改善冷水机组运行效率的18个方法

改善冷水机组运行效率的18个方法
改善冷水机组运行效率的18个方法

提高冷水机组运行效率的18个方法

空调系统通常是整个楼宇中消耗能源最大的系统,有时甚至占到全部耗能的40%~60%。所以,改善空调系统的运行效率能显著降低整个楼宇的运营成本,同时又不会给居住者带来任何不适。

冷水机组机房是对空调系统进行改良的一个重要环节。以下介绍了18个降低离心式水冷冷水机组运行成本的方法。大部分的改进措施只需少量投资或根本不需要投资。

采取节能措施主要针对以下三个方面。部件方面:包括正确地操作和保养冷水机组。调整最佳的水温和流量;系统方面:在不同的负荷条件下,对多台机组进行最佳的运行组合;改造方面:是指利用最新的节能技术对现有的机组进行改造。

正确的维护保养步骤和精确的数据记录是对冷水机组运行效率进行改善的基础。劣质的保养会使机组的实际运行状况与设计状态向去甚远。这样的状况包括不正确的水温控制,制冷剂的充注量偏少,存在泄漏点,冷凝器铜管的脏堵,等等。正确的维护保养能避免上述情况的发生,将冷水机组的能耗控制在设计范围之内。

为改善机组的运行效率,首先要对机组的运行状态参数有精确地记录。记录“运行日志”是一个最好的跟踪机组运行状态,发现异常变化的方法。没有精确的运行数据的记录,就不可能发现机组在效率方面存在的缺陷,不能找出相应的合理解决方案。同时也不能衡量机组能量转换的效果究竟如何。而且,机组的维护保养可能会被忽略,运行费用会在不知不觉中上升,甚至可能对机组的主要部件的安全构成威胁。没有精确的运行数据记录,你会发现想要实施以下所讨论的任何有关经济运行的措施都是非常困难的。

部件方面的改善机会

1.正确设定冷冻水的出水温度。

在一年中的大部分时间,机组是部分负荷状态运行的。在此期间由于环境温度不高,湿度也偏低,总体来说对制冷量的需求不是很大。在部分负荷的运行条件下,由于除湿部分的负荷减小,末端风机盘管的水温即使稍有提高,也能制得需要的室内温度。通常来说,提升冷冻水的出水温度就能降低压缩机运行压头,从而起到节能的效果。

以上的概念长期以来一直为空调业界所接受。最新的针对固定转速的离心机组的研究发现只有在机组的运行负荷在40%~80%的范围内,上述理论是成立的。在此区间,冷冻水出水温度每提升1°F可节能0.5%~0.75%(相对于满载运行能耗,下同)。而令人惊讶的是,当固定转速的离心机组运行负荷低于40%的情况下,提升冷冻水出水温度反而会增加机组的耗能。

另一方面,对于安装了变频装置的离心机组,其提升冷冻水出水温度后的节能效果就非常显著。一般在低于80%的负荷条件下,每提升1°F的冷冻水出水温度,可节能2%~3%。而且,即便机组的运行负荷低到10%,这样的节能效果依然存在。

2.保持适当的制冷剂充注量。

制冷剂充注不足或过量会使热交换的效率下降,导致压缩机压头增加,能耗增加。制冷剂在蒸发器中的液位异常会使蒸发温度下降,而蒸发温度每提升1°F,机组就可以节省1.5%

的能耗。

离心式制冷机组的蒸发器上一般都装有液位视镜,以观测制冷剂的液位高度。对于活塞式机组,可以通过观察冷凝器出液管路上的视镜有否气泡翻腾,来确认制冷剂的充注量是否偏少。制冷剂充注过量一般表现为,排气压力超高,冷凝器出液过冷度增加。一旦发现制冷剂充注量的偏差,应参照机组的出厂说明及时调整。

3.降低冷却水的进水温度。

决大部分的生产商都会标注机组的最小冷却水进水温度。但处于经济运行的考虑,许多生产商又重新评估了这个冷却水进水温度的最小值。因为制冷机组的能耗与冷凝压力和温度密切相关。降低冷却水的温度相应也就降低了冷凝温度及冷凝压力,从而降低压缩机的压头,达到了经济运行的效果。

测量数据表明,冷却水入水温度每下降1°F,机组的能耗即可减少1.5%。

冷却水温补偿系统能将冷却水的入水温度控制在冷却塔出水温度的2°F以上。许多系统的设计在冷却塔的进出水管之间增加了旁通。通过阀门调节,控制冷却水入水温度处于工厂推荐的最低温度水平。这样在机组节能运行的同时也能减少冷凝负荷。有的机组对冷凝器和冷却塔之间有水压差的要求。遇到类似情况,冷却水温调节要优先满足压差上的要求。

4.消除泄漏点。

应消除封闭循环的制冷系统中的任何泄漏点。在正压机组中,漏点的存在会使制冷剂泄漏到大气中,减少系统中制冷剂的充注量。

对于负压机组而言,空气等不凝性气体会通过漏点进入系统内部。并最终聚集在冷凝器,占据制冷剂的冷凝空间。不凝性气体存在度每增加1°F,系统的能耗增加1.5%。(不凝性气体存在度的计算方式为冷凝压力对应的饱和温度减去实际冷凝温度。)

由于完全密封的制冷系统几乎是不存在的,所以绝大部分负压的制冷机组使用排气装置来排出进入系统的不凝性气体。但问题是,当排气装置不能正常运行或泄漏量大于排气装置的排空能力时,如何解决不凝性气体的问题。

对于没有过冷度设计的冷凝器,不凝性气体存在度的计算方式可以是冷凝压力对应的饱和温度减去冷凝器的出液温度。这个数值能反映不凝性气体在冷凝器中的存在度。如果该数值大于工厂给定的参考值,就必须检查机组的排气装置,并对机组进行检漏工作。

5.降低冷凝器铜管的污垢系数。

冷凝器换热管的污垢包括结晶,沉淀物,泥沙,藻类及微生物等。劣质的水处理和水系统不当的保养都会诱发这些因素。污垢系数的增加会导致热交换效率的下降,从而使得冷凝温度和压力上升,压缩机的功耗也相应增加了。

我们把冷凝温度与冷却水出水温度之间的差值称作“冷凝器的小温差值”。将这个“小温差值”控制在适当的范围内,就能保证冷凝器的冷凝效率。

“冷凝器的小温差值”每降低1°F,制冷机组运行能耗将下降1%。

一旦发现冷凝器换热管脏堵的现象,必须对铜管进行清洗,以保证“冷凝器小温差值”控制在6°F~10°F的范围之内。一般通刷铜管就足以解决问题,但有时则必须进行化学清洗。长期难以解决的脏堵问题预示着需加强水处理的工作。

6.保持适当的冷却水流量。

冷却水流量的降低直接导致机组运行能耗的上升。冷却水的流量每减少20%,机组的能耗就上升3%。

通常冷却水流量的减少是由以下一些因素导致的:阀门的开启度太小;冷却塔的喷嘴堵塞;水系统的滤网脏堵;水系统中有空气存在。一般通过调节水泵的出口阀门来控制冷却水的流量与设计值相符。如果常规调节不能解决问题,就必须考虑上述其他方面的因素了。

7.控制机组加载的波动。

大部分机组以20分钟内的能耗变化来确定是否有运行峰值产生。机组运行负荷的峰值一般出现在机组启动之初。而最高负荷通常出现在炎热夏季的早晨,原因是多台机组启动,而且整个系统的水温很高。

在机组启动之初限制机组加载是一个非常有效地降低能耗的方法。绝大部分的冷水机组有自动或手动的限制加载的装置。建议在机组运行的最初20分钟,将机组的最大负荷限制在60%左右。

为进一步控制负荷峰值,还可以采取逐次启动机组的方法。即控制机组的启动间隔在20分钟左右。这样就避免了多台机组同时加载的情况,且机组承担的负荷峰值会逐次减小。

控制机组的加载理论上会降低机组的运行成本,具体节能效果视机组本身效率曲线。

8.维持马达的效率。

机组的压缩机马达消耗最多的能源。马达效率下降的最常见原因是马达线圈冷却问题。在相同的工况条件下,如果运行记录显示电压不变,而电流有明显的上升,则马达的冷却就有可能存在问题。

对于半封闭式的压缩机,应该检查制冷剂的流量和回气管上的过滤器;对于开启式的压缩机,应检查机房的通风及空气流通的状况,马达的进风是否受到阻碍,进风滤网是否脏堵。另外,无论半封闭还是开启式的机组都需检查马达的润滑油是否污染,电缆接线桩是否松动或生锈。

系统方面的改善机会

9.操作中恰当地对机组的运行进行组合。

一个冷水系统中存在多台冷水机组时,应仔细对各台机组的运行状态进行评估,以针对不同的运行条件,进行最佳的运行机组的组合。不仅要对各台机组满载或卸载运行的性能进行评估,也要评估卸载状态下多台机组和单台机组的运行效率。

举个简单的例子。对于一个安装固定转速离心机组的冷水系统,160冷吨的负荷可以由一台400冷吨的机组加载至40%承担;也可以由两台400冷吨的机组加载至20%承担。前一种运行状况能耗约为144Kw,后一种运行状况能耗约为194Kw。两者相比就能知道孰优孰劣了。有这样一条常规,就是不要让机组的运行负荷低于40%。因为除非是采用了变频技术的机组,当运行负荷小于40%,机组的效率将明显地下降。

同时,也要对每台机组的运行状况进行分析,以针对不同的负荷条件选择运行最合适的机组。随着负荷大小的变化,运行机组的切换是难以避免的。掌握哪台机组在低负荷条件下运行效率比较高,哪台机组在高负荷条件下运行效率比较高,就能决定启动机组的先后顺序。

10.合理安排冷冻水泵及冷却水泵的运行。

通过在停机状态下顺序停运水泵,并将停运的机组与整个水循环隔离开来,能起到节能的效果。

在机组停运状态下,如果继续让冷冻水流经机组,会使冷冻水供水总管的水温抬升,造成不必要的能量损耗。加装自动阀门,并将水泵与冷水机组联动。在机组停运状态下自动停

运水泵,切断该管路上的流量,可以在保证供水温度的同时节省能耗。

另一种利用水泵节能的方式是在单台水泵向多台机组供水的场合使用双速或变速水泵。此外还可以使用初级/次级水泵。该类型水泵向冷水机组的供水为恒定流量,而依据负荷状况改变空气处理末端装置的水流量。

要引起注意的是,对水泵进行改造是一项很复杂的工作。可能会带来诸如水系统平衡等一系列问题,在实施措施之前必须经过相关专业人士的论证。

改造方面的改善机会

11.冷冻水循环的联通。

许多楼宇中有数个冷冻机房。在一年的大部分时间,制冷能力超出冷量需求。在此期间,大部分甚至全部机房都处于低效率的部分负荷运行状态。通过联通整个冷水系统,采取集中供冷,可以使部分机房有更长的时间运行在效率状况更好的高负荷状态。

12.使用功率因数修正电容。

功率因数是一个反映用电设备的电压和电流之间关系的参数。理想的功率因数值为1.0,实际运行中功率因数值通常在0.8~0.9之间。功率因数值越低,说明有越大的电流消耗在非用电负载的回路上,则损失的功率就越大。

改善功率因数值可以降低能耗。功率因数值的增加能使实际消耗在用电负荷上的功率占总输入功率的比例增加。安装功率因数修正电容是一项小投资,但有潜在的显著收效的改进措施。通常能将功率因数值由0.88提高到0.95。

13.安装远程监控系统。

一个远程监控系统能全天候地对制冷系统进行实时监控,并将信息传送到远程监控室。该系统能帮助操作者及时地发现问题,作出预判,提前调整机组的运行状态。

远程监控系统主要有以下三方面的作用。(1)在机组的运行状态超出设计工况时,发出警示,以避免能耗的浪费。(2)通过对机组运行参数变化的监控,及时提醒操作者进行一些维护保养工作,避免故障/保护停机的发生。(3)控制或降低机组受损的危险性。

有了远程监控系统并不等于说例行的运行数据记录和机房巡检工作就可以取消了。应该说,远程监控系统是对完善的机组保养体系的一个重要加强。

14.安装冷水机房整体自控系统。

冷水机房整体自控系统是一套专门用来对空调系统的冷水机组,水泵及冷却塔进行能量调节的装置。它能调控整个空调系统的效率达到最高。视机房自控系统的完善程度,能具备以下诸项功能:

?负荷控制—对整个楼宇的冷负荷进行监控,参照实际情况,按照预设的的运行程序对机组的加载进行控制。

?冷冻水温度的自动调节—根据环境温度/湿度的实际情况,调整冷冻水温度的设定,以降低能耗。

?确定机组的启停时间—参照户外温度及其他参数,预判冷负荷状况。确定启停时间,以达到最佳的节能效果。

?选择运行顺序—参照实际运行负荷,对冷水机组,水泵,冷却塔的运行进行最佳组合。?保养需求的提示—以运行参数为基础,及时提示进行必要的维护保养,保证机组运行在最佳状态。

15.加装热回收装置。

对于内部有多种负荷要求的楼宇,热回收装置就有了用武之地。比如在提供冷量的同时,还需要提供家用热水。如果类似的负荷需求很大,那么热回收装置的投资在三年左右的时间就能收回。当然加装热回收装置也需要进行仔细地论证。

16.加装变频装置。

对于固定转速的离心机组而言,在压缩机入口安装预旋转导流叶片是一种传统的能量调节方式。它实际上起到一个限制制冷剂流量,降低能耗的作用。使用这样的能量调节机构,虽然可以降低能耗,但从制冷效率考虑,千瓦/冷吨的单位制冷量能耗反而上升了。

目前,随着变频技术的发展,可以通过控制马达的转速来降低能耗,并更好地运用预旋转导流叶片技术。对固定转速机组,当冷却水温下降,预旋转导流叶片相应关小;而安装了变频装置的机组,遇到类似工况则可以降低马达的转速,维持预旋转导流叶片的开度,从而提高了机组的运行效率。

使用变频装置的机组可以节能30%左右。当然,实际节能量最终取决于机组的运行时间,负荷状况,冷却水的入口温度等各方面因素。

17.改装较小型号的压缩机和马达。

如果机组的制冷量大于楼宇的实际冷负荷,那么改装较小型号的压缩机和马达,使机组的制冷能力与楼宇冷负荷尽可能接近,可以降低运行能耗。实际上制冷能力超过冷负荷的现象是很常见的。选择较小的型号后,运行效率相对就能提高。

改装压缩机和马达的另一个原因是降低老旧机组维修保养的费用。机组最重要的维修保养部件存在于压缩机和马达。更换这一部分的费用大大低于整机更新,而整个机组的运行效果却有明显的改善。另外,新的压缩机和马达所包含的新技术也能降低运行维护费用。

使用较小型号的压缩机和马达,保留原有的热交换装置,还能进一步提高机组运行效率。因为对于较小的压缩机,原有稍大型号的热交换装置,可以提供更为充裕的换热面积。

18.整机更换。

最后,如果某台老式机组的运行效率无论如何达不到设计值或期望值,可以考虑整机的更新。冷水机组上的一些新技术包括高效换热管的应用,更充裕的热交换面积,压缩机/马达运行效率的改善等等。

在作出决定之前,必须仔细评估目前机组与新机组的千瓦/冷吨的制冷效率值。再将更新机组的初投资与新机组运行成本的节省作比较。通常对于那些运用了先进技术的新机组,节能的效果会是相当具有吸引力的。

结论

在对日常运行数据记录进行仔细分析的基础上,我们能发现改善机组运行效率的机会。也就是说改善机组运行效率的第一步工作是制定并实施完善的维护保养制度,并对运行参数记录进行仔细地分析。

接下来应该对与各部件相关的因素进行评估。比如,冷冻水的出水温度设定,系统检漏等等。有了好的维护保养制度和正确的操作步骤,类似的工作基本上不需要任何费用的,但带来的收益却是相当显著的。

然后,应对整个冷水系统进行分析,发现相关组件的改善机会。比如,冷水机组的最佳运行组合等。虽然这样的改善必须基于大量的数据整理分析工作,但它所带来的收益也是非常显著的。

最后,可以考虑机组的更新改造。机组越是老旧,改造后的收益就越显著。虽然,采用这个方案提高机组的运行效率需要较大的初投资,但如果措施恰当,成本的回收应在几年之内就能完成。对部件相关因素及系统进行改善能在短期之内收到成效,但只能针对机组运行效率的某一方面缺陷;机组的更新虽然需要较长时间回收投资,但对整体运行效率的改善是很有帮助的。

很重要的一点是,尽可能多地找寻改善机组运行效率的途径。从多方面采取措施的成效要大大高于只采取一两个措施的收效。

磁悬浮离心式冷水机组节能原理

磁悬浮离心式冷水机组节能原理 1.采用磁悬浮无油压缩机 磁悬浮离心式冷水机组的核 心部件磁悬浮无油压缩机。磁悬 浮压缩机大致可分为压缩部分、 电机部分、磁悬浮轴承及控制器、 变频控制部分如图1所示。其中 压缩部分由两级离心叶轮和进口 导叶组成,两级叶轮中间预留补气口,可实现中间补气的两级压缩。压缩机采用永磁电机,结合集成在压缩机上的变频器设计,可实现0~48000r/min的宽广转速变化。叶轮直径小,磁悬浮轴承悬浮运转,启动转矩相应减小,结合变频和软启动模块,压缩机启动电流只需2A。磁悬浮轴承及其控制是该型压缩机的核心。 图2 磁悬浮轴承结构示意图 如图2所示,该压缩机设有2组径向和1组轴向磁悬浮轴承,在控制器的控制下,运行过程中可始终保证主轴与轴承座之间有约7μm的间隙由于无机械摩擦,相对于传统机组,减少了电机损耗,变频损耗,轴承损耗,轴承损耗。使输出能量损耗只有%,相比传统机组%,磁悬浮离心机组具有明显的节能优势,如图3所示 图1 磁悬浮压缩机图3 磁悬浮机组与其他机组能量损失对比

2.部分负荷优化节能 机组绝大部分时间是在部分负荷下运行的,当机组在部分负荷情况下,压缩机的部分节能优势来自于2个方面;第一是压缩机流量的减少而降低转速;第二是由于蒸发温度的提高和冷凝温度的降低带来的压力比下降从而降低转速。 当环境温度发生变化时,建筑冷负荷也相应变化。若冷水出水温度设定值不变,冷负荷降低。使得相应的冷水回水温度降低,对应的冷机蒸发温度上升。同时负荷小,冷却水进回水温度也会降低,冷凝温度相应降低。综合蒸发温度和冷凝温度变化,不难发现,部分负荷时冷机的工作压力比减小。传统离心机采用进口导叶调节,也只能在一定范围内适应这种压力比变化。只有采用变频技术的离心机才可以通过调节转速以适应压力比的变化。通过降低转速,降低压缩机功耗。而在实际工作中,普通变频离心机由于回油等技术限制,只能在一定范围内进行变频,因此获得的节能效果有限。只有采用磁悬浮变频冷水机组才能根据实际负荷和压力比调节转速,比传统技术的冷水机在部分负荷下表现出了极高的性能,如图4所示。从而获得最大的节能效果。 图4 磁悬浮机组与其他机组性能曲线对比

冷水机组安装施工方案

冷水机组安装施工方案 (1)工程概况 本工程空调用冷水机组位于地下二层冷冻机房内,共3台,均为离心式.冷水机组功率为370kw,制冷量500RT,重约11吨,是本工程中最重、最大的设备,也是本工程施工的重点和难点。 (2)主要施工程序及技术要求 设备卸车: 现场在G、H轴和7、8轴交会处设有从一层到地下一层或地下二层的预留吊装口,边长约为7.3米的正方形,设备卸车可采用25吨汽车吊直接由吊装口进入地下二层,再用拖排运至基础附近.冷水机组重11t,25t汽车吊在操作半径5m,主臂长度10.4m时的起重量是12。88t,所以用25t吊车就可以满足卸车要求. 用25吨吊车将设备吊起放置在托排上,吊装时钢丝绳接触蒸发器、冷凝器部位提前用软木板垫衬隔开.吊放时应注意设备的方位,即应使设备就位后朝西的一头向前。 设备二次运输: 冷冻机房位于地下二层轴线(5)-(7)、(E)—(G)之间,机房的

左右两侧为电梯室,北侧和西侧均有围墙隔开,入口位于南面靠近东侧的地方,冷冻机房北侧的围墙应等到机组就位完毕后方可砌筑。 根据现场情况,设备在地下二层的水平运输,采用卷扬机牵引拖排的方法。 拖排用两根20#槽钢做成,其间用16#槽钢五根焊接在一起.如图8.1-3所示:20#槽钢的两端底部100mm 的长度做成上翻30°的形状,以便于滚杠的进入。 图8.1-3拖排示意图 滚杠用φ89×6的无缝钢管做成每根2.5m 长,大约需要15根。 为防止滚杠将地坪压坏,须用150×200×2000的枕木,铺成 100 5300 2000 20号槽钢 16号槽钢

轨道,两条轨道之间的距离大约为1.8—2。1m,轨道铺设方式如图8.1-4所示: 2000 枕木 300~5001800~2100 图8.1-4 轨道示意图 地坪面层用C20水泥沙浆做成,枕木对地面的压力为: σ=G/Aф N:设备重量 A:枕木与地坪的接触面积 ф:枕木与地坪不均匀接触折减系数,取ф=0.9 σ=11000/(50×530) =0。42kg/cm2〈200 kg/cm2 所以地坪的强度可以达到要求。 机组从地面到地下二层的运输路线见附图。 分别在轴线11与轴线E相交的柱子及轴线6与轴线H相交的柱子上固定两台两吨的电动卷扬机,牵引拖排,在适当的地方设置导向

简单机械的计算公式

一、杠 杆 杠杆的平衡公式F 1l 1=F 2l 2 1、有用功: W 有=G 物h 2、总功: W 总=Fs 3、额外功:W 额=W 总 —W 有 注意:若不计摩擦,此时只有克服杠杆自重做额外功: W 额=G 杠杆h 4、机械效率 二、用滑轮组竖直提升物体 动滑轮的绳子段数为n 1、拉力F 与物体重力G 物的关系 (a )若不计动滑轮自重、绳重及摩擦: (b )若不计绳重及摩擦,(要考虑动滑轮自重G 动): 2、绳子自由端移动距离S 绳与物体上升高度h 的关系 3、绳子自由端移动速度V 绳与物体上升速度V 物的关系 4、有用功: W 有=G 物h 5、总功: W 总=Fs 6、额外功:W 额=W 总 —W 有 n F = (G 物 + G 动) s 绳= nh V 绳= n V n F = G 物

注意:此时只有动滑轮做额外功:W 额=G 动h 7、机械效率 (a )若不计动滑轮自重、绳重及摩擦: (b )若不计绳重及摩擦,(要考虑动滑轮自重G 动): 三、用滑轮组水平拉动物体 动滑轮的绳子段数为n 1、拉力F 与摩擦力f 的关系: 2、绳子自由端移动距离S 绳与物体移动距离S 物的关系 3、绳子自由端移动速度V 绳与物体移动速度V 物的关系 4、有用功: W 有=fs 物 5、总功: W 总=Fs 绳 6、额外功:W 额=W 总 —W 有 7、机械效率: 四、用斜面拉动物体 1、有用功: W 有=G 物h 2、总功: W 总=Fs 3、额外功: W 额=W 总 —W 有=fs 4、机械效率: 5、计算摩擦力f 方法(注意:拉力F 不等于摩擦力f ): (1)先根据W 额=W 总 —W 有算出额外功 (2)再根据W 额=fs 算出摩擦力 n F = f s 绳= ns 物 V 绳= n V

冷水机组维护保养方案

冷水机组维护保养方案 维护保养内容: 1.开机前,对机组进行停机检查和保养,确保机组的正常运行,其中主要项目如下: ※主机水系统: A.检查水流开关的控制情况; B.将冷却水Y型过滤器拆卸清洗; C.清洗冷凝器,使之达到良好的换热效果。 ※压缩机及辅助组件 A.记录电压及相间电压; B.用兆欧表测量和记录电机绕阻的绝缘电阻; C.检查密封情况; D.检查卸载装置; E.每年更换干燥过滤器(或芯)一次; F.更换冷冻油及油过滤器; G.检查油加温器及其恒温器; H.检查所有其他的润滑油系统部件:油冷却器、电磁阀等; I.检查膨胀是否失灵; J.检查所有连接部件,有无松动,并拧紧。 ※控制箱 A.诊断检查程序; B.检查接触器或建议更换; C.检查所有电器线路和接线端有无脱落及破损,并拧紧或建议更换;

D.检查各状态指示灯; E.检查各设定值是否准确,并调准; F.检查各切换开关,有必要建议更换。 ※检查冷媒系统 A.记录视液镜的状态; B.检查制冷循环,确认处于正常状态; 2.在机组运行季节,乙方每月派员对机组进行检查巡视,以确保机组可靠、安全和高效运行,做好运行记录二份,双方各执一份。 ※开机前的准备和检查 A.检查所有的动力电缆,控制电线是否全部连接到位; B.用万用表对所有电器线路仔细检查,确信无接线错误; C.用兆欧表测量,确信无外壳短路; D.检查接地线是否已正确安装到位; E.检查所有接线端子是否已完全紧固; F.检查制冷剂液位和油位; G.检查油槽、油加热器和油温; H.检查和测试所有运行控制和安全控制功能; I.与操作人员一起温习操作步骤,查看机组历史记录; J.配合检查水系统的运行情况; K.检查调整控制的设定值; L.启动机组,检查整个系统的运行状况,记录机组运行参数; M.根据运行记录,分析处理机组问题。 ※运行期间巡视 A.检查机组,调试安全控制装置;

冷水机组节能方法

冷水机组得控制 监控内容控制方法 1、冷机 启动当室外温度低于设定要求得时候,冷水机组停止运行;当室外温度>设定点+波动范围得时候制冷机组将重新启动来满足空调得要求。按照目前节能要求设定点为26℃,波动范围3-5℃。 2、机组群控冷水机组群控需根据建筑所需冷负荷,机组瞬时功率, 机组运行能效比瞬态值(COP)、机组运行能效比累计值及差压旁通阀开度,自动调整冷水机组运行台数,达到最佳节能目得。 冷水机组群控策略得目得就是尽量让冷水机组处于最高得效率下运行。 冷机COP瞬态值可通过如下方法测得: 编号物理量符号单位 测点位 置 测量仪器1 冷机进出口冷冻 水水温 ℃ 冷机冷 冻水干 管进出 口 热电偶或温度 自记仪 2 冷机冷冻水流量m3/h 冷机冷 冻水干 管 超声波流量计 3 冷机耗电量kW 冷机配 电柜 电功率计 通常,选取以下两种工况测量瞬态COP: 一、冷负荷最大得工况。如:出现室外气温达到最高值,人员负荷达到最高值等情况。 二、典型工况。如:室外气温接近当地制冷季气温平均值,人员设备负荷处于正常状 in t out t G W W Q COP= 3600 ) ( out in P t t G c Q - = ρ ? cos 3UI W=

态。 冷机群控策略就是否节能,最终还需考察冷水机组得COP值。冷机群控要尽量使冷机得COP值最大,从而使冷机在能源使用率最高得状态运行。 运行策略示例: 每增加新一组设备时,判断冷量条件为计算冷量超出机组总标准冷量得15%,例如现在已经开启一组,而冷量要求超出冷水机组制冷量得15%,再延时20~30 分钟后判断负荷继续增大时,即开启新一组设备。 关闭一组设备得判断冷量条件为计算冷量低于机组总标准冷量得90%,例如现在已经开启多组机组,且冷量在逐渐下降,在冷量要求低于正在运行多组冷水机组得90% 以下,且延时20~30 分钟后判断冷量条件无变化,即关闭其中一组运行时间较长得冷水机组及附属设备。 3、最少运行台数法由于冷水机组COP值最高得区域在70%-100%负荷,如下图 : 因此机组群控应该尽量让冷水机组在COP值最高得区域在70%-100%负荷内运行,尽量减少冷水机组运行台数。 4、机组联锁控制启动:冷却塔蝶阀开启,开冷却塔风机,冷却水蝶阀开启,开冷却水泵,冷冻水蝶阀开启,开冷冻水泵,开冷水机组。停止:停冷水机组,关冷冻泵,关冷冻水蝶阀,关冷却水泵,关冷却水蝶阀,关冷却塔风机、蝶阀。 5、提高冷冻水出水温度得设定冷冻水供水温度得优化控制用来优化冷水机组与冷冻水分配系统得运行,在满足建筑冷负荷需要得同时,实现制冷水机组与冷冻水泵能耗得最小。 当冷冻水得供水温度升高时,空调末端系统得传热效果将会恶化,因此需要更多得冷冻水量,冷冻水泵能耗将增加。当冷冻水供水温度降低时,末端得传热效果将会改善,因此需要较少得冷冻水量,但就是随着冷冻水量得减少,制冷水机组蒸发温度及蒸发压力也会降低,因此会增加制冷压缩机得能耗,合理得优化方法应该使冷水机组与冷冻泵得总能耗最小。 在设计负荷时冷冻水温度因该在设计温度7℃,但冷机运行多数情况就是在部分负荷。因此在部分负荷时冷冻水供水温度不一定要在设计温度,可以通过系统再设定适当提高冷冻水供水温度到7-9℃,通常情况可以节电5%-10%。

螺杆式冷水机组安装方案.

螺杆式中央空调系统的安装方案资料来源:(空调故障代码网https://www.360docs.net/doc/fe631950.html,) 目录 第一节制冷循环的的系统的安装 1.1螺杆式冷水机组 -------------------------------------------------------- 1 1.2螺杆式制冷机组安装 -------------------------------------------------- 2 第二节水系统及其设备的安装 2.1冷却水物质循环系统的安装 ----------------------------------------- 3 2.2冷热水循环系统的安装 ----------------------------------------------- 4 第三节新风系统和回风系统的安装 3.1表面式换热器的安装 -------------------------------------------------- 5 3.2消声器的安装 ----------------------------------------------------------- 6

3.3通风机安装 -------------------------------------------------------------- 7 3.4风管安装 ----------------------------------------------------------------- 8 第一节制冷循环系统的安装 一、螺杆式冷水机组 约克MILLENNIUM螺杆式冷水机组是典型的中央空调用机组。机组完全由工厂组装,包括蒸发器、AZ冷凝器、过冷器、压缩机、电动机、润滑系统、控制中心和所有跟机组有光的接管及敷线。 1.机组组成 (1) 压缩机 (2) 热交换器 (3) 紧凑水室 (4) 电动机驱动装置 (5) 容量控制 (6) 润滑 (7) 油分离器 (8) 制冷剂流量控制 (9) 控制中心 (10) 减振装置 (11) 起动器 二、螺杆式制冷机组安装 1.机组安装前的准备工作 (1)机房条件 1)机房应避免高温,通风应良好。机房温度过高,会对电器元件的寿命及其可靠性有一定影响。 2)机房应尽量保持干燥,机房内如过于潮湿,会对机器仪表产生腐蚀。

冷水机组节能方法

冷水机组节能方法

冷水机组的控制 监控内容控制方法 1. 冷机启 动当室外温度低于设定要求的时候,冷水机组停止运行;当室外温度>设定点+波动范围的时候制冷机组将重新启动来满足空调的要求。按照目前节能要求设定点为26℃,波动范围3-5℃。 2. 机组群控冷水机组群控需根据建筑所需冷负荷,机组瞬时功率, 机组运行能效比瞬态值(COP)、机组运行能效比累计值及差压旁通阀开度,自动调整冷水机组运行台数,达到最佳节能目的。 冷水机组群控策略的目的是尽量让冷水机组处于最高的效率下运行。 冷机COP瞬态值可通过如下方法测得: 编号物理量符号单位 测点位 置 测量仪器1 冷机进出口冷冻 水水温 ℃ 冷机冷 冻水干 管进出 口 热电偶或温度 自记仪 2 冷机冷冻水流量m3/h 冷机冷 冻水干 管 超声波流量计 3 冷机耗电量kW 冷机配 电柜 电功率计 通常,选取以下两种工况测量瞬态COP: 一、冷负荷最大的工况。如:出现室外气温达到最高值,人员负荷达到最高值等情况。 二、典型工况。如:室外气温接近当地制冷季气温平均值,人员设备负荷处于正 in t out t G W W Q COP= 3600 ) ( out in P t t G c Q - = ρ ? cos 3UI W=

常状态。 冷机群控策略是否节能,最终还需考察冷水机组的COP值。冷机群控要尽量使冷机的COP值最大,从而使冷机在能源使用率最高的状态运行。 运行策略示例: 每增加新一组设备时,判断冷量条件为计算冷量超出机组总标准冷量的15%,例如现在已经开启一组,而冷量要求超出冷水机组制冷量的15%,再延时20~30 分钟后判断负荷继续增大时,即开启新一组设备。 关闭一组设备的判断冷量条件为计算冷量低于机组总标准冷量的90%,例如现在已经开启多组机组,且冷量在逐渐下降,在冷量要求低于正在运行多组冷水机组的90% 以下,且延时20~30 分钟后判断冷量条件无变化,即关闭其中一组运行时间较长的冷水机组及附属设备。 3. 最少运行台数法由于冷水机组COP值最高的区域在70%-100%负荷,如下图: 因此机组群控应该尽量让冷水机组在COP值最高的区域在70%-100%负荷内运行,尽量减少冷水机组运行台数。 4. 机组联锁控制启动:冷却塔蝶阀开启,开冷却塔风机,冷却水蝶阀开启,开冷却水泵,冷冻水蝶阀开启,开冷冻水泵,开冷水机组。停止:停冷水机组,关冷冻泵,关冷冻水蝶阀,关冷却水泵,关冷却水蝶阀,关冷却塔风机、蝶阀。 5. 提高冷冻水出水温度的设定冷冻水供水温度的优化控制用来优化冷水机组和冷冻水分配系统的运行,在满足建筑冷负荷需要的同时,实现制冷水机组和冷冻水泵能耗的最小。 当冷冻水的供水温度升高时,空调末端系统的传热效果将会恶化,因此需要更多的冷冻水量,冷冻水泵能耗将增加。当冷冻水供水温度降低时,末端的传热效果将会改善,因此需要较少的冷冻水量,但是随着冷冻水量的减少,制冷水机组蒸发温度及蒸发压力也会降低,因此会增加制冷压缩机的能耗,合理的优化方法应该使冷水机组和冷冻泵的总能耗最小。 在设计负荷时冷冻水温度因该在设计温度7℃,但冷机运行多数情况是在部分负荷。因此在部分负荷时冷冻水供水温度不一定要在设计温度,可以通过系统再设定适当提高冷冻水供水温度到7-9℃,通常情况可以节电5%-10%。

冷水机组施工方案

中央空调系统水处理服务期内施工方案 一、前期施工工期: 7-10天。前期清洗、预膜工作结束以后进入定期加药保养阶段。 二、施工工序: 冷却水系统(开路系统):除锈去垢杀菌灭藻清洗--------中和钝化预膜----------缓蚀阻垢杀菌灭藻保养---------定期加药排污保养 冷冻水及采暖水系统(闭路系统):除锈去垢杀菌预膜--------全年性缓蚀阻垢杀菌保养剂一次性投入,或采取优化方法处理。 三、水处理的流程: (1)冷却水系统:(从冷却塔加药到系统) 冷却塔冷却水泵 (2)冷冻水系统:(从膨胀水箱或系统其他入口处加药到系统) 冷冻水泵蒸发器风机盘管(含其他末端设备) 四、水处理的机理: (1)清洗:向水系统加入的清洗剂具有剥离、分散、渗透、除锈去垢、杀菌灭藻、缓蚀的作用,对金属如钢、铜的腐蚀率降到最低,对管内壁进行恰到好处的清洗。 (2)中和钝化预膜:清除水中残留的药性。管道内表面形成一种5000—8000A的保护膜,阻止了水中腐蚀性离子与金属内壁形成的电化学反应。 (3)阻垢缓蚀:使水中腐蚀性离子失去腐蚀作用改变水中微粒的晶体结构,并使其带同种电荷而形成阻垢机理,使金属管壁成膜达到缓蚀的机理。 五、施工内容: 1、冷却水系统(开路系统):清除冷却塔集水盘和布水槽的污垢,向冷却水系统加入除锈去垢杀菌灭藻缓蚀的复配清洗剂,对冷却水系统进行循环清洗;然后再向冷却水系统加入复配中和钝化预膜剂,对冷却水系统进行钝化预膜;最终向冷却水系统加入复配缓蚀阻垢杀菌灭藻中和保养剂,运行期间对冷却水系统进行定期的加药和排污,加药和排污的时间与次数我公司可根据使用状况和天气状况进行恰当的布置和调整。 注:上述工作内容涉及范围为:制冷主机的冷凝器(溴化锂机组含吸收器)、冷却循环水泵、冷却水管路。

冷水机组调试维护手册(风冷模块)

冷水机组调试维护手册(风冷模块)

冷水机组调试维护手册 (风冷模块)

机组介绍 (3) 电控箱示意图 (4) 机组调试工具准备 (5) 调试前检查 (5) 机组检査 (5) 水系统检査 (6) 电系统检查 (7) 调试过程 (7) 水系统调试 (7) 收操器、信号线连线 (8) 水泵调试 (8) 靶式流量开关调试 (9) 正式开机调试 (10) 准备工作 (10) 开机步骤 (11) 观察记录 (12) 室内末端调试 (12) 故障问题分析处理 (13) 维护保养 (14)

机组简介: 风冷模块式冷(热)水机组是我公司为宾馆、医院、影剧院、体育馆、娱乐中心、商业大厦、写字楼、工矿企业等场所开发设计的中央空调产品,它可安装于屋顶或室外庭院,不需专用机房和冷却塔。采用高效换热器+双热力膨胀阀技术,制冷制热分开控制,控制更精确,高效节能(实测COP可达3.5),低噪音:采用优质低噪音涡旋压机,并配以多种措施进行强力降噪,噪音比其它同类产品低2-3分贝,采用微电脑控制器,具有远程网络通讯、控制功能外形尺寸小,节省空间多种保护功能,具有高度的可靠性和优良的可控性。

1?机组铭牌一一位于机组主机右侧板的左下角。 2?系统部件一一包括蒸发器,冷凝器,压缩机,节流装置,控制系统等。3?型号命名法 LS Q W R F XX TTTrr- 机组名义制冷量(单位:KW) 冷凝器冷却方式为风冷式 热泵型,如为单冷型则省略 压缩机压缩方式为涡旋式 压缩机型式为全封闭式 冷水机组缩写 氟系统图:

水 ■ft 热Ji- 电控箱示意图: 注:KM1 : A系统压缩机接触器KM2 : A系统风机接触器 KM3 : B系统压缩机接触器

约克中央空调冷水机组年度维保方案

约克中央空调冷水机组年度维保方案 YORK—YK离心式冷水机组冷媒为R134A,只能在具备开机条件下进行年度保养工作。 一、年度保养工作内容:水循环系统;电气系统; 机组系统。 二、保养前的准备工作:1、了解现场情况;2、准 备保养工具;3、准备保养所需的备品备件。 三、保养工序: (1)检查上一年机组运行记录,判断机组目前状态。 (2)水循环系统: 冷凝器:首先了解机组上一年的冷却水水处理情况。关闭机组冷却水阀门,放掉冷凝器中残余水,打开冷凝器水室端盖。检查冷凝器铜管是否清洁,如有污垢应判断污垢种类。 工作步骤: 1、关闭机组冷却水阀门,放掉冷凝器中残余水。 2、附着类污垢应用专业管道清洗机配以专用管道 清洗刷进行清洗。 3、钙镁离子碱类污垢应采用化学清洗,化学清洗 完毕以后应在进行机械清洗以确保清洁干净。

4、在清洗工作结束后检查冷凝器水室垫片是否损 坏(建议每年更换一次),在安装冷凝器水室端盖时应采用“均衡加压法”旋紧螺栓。 (3)电气部分: A.传感器部分: 1、传感器名称:蒸发器出水温度、压缩机排气温 度、,根据测量的电阻值和电压值对应温度探头检测表,检测值偏差超过华氏4度应更换; 2、检查所测量值与对应值是否正确; 3、检查各接点是否牢固,探头插接处是否密封良 好; B.启动柜的检查和清洗: 1、在电源开关上下电源端检查是否有电(上口应 有电,下口应没电); 2、检查控制电路电压是否正常,导线外观是否完好; 3、断电检查清扫启动柜,首先切断电源,并悬挂警示牌; 4、检查所有电气接点是否牢固,包括各接触器; 5、用专业电气清洗剂和毛刷对控制柜内部电控元件进行清刷,再清洗过程中检查各电器插件和接点是否牢固。在清扫时应防止对导线造成损伤,对接线端子拉线;

冷水机组系统节能改造方案

锦州**有限公司 冷水机组、中央空调系统 节能改造方案 制作单位: 制作人:

首先正确理解冷水机组、中央空调系统各个部分的作用与工艺流程结构,对于实现变频节能改造至关重要,从因果关系角度上看,冷媒循环水系统、冷却循环水系统、冷却塔风机系统均是制冷压缩机系统的从动系统。当制冷主压缩机系统的实际需求负荷发生变化时,对冷媒循环水、冷却循环水的需求量和冷却塔的冷却风量也发生相应的变化,正因如此,我们才有实现节能改造目标的可能和必要的依据条件,才能从真正意义上实现动态的“按需分配”控制目标的可能。 冷水机组、中央空调水泵的耗电量约占总系统耗电量的20~40%,故节约低负荷时主压缩机系统和水泵、风机系统的电能消耗,具有极其重要的经济意义。以下按照冷水机组分析,中央空调系统与之相似(冬季供暖运行其节电方式基本相同)。 由于冷水机组系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,几乎绝大部分时间负载都在80%以下运行。通常冷水机组系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷

却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了冷水机组的运行环境和运行质量。 一、增加冷水机组节能系统的必要性 由于设计时,冷水机组系统必须按天气最热、负荷最大时设计,并且留10-20% 设计余量,然而实际上绝大部分时间机组是不会运行在满负荷状态下,存在较大的富余,所以节能的潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大的浪费。 目前水泵系统的流量与压差是靠人工调节阀门和泵开启的台数来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差的现象,不仅大量浪费电能,而且还造成冷水系统最末端达不到合理效果的情况。为了解决这些问题需使水泵随着负载的变化调节水流量并智能控制开启数量。 采用变频器控制能根据冷却水泵负载变化随之调整水泵电机的转速,在满足冷水系统正常工作的情况下使冷却水泵作出相应调节,以达到节能目的。 1、冷水机组运行周期 冷水机组做为工艺用水的动力设施,每年运行7~8个月,冬季机组停机切换到板式换热器运转。 锦州气温曲线图 35 30 25 20 系列1 15 10 5 4月 5月 6月 7月 8月 9月 10月 11月 月份

简单机械的效率计算

简单机械的机械效率的计算 【学习目标】1.学会计算简单机械的机械效率.2.深入理解有用功、额外功和总功. 【典型例题】一、杠杠的机械效率. 例1.用动力臂是阻力臂2倍的杠杆将重400N的货物抬高20cm,手向下压杠杆的力是250N,手下降的高度是多少cm?这个杠杆的机械效率是多少? 二、动滑轮的机械效率. 例2.用动滑轮把重40N的物体匀速提高20m,所用的拉力是25N,则拉力的作用点移动的距离是多少?动滑轮的机械效率是多少? 三、滑轮组的机械效率. 例3.某人用如图所示的滑轮组将重3000N的物体提高6m,所用的拉力是1250N,则拉力的作用点移动的距离是多少?此滑轮组的机械效率是多少 ? 四、斜面的机械效率. 例4.沿着长6m、高2m的斜面,将1200N的物体拉到车上去,所用的拉力是500N,则斜面的机械效率是多少? 【针对练习】1.用动力臂是阻力臂5倍的杠杆,匀速将100N的重物举高0.2m,所用动力是40N,杠杆的机械效率是_________. 2.用动滑轮将重80N的货物提升4m,若加在绳子自由端的拉力F=50N,则绳子移动的距离是_______m;动滑轮对物体做的有用功是________J,该动滑轮的机械效率是_________.

3.某人用如图所示的滑轮组提升2000N的重物,所用的拉力是800N,绳子自由端被拉下4m,这个人做的总功是_________J,有用功是___________J,滑轮组 的机械效率是________. 4.斜面高1m,长为3m,工人用400N沿斜面方向的力将重为840N的箱子推到 车上,则这个斜面的机械效率是_________. 5.某人用动滑轮把重1000N的货物匀速提高10m,如果这个动滑轮的机械效率是80%,试求在此过程中人拉绳的力是多少? 6.沿着长5m、高1m的斜面,将1000N的物体拉到车上去. (1)如果不考虑摩擦,需要的拉力是多少? (2)如果所用的拉力是250N,则斜面的机械效率是多少? 7.某人用如图所示的滑轮组提升重物(忽略绳与滑轮之间的摩擦).已知每个动滑轮重50N (1)当重物的重力为300N时,则需要的拉力是多少?此时的机械效率是多少? (2)当被提升的重物重力是3000N时,则需要的拉力是多少?此时的机械效率又是多少? (3)通过以上两步计算,你得到什么启示 ?

格力螺杆式水冷冷水机组(R22)

第二章 LH 系列螺杆式水冷冷水机组(R22) 一、 产品概述 1、产品特点: 在水冷冷水机市场上,效率和运行成本越来越为人们所关注,格力螺杆式水冷冷水机组高效节能,运行稳定可靠,还可以选择附加热回收功能,在制冷运行的同时,可免费提供最高55℃的生活热水,不附加消耗能源。在名义工况下的制冷量围为:190~1700KW ,可广泛适用于各类办公楼宇、医院、学校、商场,也可应用于生产工艺流程的降温。 1) 高效节能 ◆ 采用满液式蒸发方式 A 、 蒸发器中的制冷剂分布更均匀,温度场优化换热效率更高。 B 、满液式蒸发器,大幅度地提高了机组的蒸发温度,提升了机组的换热效率。 C 、通过与高性能高可靠性的专用螺杆压缩机的搭配,大大提升了机组的制冷量和能效比。 D 、热回收时利用制冷产生的余热制取热水,能源利用效率更高,减少了能源消耗和对环境的热污染。 E 、热回收器置于壳管冷凝器中,不附加占用空间,外形简洁美观。 F 、热回收器采用高效换热铜管,抗腐蚀性能强,保证生活热水的清洁卫生。 满液式蒸发方式效果图 ◆ 新型节流 A 、 自动计算最佳能效比值,并快速调节实际值,按需输出进一步优化控制逻辑。 B 、 电子膨胀阀更精确地调节制冷流量及蒸发器液位的变化。 C 、 机组的部分负荷效率始终保持最高,运行围更宽。 ◆ 多机并联、部分负荷效率更高 获 取中国首批冷水机组节能认证证书

A、由于大部分运行时间处于非设计工况,在选择冷水机组时应注意:它不但要满足满负荷的设计 要求,并且在较低负荷时,以及冷却塔水温较低时也能高效运行,相同满负荷能效比的冷水机组,在部分负荷运行费用有时会相差10%以上。 B、部分负荷综合值(IPLV)真实有效反映部分负荷的性能指 标。 C、格力满液式多机并联技术,可设置双机并联运行,也可设 置单机独立运行,部分负荷运行时效率更高,IPLV值可高达 7.5。 部分负荷效果图 ◆容量调节与机组负荷匹配 A、可根据用户需求进行有级或无级容量调节。 B、压缩机在最小负荷位置启动,可对制冷量进行无级调节。 C、无级滑阀调节强制输气,与实际负荷完全匹配。 2)高可靠性 ◆严格实验流程 A、螺杆机组在线检测时,通过具有业最先进的在线检测系 统(机械研究所研制的,具有条形码管理系统以及采用电脑 全自动检测及判定的超大型在线检测系统)。 B、严格按照国标GB/T10870、GB/T18430等的要求执行。 测试图 ◆可靠的回油系统 A、专门针对满液式冷水机组系统,设置低油位保护控制,完全杜绝了压缩机少油损坏的可能性。 B、机械分离和吸附分离相结合的一次及二次油分,保证了油的高效分离。 3)彩色图象显示控制中心 ◆彩色显示中心(用户选配项)

螺杆式冷水机组安装方案

螺杆式中央空调系统的安装方案 目录 第一节制冷循环的的系统的安装 1.1螺杆式冷水机组 -------------------------------------------------------- 1 1.2螺杆式制冷机组安装 -------------------------------------------------- 2 第二节水系统及其设备的安装 2.1冷却水物质循环系统的安装 ----------------------------------------- 3 2.2冷热水循环系统的安装 ----------------------------------------------- 4 第三节新风系统和回风系统的安装 3.1表面式换热器的安装 -------------------------------------------------- 5 3.2消声器的安装 ----------------------------------------------------------- 6 3.3通风机安装 -------------------------------------------------------------- 7 3.4风管安装 ----------------------------------------------------------------- 8

第一节制冷循环系统的安装 一、螺杆式冷水机组 约克MILLENNIUM螺杆式冷水机组是典型的中央空调用机组。机组完全由工厂组装,包括蒸发器、AZ 冷凝器、过冷器、压缩机、电动机、润滑系统、控制中心和所有跟机组有光的接管及敷线。 1.机组组成 (1) 压缩机 (2) 热交换器 (3) 紧凑水室 (4) 电动机驱动装置 (5) 容量控制 (6) 润滑 (7) 油分离器 (8) 制冷剂流量控制 (9) 控制中心 (10) 减振装置 (11) 起动器 二、螺杆式制冷机组安装 1.机组安装前的准备工作 (1)机房条件 1)机房应避免高温,通风应良好。机房温度过高,会对电器元件的寿命及其可靠性有一定影响。 2)机房应尽量保持干燥,机房内如过于潮湿,会对机器仪表产生腐蚀。 3)机房应保持清洁,避免积灰。 4)机房应提供良好的照明设备。 5)机房应留有排水沟,能将积水及时排出。 (2)设备搬运:应防止机组发生损伤,运达现场后,机组应存放在库房中,如无库房必须露天存放时,应在机组底部适当垫高,防止浸水,箱上必须加遮盖,以防止雨水淋坏机组。 (3)开箱 1)开箱之前将箱上的灰尘泥土扫除干净。查看箱体外形有无损伤,核实箱号。开箱时,要注意不能碰伤机件。

机械采油井系统效率计算方法

机械采油井系统效率计算方法 一定义 1 机械采油井的输入功率——拖动机械采油设备的输入功率 2 机械采油井的有效功率——将井内液体输送到地面所需要的功率 3 机械采油井的系统效率——机械采油井的有效功率与输入功率的比值 4 抽油机井的光杆功率——光杆提升液体并克服井下各种阻力所消耗的功率 5 抽油机井的地面效率——光杆功率与电机输入功率的比值(电动机效率·皮带轮效率·抽油机四连机构效率) 6 抽油机井的井下效率——抽油机井的有效功率与光杆功率的比值(盘根盒效率·抽油杆柱效率·抽油泵效率·油管效率) 二测试方法和计算公式 1电气测试参量:输入功率或电流、电压和功率因数。 2井口测试参量:回压、套压、产液量、含水率和原油相对密度。3井下测试参量:油井动液面深度。 4光杆测试参量:光杆载荷和光杆位移。 计算公式 1机械采油井的输入功率P1=3600n p·K·K1/N p·t p 式中:P1——输入功率,KW n p——有功电表所转的圈数,r

K——电流互感器变比,常数 K1——电压互感器变比,常数 N p——有功电能表耗电为1KW·h时所转的圈数,r/(KW·h) t p——有功电能表转N p所用的时间,s (现在输入由仪器直接测出) 2机械采油井的有效功率P2=Q·H·ρ·g/86400 式中:P2——有效功率,KW Q——油井产液量,m3/d H——有效扬程,m ρ——油井液体密度,t/ m3 g——重力加速度,g=9.8m/s2 3有效扬程H=H d+(p o-p t)·1000/p·g 式中:H——有效扬程,m H d——油井动液面深度,m p o——回压,MPa p t——套压,MPa 4油井液体密度ρ=(1-f w)·ρo+f w·ρw 式中:f w——含水率 ρo——油的密度,t/m3 ρw——水的密度,t/m3 5光杆功率(抽油机井)P3=A·S d·n c·n s/60000 式中:P3——抽油机光杆功率,kW

冷水机组调试方法

YSLGF系列螺杆低温冷水机组 调试方法

1.1 适用条件 本设备的适用条件不得超过表1 规定的范围: 表1 适用条件 1.2 使用环境 本设备使用环境为: a) 工业区、屋内用,通风良好; b) 安装地点无雨雪侵袭,设备无溅水、浸水的可能; c) 周围空气最高温度不超过+40℃,且在24 小时周期内的平均温度不超过+35℃,周围空气温度 的下限为+10℃; d) 安装地点无爆炸危险的介质,且介质中无腐蚀和破坏绝缘的气体、液体及导电尘埃; e) 安装地海拔高度不超过1000 米; f) 空气相对湿度在最高温度为+40℃时不超过50%;最湿月平均最大相对湿度为90%,同时该月的 平均最低温度不超过+25℃。由于温度变化发生在电器上的凝露情况必须采取措施; g) 满足所选电机的防护等级标准环境要求。 第一章工作原理与结构特征 1.1 工作原理 1.1.1 制冷剂在满液式蒸发器管外流动吸收管内载冷剂的热量,并不断蒸发,当到达蒸发器出口时全部变成气体,经回气管路被吸入压缩机。经压缩后的气体进入冷凝器冷凝为饱和液体并有一定的过冷,放出的热量被冷却水带走。过冷液体再经过过滤器或干燥过滤器除去杂质与水分,经节流装置节流后变为低温低压液体,进入蒸发器再循环。 1.1.2 设备中有多种阀门,按其工作性质不同,设备操作时期不同,其开关状态也不相同。具体阀门状态见表2。

警告! 设备正常运行时,安全阀下装设的截止阀必须保证全开,不得关闭,只有当安全 阀需要校验,或压力试验值达到其启跳压力时,方可关闭此阀。 1.2 结构特征 1.2.1 主要部件及外形图 本设备主要部件有:螺杆制冷压缩机组、冷凝器、蒸发器、节流装置和电控等。 1.2.2 螺杆制冷压缩机组

冷水机组节能方法

冷水机组的控制 监控容控制方法 1. 冷机启 动当室外温度低于设定要求的时候,冷水机组停止运行;当室外温度>设定点+波动围的时候制冷机组将重新启动来满足空调的要求。按照目前节能要求设定点为26℃,波动围3-5℃。 2. 机组群控冷水机组群控需根据建筑所需冷负荷,机组瞬时功率, 机组运行能效比瞬态值(COP)、机组运行能效比累计值及差压旁通阀开度,自动调整冷水机组运行台数,达到最佳节能目的。 冷水机组群控策略的目的是尽量让冷水机组处于最高的效率下运行。 冷机COP瞬态值可通过如下方法测得: 编号物理量符号单位 测点位 置 测量仪器1 冷机进出口冷冻 水水温 ℃ 冷机冷 冻水干 管进出 口 热电偶或温度 自记仪 2 冷机冷冻水流量m3/h 冷机冷 冻水干 管 超声波流量计 3 冷机耗电量kW 冷机配 电柜 电功率计 通常,选取以下两种工况测量瞬态COP: 一、冷负荷最大的工况。如:出现室外气温达到最高值,人员负荷达到最高值等情况。 二、典型工况。如:室外气温接近当地制冷季气温平均值,人员设备负荷处于正 in t out t G W W Q COP= 3600 ) ( out in P t t G c Q - = ρ ? cos 3UI W=

常状态。 冷机群控策略是否节能,最终还需考察冷水机组的COP值。冷机群控要尽量使冷机的COP值最大,从而使冷机在能源使用率最高的状态运行。 运行策略示例: 每增加新一组设备时,判断冷量条件为计算冷量超出机组总标准冷量的15%,例如现在已经开启一组,而冷量要求超出冷水机组制冷量的15%,再延时20~30 分钟后判 断负荷继续增大时,即开启新一组设备。 关闭一组设备的判断冷量条件为计算冷量低于机组总标准冷量的90%,例如现在已经开启多组机组,且冷量在逐渐下降,在冷量要求低于正在运行多组冷水机组的90% 以 下,且延时20~30 分钟后判断冷量条件无变化,即关闭其中一组运行时间较长的冷水 机组及附属设备。 3. 最少 运行台数 法 由于冷水机组COP值最高的区域在70%-100%负荷,如下图: 因此机组群控应该尽量让冷水机组在COP值最高的区域在70%-100%负荷运行,尽量 减少冷水机组运行台数。 4. 机组联锁控制启动:冷却塔蝶阀开启,开冷却塔风机,冷却水蝶阀开启,开冷却水泵,冷冻水蝶阀开启,开冷冻水泵,开冷水机组。停止:停冷水机组,关冷冻泵,关冷冻水蝶阀,关冷却水泵,关冷却水蝶阀,关冷却塔风机、蝶阀。 5. 提高冷冻水出水温度的设定冷冻水供水温度的优化控制用来优化冷水机组和冷冻水分配系统的运行,在满足建筑冷负荷需要的同时,实现制冷水机组和冷冻水泵能耗的最小。 当冷冻水的供水温度升高时,空调末端系统的传热效果将会恶化,因此需要更多的冷冻水量,冷冻水泵能耗将增加。当冷冻水供水温度降低时,末端的传热效果将会改善,因此需要较少的冷冻水量,但是随着冷冻水量的减少,制冷水机组蒸发温度及蒸发压力也会降低,因此会增加制冷压缩机的能耗,合理的优化方法应该使冷水机组和冷冻泵的总能耗最小。 在设计负荷时冷冻水温度因该在设计温度7℃,但冷机运行多数情况是在部分负荷。因此在部分负荷时冷冻水供水温度不一定要在设计温度,可以通过系统再设定适当提高冷冻水供水温度到7-9℃,通常情况可以节电5%-10%。

冷水机组维护方案.doc

冷却塔的维修 为了保持机组的性能: -在日常维护中小心仔细 -进行额外的维修工作时 ,要保证制冷机组的构造特性 -用最初的备件 -保护环境,拆除过时的制冷机组。 日常维护 制冷机组的正常运行需要规律的检修和保养。 维护操作的项目如下: 日常操作 检查机组是否正常运行,查一下机组最后的报警,目测交换器有没有滴、漏的现象。 检查蒸发器进出口的温度 每运行 500 小时后应进行的操作 检查加湿循环过滤器的洁净程度 目测压力容器的保存状况 每次换季或运行1000 小时后应进行的操作 清洁冷凝器和蒸发器的盘管 检查水流量和清洁程度 检查继电器、开关等 检查电线连接和末端是否牢固 检查风扇的轴承是否有噪音 检查离心风扇的连接皮带 检查制冷循环的运行参数。检查每一个循环: - 冷凝压力,与热源的数据进行比较(水/空气温度) - 蒸发压力,与热源的数据进行比较(空气温度、RH 、水温度) -油压力 -吸气温度 -吸气压力 -排气温度 -排气压力 -液态温度 -计算过热度 Superheat -计算过冷度 Subcooling -Oil Carter temperature -电压 -接地保护 -运行时间 -启动次数 -检查油的酸性 -检查油的含水量

-在满负荷和半负荷下的电流 压缩机的维护工作 见后段 在每个使用季节的结束和长时间关闭机组时的操作 见后段 检查加湿循环过滤器的洁净程度 过滤器变脏的第一个现象是,CW 的温度升高,因为在换热中的CW 的流量减少了。 在运行的初始阶段,过滤器必须经常清洗,每次第一周和运行的第一个月的每50 个小时后。 目测压力容器状况(所有的) 机组的压力容器的表面状况是很重要的(蒸发器,冷凝器,交换器,液体回收器),要保 持无锈,无腐蚀,无看的到的变形。 如果表面的氧化和腐蚀控制和处理的不及时,会造成压力容器的厚度下降,导致容器的承 压能力下降。 保护交换器应采用防氧化的涂料和产品。 如果有看的出的变形,关上机组并和XXX 的技术服务中心联系。 蒸发器的绝缘如果有损伤必须修理好。 如果 XX 的产品没有铝的外壳,应该每年给蒸发器刷一次绝缘保护漆,以防止因直接暴露在 阳光下导致过快老化。 清洁冷凝器和蒸发器的盘管 在换热盘管中的灰尘,会导致冷凝压力的上升(夏天)和在热泵运行时蒸发压力的下降, 并结冰。这两种情况都会造成明显的电耗增大和压缩机磨损,并会停机。 清洁是必须要做的,在机组关闭、外部主控制开关关闭的的情况下(机组断电)用水冲 洗。 必须经常进行检查,特别是在受粉或落叶的时候(春秋季)。 free-cooling of the Maximo (Free Cooling Chiller) series的制冷机组系列有两个盘管:从外面的开始,然后是the free-cooling然后是冷凝盘管。 在两个盘管间,看得到的地方应该进行清洗。可通过顶端或底端放free-cooling附加电池的位置。通常是用一个橡皮塞堵住的,拿开橡皮塞,用水冲洗内部,冲好后,在用橡皮塞 堵住。 在每运行10000小时后应进行更加彻底的清洗。打开the free-cooling电池到水路循环间的连接。拿开里面的电池,然后进行清洗。 检查水流量和交换器的洁净 交换器内流量的变化是多种原因引起的,除了过滤器脏了以外,还可能是因为泵过旧了或 其他错误的操纵造成的(例如:叶轮速度的变化,两个平行泵的插入,意外的打开或关闭 一个阀门等),甚至交换器内部有灰尘等。

相关文档
最新文档