Abstract: this paper briefly introduces the working principle of the radar, and, on this basis, focusing on the Marine navigation radar and common radar difference, relevant specification requirements, basic composition and function, the technical indexes. Keywords: radar radar principle of work of the Marine navigation radar blind area basic composition and function technical indicators to be automatic radar instrument plot 0引言 雷达(radar)概念形成于20世纪初。雷达是英文radar的音译,为Radio Detection And Ranging的缩写,意为无线电检测和测距的电子设备。它是利用电磁波探测目标的电子设备。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方向、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。船上装备雷达始自第二次世界大战期间,战后逐渐扩大到民用商船。 1雷达的基本工作原理 雷达发射机产生足够的电磁能量,经过收发转换开关传给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 2船用导航雷达 2.1 船用导航雷达简介

浅析船用雷达和AIS的综合应用的优势与局限性

浅析船用雷达和A I S的综合应用的优势与局限 性 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

船用导航雷达和AIS综合应用的优势与局限性摘要:船用导航雷达和船舶自动识别系统(AIS)是两部重要的助航仪器,本文分析了导航雷达和AIS在单独使用时各自的功能和特点,并指出二者在综合应用中所表现出的优势和局限性以及针对其局限性的注意事项。 关键词:导航雷达、AIS、综合应用 目前,全球经济趋于一体化,航运业迅猛发展,船舶数量急剧增加,于此同时海难、海损事故也随之增加,给广大海员的生命安全、国家财产和海洋环境造成严重威胁。为加强航行安全,保护海洋环境,船舶间、船岸间信息的充分、快速、准确交换就显得尤为重要和突出。 一、船用导航雷达的功能和特点 1.雷达在应用中的优势 伴随船舶数量的激增,船舶碰撞事故的事故率也居高不下,因此,如何实现船舶间的协调行动,避免船舶碰撞就显得异常重要。雷达作为船舶避碰的主要助航仪器,从出现至今一直发挥着重要的作用。雷达是自主式导航设备,可以扫描到海面上的具有一定大小的物标并将其回波显示在雷达显示器上,从而将海面上物表和本船的相对位置关系清晰显示,让操作者获得较为全面的交通形式图像。通过对物标船的标绘,可以判断物标船和本船是否存在碰撞危险,更可以求取避让措施,核实避让行动的效果。 传统的船舶避碰是用眼睛实际观察周围船舶的运动态势,进而凭借经验采取改向或变速措施来实现船舶间的安全避让。不难发现,传统的避让方法受受能见度的影响较大,比如海上大雾天气,航海员仅凭肉眼能观测到的距离大大减小,有时会减小到几十米,就不能实现安全航行的目标。而有了雷达就大不相同,雷达受能见度影响

JRC航海雷达 JMA9823和9833中文操作说明书

ARPA雷达(JMA 9823/9833)操作说明 一、按下PWR键,绿灯亮,3分钟后出现STAND BY,按下TX/STBY键,雷达开始工作;再按TX/STBY可停止发射,设备在预备状态。 二、调整SEA、RAIN、GAIN和BRILL钮,选择RANGE量程,调节TURN钮至物标清晰出现在荧光屏上;SEA、RAIN和TURN分别有手动和自动,但是雨雪和海浪不能同时自动。 三、捕捉物标,按下ACQ MANUAL键,移动光标到物标上,按下左键,物标被捕捉。最多可捕捉50个物标。 四、读取物标数据,按下TGT DATA键,将光标移动到物标上,按下左键,物标数据被读取。 五、取消物标,按下ACQ/CANCEL键,将光标移动到物标上,按下左键,物标被取消。 六、设置方位线、距离圈,按下EBL和VRM键,荧光屏出现方位线、距离圈,旋转EBL 和VRM钮,设置方位和距离。 七、按下AZI/MODE键,进行真北、真运动、相对运动等选择。 八、按下PL键改变发射脉冲宽度。 九、按下TRUE/REL、VECT/TIME键进行真矢量和相对矢量选择。 十、按下TM/RM键,进行真运动和相对运动选择。 十一、按下OFF/CENT键进行偏心显示。 十二、按下MENU键有9个子菜单, 1.IR,按下此键抑制同频干扰(如附近有SART信号应关闭此键)。 2.TGT ENH,按下此键为目标放大功能。 3.PROCESS,程序键。 4.FUNCTION,功能键。 5/ 6.EBL1/EBL2,电子方位线。 7.DATA OFF,按下此键关闭荧光屏部分数据。 8.SUB1 MENU子菜单,按下此键进入下一子菜单: ①SETTING-设置罗经、速度、日期时间等内容,此雷达关机后罗经不能跟踪,故开机后要输入罗经航向。 ②LEVEL-按此键调节亮度。 ③NA V/MAP-导航及转向点信息。 ④TRACK-航迹设定。 ⑤APRA/AIS-设定CPA、TCPA、AIS功能。 ⑥PIN-设置个人信息。 ⑦ISW-两部雷达互换发射机和天线。 ⑧EBL MANEUVER-手动电子方位线。 ⑨SUB2-此菜单调节显示器的颜色。 9.DEGAUSS-按下此键荧光屏消磁。 10.EXIT-按此键退出菜单。 十三、按下DAY/LIGHT钮可调整亮度。 十四、TRAILS钮为尾迹显示。 十五、按下GUARD ZONE键,进行警戒圈设置,点击MAKE GZ1或MAKE GZ2利用方位线和活动距离圈设置警戒圈。警戒圈设置后,点击ACQ AUTO自动打开设置的警戒圈。

船用雷达

船用雷达 0引言 雷达概念形成于20世纪初。雷达是英文radar的音译,为Radio Detection And Ranging的缩写,意为无线电检测和测距的电子设备。它是利用电磁波探测目标的电子设备。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方向、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。船上装备雷达始自第二次世界大战期间,战后逐渐扩大到民用商船。 1雷达的基本工作原理 雷达发射机产生足够的电磁能量,经过收发转换开关传给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 2船用导航雷达 2.1 船用导航雷达简介 船用导航雷达(marine radar )是保障船舶航行,探测周围

目标位置,以实施航行避让、自身定位等用的雷达,也称航海雷达。它特别适用于黑夜、雾天引导船只出入海湾、通过窄水道和沿海航行,主要起航行防撞作用。 2.2 船用雷达与普通雷达的区别 一般雷达把自身作为不动点表示在平面位置显示器的中心。但在航海中,船舶自身在运动,总是与固定目标或运动目标作相对运动。适应航海环境的雷达,应是真正运动的雷达,须能自动输入船舶自身的航速和航向,数据必须相当准确。 2.3船用导航雷达的最小作用距离—盲区 导航雷达是用来探测水上目标的方位和距离,它不受气候影响,可以全天候引导船舶进出港口、码头和海上安全航行。导航雷达最大作用距离主要取决于雷达脉冲的传播天线,如雷达天线高度、目标大小、形状及反射天线等。雷达最小作用距离是一个重要指标,所谓最小作用距离是指在此距离内,不管目标有多大,均发现不了目标,常称为雷达的盲区。雷达的最小作用距离是由雷达脉冲宽度和天线架设的高度决定的。一般情况下雷达的最小作用距离小于30m。 2.4 船用导航雷达的基本组成及作用 2.4.1发射机 1. 基本组成:脉冲调制器(预调制器、调制器)、磁控管振荡器、电源(低压、高压) 2.作用:在触发脉冲控制下产生周期性的大功率射频脉冲。

船用雷达终端显示系统

第10章船用雷达终端显示器 10.1 概述 雷达接收机将天线受到的微弱目标经高频放大、混频、中频放大、检波极信号处理后,尚需提取回波中的目标信息,再在经必要的加工后直观显示于显示器上,此过程由雷达终端来实现。现代雷达终端显示的基本内容含:目标数据的录取、数据处理及目标航行状态的显示的典型组成框图如图10-1所示。 图10-1 船用雷达终端的典型组成简框 图0-1中,“目标录取”用于实现对来自雷达录取机的雷达目标回波存在的确认,并提取目标的方位、距离、航速等信息:“数据处理”完成目标数据的关联、航迹处理、数据滤波跟踪;方位角编码完成天线瞬间方位角数据的提取机其极坐标转换成直角平面坐标,“显示系统”完成目标的位置、运动状态及其它信息的显示。 10.2 船用雷达显示器件 船用雷达终端显示器采用的显示器件有两大类;磁偏转阴极射线管﹙CRT﹚和液晶显示器﹙LCD﹚,终端显示器有多种扫描方式工作:对传统船用雷达CRT显示器,常采用径向园扫描方式;对现代船用雷达LCD显示器,常采用光栅扫描显示方式。 按照需要显示的信息类型,可分为“一次信息”和“二次信息”显示。 10.2.1 阴极射线管CRT(Cathode Ray Tube) 船用雷达要求使用具有余辉、亮度大、聚焦好、屏面尺寸大及磁偏转的CRT,以适应在宽阔海域中能得到较好的图像分辨力、清晰度及亮度画面的观测要求。 雷达显示器常用的CRT有三类:静电式:电子束聚焦,由管内极板间静电场完成电子束偏转,简言静电聚焦、静电偏转CRT,常用于军用A型显示器,也常见于实验室的普通示波管;磁式:电子束的聚焦与偏转均由装在管颈外的线圈流入电流产生的磁场完成,传统船用雷达常用;混合式:静电聚焦、磁偏转,因其具有供电方便、消耗功率小、结构简单、偏转灵敏度高等诸如优点。船用雷达常被广泛采用的是混合式CRT。

浅谈船用雷达的检查

随着世界经济的飞速发展,船舶大型化和现代化的趋势成为必然。因生活水平的提高,加速人们对新事物的追求欲和现代化仪器的欲望,船舶离岸越来越远,特别是大型船舶船长,根本不希望在“有人烟”的海域开船,使船员的思想更放松,认为船舶驾驶是最容易的事,自动化导航仪器、宽阔的海域、“荒无人烟”的海面。久而久之,山头在雷达上的回波认为是“天上的积雨云”,小渔船变成回波干扰,大船变成假回波,进港的航道用GPS来导航,雷达的使用成了“老土”仪器。以至于海上碰撞、触礁、搁浅事故的发生成了不可避免。作为PSC检查官,如何检查雷达状况,考核船员雷达实操,细查、维护、保养、清洁成了迫在眉捷的事。船用雷达已有50多年的历史,早已成为船舶主要的助航设备,常被称为“船长的眼睛”。船用雷达可用于船舶避碰、定位和导航,尤以避碰应用为重。然而船用雷达在避碰中的应用尚不尽人意,在避碰应用历史上甚至有过装了雷达不但没有减少船舶碰撞,反而增加碰撞事故的统计记录。 1、法律依据 1974SOLAS公约88修正案第Ⅴ章第12条(船上装设的航行设备)规定: .1 1984年9月1日或以后建造的500总吨及以上的船舶,以及1984年9月1日以前建造的1,600总吨及以上的船舶,应装设1台雷达装置。自1995年2月1日起雷达装置应能在9GHz频带上工作。此外,1995年2月1日以后从事国际航行的所有客船和300总吨及以上的货船,应装设能在9GHz频带上工作的雷达装置。对小于500总吨的客船和300总吨及以上但小于500总吨的货船,如果所安装的雷达装置和搜救县雷达应答器完全兼容,则可以由主管机关决定免除本条(3)的要求。 .2 10000总吨及以上的船舶,应装设2台能各自独立工作的雷达装置。自1995年2月1日起,其中至少有1台雷达装置能在9GHz频带上工作。 .3 按本条规定装设的所有设备,应为主管机关所认可的型号。在1984年9月1日或以后安装在船上的设备,应符合不低于本组织通过的相应的性能标准,即《关于雷达设备性能标准的建议案》,经海安会MSC.64(67)决议案4附件修正的A.477(Ⅻ)决议(船用雷达设备推荐性能标准),以及A.222(Ⅻ)和A.278(Ⅷ)决议,及A.614(15)决议《关于工作在9300-9500MHz频带上雷达配备》。对于有关的性能标准通过以前安装的设备,主管机关在充分考虑了本组织可能通过的与有关标准相关的衡准后,可能免除完全符合这些标准的要求。 2、船用雷达工作原理 2.1 测距原理 因为超高频无线电波在空间传播时具有等速、直线传播的特性,并且遇到物标有良好的反射现象,如果记录雷达脉冲波离开天线的时间和无线电脉冲遇到物标反射回到天线的时间,则物标离天线的距离为电磁波在空间的传播速度乘于霎时间差的二分之一。 在实际雷达中,用发射机产生超高频无线电脉冲波,用天线向外发射和接收无线电脉冲波,用显示器进行计算,显示物标的距离,并用触发电路产生的触发脉冲使它们同步工作。 2.2 测方位原理 因为超高频无线波在空间的传播是直线的,所以,只要把无线做成定向天线,即只向一个方向发射,也只接收这一个方向目标的回波,那么,天线所指的方向就是物标的方向。如果天线旋转,

相关文档
最新文档