高速公路的一些线路坐标高程计算公式

高速公路的一些线路坐标高程计算公式
高速公路的一些线路坐标高程计算公式

高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)

一、缓和曲线上的点坐标计算

已知:①缓和曲线上任一点离ZH点的长度:l

②圆曲线的半径:R

③缓和曲线的长度:l0

④转向角系数:K(1或-1)

⑤过ZH点的切线方位角:α

⑥点ZH的坐标:xZ,yZ

计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,

公式中n的取值如下:

当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度

α为过点HZ的切线方位角再加上180°

K值与计算第一缓和曲线时相反

xZ,yZ为点HZ的坐标

切线角计算公式:

二、圆曲线上的点坐标计算

已知:①圆曲线上任一点离ZH点的长度:l

②圆曲线的半径:R

③缓和曲线的长度:l0

④转向角系数:K(1或-1)

⑤过ZH点的切线方位角:α

⑥点ZH的坐标:xZ,yZ

计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:

当只知道HZ点的坐标时,则:

l为到点HZ的长度

α为过点HZ的切线方位角再加上180°

K值与知道ZH点坐标时相反

xZ,yZ为点HZ的坐标

三、曲线要素计算公式

公式中各符号说明:

l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度

l2——第二缓和曲线长度

l0——对应的缓和曲线长度

R——圆曲线半径

R1——曲线起点处的半径

R2——曲线终点处的半径

P1——曲线起点处的曲率

P2——曲线终点处的曲率

α——曲线转角值

四、竖曲线上高程计算

已知:①第一坡度:i1(上坡为“+”,下坡为“-”)

②第二坡度:i2(上坡为“+”,下坡为“-”)

③变坡点桩号:SZ

④变坡点高程:HZ

⑤竖曲线的切线长度:T

⑥待求点桩号:S

计算过程:

五、超高缓和过渡段的横坡计算

已知:如图,

第一横坡:i1

第二横坡:i2

过渡段长度:L

待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i

解:d=x/L

i=(i2-i1)(1-3d2+2d3)+i1

六、匝道坐标计算

已知:①待求点桩号:K

②曲线起点桩号:K0

③曲线终点桩号:K1

④曲线起点坐标:x0,y0

⑤曲线起点切线方位角:α0

⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)

⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)

求:①线路匝道上点的坐标:x,y

②待求点的切线方位角:αT

计算过程:

注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,

当x=0时sgn(x)=0。在计算器中若无此函数可编一个小子程序代替。

最新土坝坝顶高程计算说明书

土坝坝顶高程计算说 明书

土坝坝顶高程计算说明书 1 计算基本资料 达兰河流域属大陆性气候,其特点是光照充足,夏季炎热,冬季寒冷,干燥少雨,蒸发量大,春季多风,库区最大风速18m3/s,多年平均最大风速12.6m3/s,风向多顺河,风向基本上与坝轴线正交,吹程D=5.3km。东田水库属内陆峡谷水库。 东田水库枢纽工程的特征水位如下: ●死水位1400.0m ●正常蓄水位1435.5m ●设计洪水位1437.66m ●校核洪水位1440.25m 本工程地震基本烈度为Ⅵ度,根据中华人民共和国国家经济贸易委员会发布的《水工建筑物抗震设计规范》(DL5073-2000)总则所述:设计烈度为Ⅵ度时,可不进行抗震计算,但对1级水工建筑物仍应按规范采取适当的工程措施。 2 设计计算情况 根据中华人民共和国水利部发布的《碾压式土石坝设计规范》(SL274-2001),第5.3.3条,坝顶高程等于水库静水位与坝顶超高之和,应按以下运用条件计算,取其最大值: (1)设计洪水位加正常运用条件下的坝顶超高超高; (2)正常蓄水位加正常运用条件下的坝顶超高; (3)校核洪水位加正常运用条件下的坝顶超高; (4)正常蓄水位加非常运用条件下的坝顶超高,再按本规范5.3.2条规定加地 震安全加高。 本工程地震基本烈度为Ⅵ度,故由《水工建筑物抗震设计规范》(DL5073-2000)知不考虑地震加高。 第5.3.4条规定:当坝顶上游侧设有防浪墙时,坝顶超高可改为对防浪墙顶的要求。但此时在正常运用条件下,坝顶应高出静水位0.5m;在非常运用条件下,坝顶应不低于静水位。 第5.3.5规定,设计计算风速的取值应遵循下列规定: (1)正常运用条件下的1级、2级坝,采用多年平均年最大风速的1.5~2.0 倍; (2)正常运用条件下的的3级、4级和5级坝,采用多年平均年最大风速的1.5 倍; (3)非常运用条件下,采用多年平均年最大风速。 本次设计大坝为3级,故正常运用情况下,采用多年平均年最大风速的1.5倍,即:W=12.6×1.5=18.9m/s;非常运用条件下,采用多年平均年最大风速,即:W=12.6m/s。 第5.3.6规定坝顶应预留竣工后的沉降超高。

给排水管道工程高程测量计算方法

给排水管道高程测量计算方式 一、主管、主井: 1、原地面高程:施工图纸上有,没有的由施工员提供。 2、基底高程:管内底标高-垫层-管壁厚。检查井基底=设计给的井底标高-垫层-底板。 3、垫层高程:参照图集,看多大的管子是多厚的垫层,再在基底高程上加上垫层的厚度。 4、管道基础:看设计图纸要求的是多少度的基础。比如180°砂砾石基础,D800的管子,就需要在垫层的高程上加上480mm(管子的一半加壁厚)。 5、管道铺设就抄管内底标高,图纸上有。 6、管道回填:看回填到哪个位置,一般设计要求管顶50cm填砂砾石,做一次回填。以上至结构层下填素土,做一次回填资料。如都是填砂砾石,就做一次回填就好。填筑顶面:管顶50cm就需在垫层的高程基础上+管子大小+两个壁厚+50cm。填到结构层下的填筑顶面:路中设计顶标高-结构层厚度。回填深度:填筑顶面标高-基底高程。 7、检查井回填:看设计要求井室周围用什么土质的材料填多宽。填筑顶面标高:设计给的井底标高+埋深深度-结构层厚度。回填深度:填筑顶面标高-基底高程。 二、支管、支井: 1、原地面高程:由施工员提供。 2、基底高程:=支管管内底标高-垫层-壁厚(设计图纸上给的支管管

内底标高是指接入主井内支管的管内底标高),接入支井内的支管管内底标高=设计图纸上给的支管管内底标高+支管长度*坡度(支井向主井流水的加,主井向支井流水的减)。管内底标高-垫层-管壁厚=基底高程。检查井基底=设计给的井底标高-垫层-底板。 3、垫层高程:参照图集,看多大的管子是多厚的垫层,再在基底高程上加上垫层的厚度。 4、管道基础:看设计图纸要求的是多少度的基础。比如180°砂砾石基础,D800的管子,就需要在垫层的高程上加上480mm(管子的一半加壁厚)。 5、管道铺设就抄管内底标高,图纸上有。 6、管道回填:看回填到哪个位置,一般设计要求管顶50cm填砂砾石,做一次回填。以上至结构层下填素土,做一次回填资料。如都是填砂砾石,就做一次回填就好。填筑顶面:管顶50cm就需在垫层的高程基础上+管子大小+两个壁厚+50cm。填到结构层下的填筑顶面:路中设计顶标高-结构层厚度。 7、检查井回填:看设计要求井室周围用什么土质的材料填多宽。填筑顶面标高:设计给的井底标高+埋深深度-结构层厚度(若支井在道路外面,不存在结构层就不需要减结构层厚度)。回填深度:填筑顶面标高-基底高程。

曲线计算公式

一、曲线要素计算 已知:JDZH 、JDX 、JDY 、R 、L S1、L S2、L H 、T 、A 1、A 2(L H =L S1+L S2+圆曲线长) 1、求ZH 点(或ZY 点)坐标及方位角 ?? ? ??-=-=-=11sin cos A T JDY ZHY A T JDX ZHX T JDZH ZHZH 2、求HZ 点(或YZ 点)坐标及方位角 ?? ? ??+=+=+-=22sin cos A T JDY HZY A T JDX HZX L T JDZH HZZH H 3、求解切线长T 、外距E 、曲线长L (1)圆曲线 ?? ? ??=-==180/)1)2/cos(/1()2/tan( απααR L R E R T (2)缓圆曲线 )2/(2/)2/cos(/)(2180/)21()2/tan( )(02 0R l l l Rl l R p R E l R L q p R T s s s H s H H ===?????-+=+?-=+?+=ββαπβα时当其中 二、直线上各桩号坐标及方位角计算 已知:ZH 、X 、Y 、A ??? ??+=+==-=A L Y DY A L X DX A T ZH DZH L sin cos 三、第一缓和曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ?? ? ???-+=?++=??-==-=-=1111121132 125cos sin sin cos /180)2/() 6/()40/(A y i A x ZHY DY A y i A x ZHX DX Rl l i A T Rl L y l R L L x ZHZH DZH L s s s π 四、圆曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ?? ? ???-+=?++=?+?-=?? ???=-==++-=-++=--=11111212311102 1123 1111 cos sin sin cos /180)/2/(24/240/2/2/24/)]/2/cos(1[240/2/)/2/sin(A y i A x ZHY DY A y i A x ZHX DX R L R l i A T R l p R l l q R l R l R L R l R y R l l R L R l R x ls ZHZH DZH L s s s s s s s s s s πβ其中 五、第二缓和曲线上个桩号坐标及方位角计算 已知:HZZH 、HZX 、HZY 、A2、R 、L S2、i (Z+1Y-1) ??????--=?+-=??+==-=-=222222223 2 225cos sin sin cos /180)2/()6/() 40/(A y i A x HZY DY A y i A x HZX DX Rl l i A T Rl L y l R L L x DZH HZZH L s s s π 六、边桩坐标求解 已知:DZH 、X 、Y 、T 、BZJL (Z+Y-)、DLJJ 、N (距中桩距离,左正右负) ?? ? ??-=-=+=T N Y BDY T N X BDX T T sin cos α 七、纵断面高程计算 (1) 直线段上高程计算 已知:直线上任一点桩号(ZH )、高程(H )、纵坡(i ) )(*ZH DZH i H DH -+= (2) 竖曲线上高程计算 已知:竖曲线起点桩号(ZH )、起点高程(H )、竖曲线半径R 、起点坡度(i )、k (凸曲线+1、凹曲线-1) ) 2/(2 R l k il H DH ZH DZH l ?-+=-= 注: JDZH 、JDX 、JDY :交点桩号、交点X 、Y 坐标 R 、L S1、L S2:半径、缓和曲线1、缓和曲线2 LH :缓和曲线1长 +圆曲线长+ 缓和曲线2长 A1、A2:方位角1、方位角2 T :在曲线要素中代表切线长;在坐标计算中代表被求解点的坐标方位角。 DLJJ :道路交角(右夹角α)。 BZJL :边桩距中桩距离:左为正值,右为负值 DZH 、DX 、DY 、DH 、BDX 、BDY :被求解点桩号、点X 值、点Y 值、点高程值、边桩点X 值、边桩点Y 值 i (Z+1Y-1):JD 处道路转向:左转时+1,右转时为-1

竖曲线任意点标高计算方法

竖曲线任意点标高计算 方法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

竖曲线任意点标高计算方法一、曲线要素的计算 1、转坡角ω=(i 1-i 2 )(上坡取正、下坡取负) 2、竖曲线曲线长L = ω× R ( R为曲线半径) 3、切线长T = L ÷ 2 4、外矢距 E = T2÷ 2R 二、任意点起始桩号、切线标高、改正值的计算 1、竖曲线起点桩号 = 变坡点里程-切线长 竖曲线终点桩号 = 变坡点里程+切线长 2、切线标高 = 变坡点标高(不考虑竖曲线标高)-(变坡点里程- 待求点里程)× i 1(所求点位于变坡点后乘i 2 ) 3、改正值 = (待求点里程-起点里程)2÷(2R)(所求点位于变 坡点前) = (待求点里程-终点里程)2÷(2R)(所求点位于变坡点后) 4、待求点设计标高 = (切线点标高-改正值) 三、例: 某高速公路变坡点里程为DK555+550,高程为,前为上坡i 1 =‰,后为上 坡i 2 =‰,设计曲线半径R=30000m,试算竖曲线曲线要素及桩号为DK555+450及DK555+680处的设计标高? 1、计算曲线要素 转坡角ω=(i 1-i 2 )=(-)‰= 竖曲线曲线长 L = ω× R = ×30000 =(m)

切线长 T = L ÷ 2 = ÷2 =(m) 外矢距 E = T2÷ 2R = ÷(2×30000)=(m) 2、竖曲线起、始桩号计算 起点桩号:(DK555+550)- = DK555+ 终点桩号:(DK555+550)+ = DK555+ 3、DK555+450、DK555+680的切线标高和改正值计算 DK555+450切线标高 = (DK555+550-DK555+450)׉=(m) DK555+450改正值 =(DK555+450-DK555+2÷(30000×2)=(m) DK555+680切线标高 = (DK555+680-DK555+550)׉=(m) DK555+680改正值 =(DK555+680-DK555+2÷(30000×2)=(m) 4、DK555+450、DK555+680设计标高计算 DK555+450设计标高 = - =(m) DK555+680设计标高 = =(m)

竖曲线高程计算

4.3 某条道路变坡点桩号为K25+460.00,高程为780.72.m,i1=0.8%,i2=5%,竖曲线半径为5000m。(1)判断凸、凹性;(2)计算竖曲线要素;(3)计算竖曲线起点、K25+400.00、K25+460.00、K25+500.00、终点的设计高程。 解:ω=i2-i1=5%-0.8%=4.2%凹曲线 L=R?ω=5000×4.2%=210.00 m T=L/2=105.00 m E=T2/2R=1.10 m 竖曲线起点桩号:K25+460-T=K25+355.00 设计高程:780.72-105×0.8%=779.88 m K25+400: 横距:x=(K25+400)-(K25+355.00)=45m 竖距:h=x2/2R=0.20 m 切线高程:779.88+45×0.8%=780.2 m 设计高程:780.24+0.20=780.44 m K25+460:变坡点处 设计高程=变坡点高程+E=780.72+1.10=781.82 m 竖曲线终点桩号:K25+460+T=K25+565 设计高程:780.72+105×5%=785.97 m K25+500:两种方法 1、从竖曲线起点开始计算 横距:x=(K25+500)-(K25+355.00)=145m 竖距:h=x2/2R=2.10 m 切线高程(从竖曲线起点越过变坡点向前延伸):779.88+145×0.8%=781.04m 设计高程:781.04+2.10=783.14 m 2、从竖曲线终点开始计算 横距:x=(K25+565)-(K25+500)=65m 竖距:h=x2/2R=0.42 m 切线高程 (从竖曲线终点反向计算):785.97-65×5%=782.72m 或从变坡点计算:780.72+(105-65)×5%=782.72m 设计高程:782.72+0.42=783.14 m

土坝坝顶高程计算说明书

土坝坝顶高程计算说明书 1 计算基本资料 达兰河流域属大陆性气候,其特点是光照充足,夏季炎热,冬季寒冷,干燥少雨,蒸发量大,春季多风,库区最大风速18m3/s,多年平均最大风速12.6m3/s,风向多顺河,风向基本上与坝轴线正交,吹程D=5.3km。东田水库属内陆峡谷水库。 东田水库枢纽工程的特征水位如下: ●死水位1400.0m ●正常蓄水位1435.5m ●设计洪水位1437.66m ●校核洪水位1440.25m 本工程地震基本烈度为Ⅵ度,根据中华人民共和国国家经济贸易委员会发布的《水工建筑物抗震设计规范》(DL5073-2000)总则所述:设计烈度为Ⅵ度时,可不进行抗震计算,但对1级水工建筑物仍应按规范采取适当的工程措施。 2 设计计算情况 根据中华人民共和国水利部发布的《碾压式土石坝设计规范》(SL274-2001),第5.3.3条,坝顶高程等于水库静水位与坝顶超高之和,应按以下运用条件计算,取其最大值: (1)设计洪水位加正常运用条件下的坝顶超高超高; (2)正常蓄水位加正常运用条件下的坝顶超高; (3)校核洪水位加正常运用条件下的坝顶超高; (4)正常蓄水位加非常运用条件下的坝顶超高,再按本规范5.3.2条规定加地震 安全加高。 本工程地震基本烈度为Ⅵ度,故由《水工建筑物抗震设计规范》(DL5073-2000)知不考虑地震加高。 第5.3.4条规定:当坝顶上游侧设有防浪墙时,坝顶超高可改为对防浪墙顶的要求。但此时在正常运用条件下,坝顶应高出静水位0.5m;在非常运用条件下,坝顶应不低于静水位。 第5.3.5规定,设计计算风速的取值应遵循下列规定: (1)正常运用条件下的1级、2级坝,采用多年平均年最大风速的1.5~2.0倍;

水准仪测量高程的方法和步骤

水准仪测量高程的方法和步骤 内容:理解水准测量的基本原理;掌握DS3 型微倾式水准仪、自动安平水准仪的构造特点、水准尺和尺垫;掌握水准仪的使用及检校方法;掌握水准测量的外业实施(观测、记录和检核)及内业数据处理(高差闭合差的调整)方法;了解水准测量的注意事项、精密水准仪和电子水准仪的构造及操作方法。 重点:水准测量原理;水准测量的外业实施及内业数据处理。 难点:水准仪的检验与校正。 §2.1 高程测量(Height Measurement )的概念 测量地面上各点高程的工作, 称为高程测量。高程测量根据所使用的仪器和施测方法的不同,分为: (1)水准测量(leveling) (2)三角高程测量(trigonometric leveling) (3)气压高程测量(air pressure leveling) (4)GPS 测量(GPS leveling) §2.2 水准测量原理 一、基本原理 水准测量的原理是利用水准仪提供的“水平视线”,测量两点间高差,从而由已知点高程推算出未知点高程。

a ——后视读数A ——后视点 b ——前视读数B ——前视点 1、A、B两点间高差: 2、测得两点间高差后,若已知A 点高程,则可得B点的高程:。 3、视线高程: 4、转点TP(turning point) 的概念:当地面上两点的距离较远,或两点的高差太大,放置一次仪器不能测定其高差时,就需增设若干个临时传递高程的立尺点,称为转点。 二、连续水准测量

如图所示,在实际水准测量中,A 、B 两点间高差较大或相距较远,安置一次水准仪不能测定两点之间的高差。此时有必要沿A 、B 的水准路线增设若干个必要的临时立尺点,即转点(用作传递高程)。根据水准测量的原理依次连续地在两个立尺中间安置水准仪来测定相邻各点间高差,求和得到A 、B 两点间的高差值,有: h 1 = a 1 -b 1 h 2 = a 2 -b 2 …… 则:h AB = h 1 + h 2 +…… + h n = Σ h = Σ a -Σ b 结论:A 、B 两点间的高差等于后视读数之和减去前视读数之和。 § 2.3 水准仪和水准尺 一、水准仪(level) 如图所示,由望远镜、水准器和基座三部分组成。

平曲线要素计算公式(给学生用的)

第三节 竖曲线 纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线采用抛物线拟合。 一、竖曲线要素的计算公式 (2)曲线主点桩号计算: ZH(桩号)=JD(桩号)-T HY(桩号)=ZH(桩号)+l s QZ(桩号)=HZ(桩号)-L/2 YH(桩号)=HY(桩号)+L y HZ(桩号)=YH(桩号)+l s JD(桩号)=QZ(桩号)+J/2 30-3 336629-3 4028)-(3 )(227-3 2 sec )(26-3 225-3 2ls 180)2(m 18024) -(3 2 )(23) -(3 9022)-(3 23842421)-(3 )( 24023 4202 30003 422 3m R l R l y m R l l x m L T J m R p R E m l L L R l R L m q tg p R T R l m R l R l p m R l l q s s s s s Y s s s s s s -=-=-=-?+=-=+??-=+??=+?+=???=-=-=α π βααπα πβ

相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。 2.竖曲线诸要素计算公式 竖曲线长度或竖曲线半径R: (前提:ω很小) L=Rω 竖曲线切线长:T=L/2=Rω/2 竖曲线上任一点竖距h: 竖曲线外距: [例1]、某山岭区二级公路,变坡点桩号为K5+,标高为,变坡点桩号的地面高程为,i1=+5%,i2=-4%,竖曲线半径R=2000m。试计算竖曲线诸要素以及桩号为K5+和K5+处的设计高程,BPD的设计高程与施工高。 解:1.计算竖曲线要素 ω= |i2-i1|= | =,为凸型。 曲线长L=Rω=2000×=180m 切线长T=L/2=180/2=90m

公路工程常用公式

公路工程常用公式 一、三角函数公式: 1)、在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么 ○1三边之间的关系为(勾股定理) ○2锐角之间的关系为∠A+∠B=90° ○3边角之间的关系为 (4)其他有关公式 面积公式:(hc为c边上的高) 2)、正弦公式,即为正弦定理 在一个三角形中,各边和它所对角的正弦的比相 等。 即a/sinA=b/sinB=c/sinC=2R(2R在同一个三角形 中是恒量,是此三角形外接圆的半径的两倍) 这一定理对于任意三角形ABC,都有 (1)a/sinA=b/sinB=c/sinC=2R R为三角形外接圆半径 正弦定理的变形公式 (1) a=2RsinA, b=2RsinB, c=2RsinC; (2) sinA : sinB;sinC = a : b : c; 3)任意三角形余弦公式:a2=b2+c2-2bc(cosA) ;cosA=(b2+c2-a2)/2bc 二、弧长公式:n∏r/180;扇形面积公式:n∏r2/360 公路测量常用公式: 一、圆曲线:曲线要素的计算若已知:转角α 及半径 R ,则:切线长:;曲线长: 外距:;切曲差: (1)主点里程的计算 ZY 里程 =JD 里程 -T ; YZ 里程 =ZY 里程 +L ;

QZ 里程 =YZ 里程 -L/2 ; JD 里程 =QZ 里程 +D/2 (用于校核) 二、缓和曲线 (spiral) 的测设 1、概念:为缓和行车方向的突变和离心力的突然产生与消失,需要在直线(超高为 0 )与圆曲线(超高为 h )之间插入一段曲率半径由无穷大逐渐变化至圆曲线半径的过渡曲线(使超高由 0 变为 h ),此曲线为缓和曲线。主要有回旋线、三次抛物线及双纽线等。 2、回旋型缓和曲线基本公式 ——缓和曲线全长。 (1)切线角公式:——缓和曲线长所对应的中心角。 (2)缓和曲线角公式:——缓和曲线全长所对应的中心角亦称缓和曲线角。 (3)缓和曲线的参数方程: (4)圆曲线终点的坐标:

公路竖曲线计算

竖曲线及平纵线形组合设计 (纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。) 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22= (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 =2 ωR 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短

缓和曲线常用计算公式

一、缓和曲线常数 1、 内移距P : 3420268824R l R l P n -= 2、 切垂距m : 2 302402R l l m -= 3、缓和曲线基本角: R l R l πβ000902== 3、 缓和曲线偏角: R l R l πδ000306== 5、缓和曲线反偏角: R l R l b π000603== 缓和曲线常数既有线元素,又有角元 素,且均 为圆曲线半径R 和缓和曲线 长0l 的函数。线元素要计算到mm ,角元素要计算到秒。 二、缓和曲线综合要素 切线长:()m P R T +?? ? ??+=2tan α 曲线长:()0022l R L +-=βα 外视距:R P R E -?? ? ??+=2cos 0α 切曲差:L T q -=2 曲线综合要素均为线元素,且均为转向角 α、圆曲线半径R 和缓和曲线长0 l 的函数。曲线综合要素计算到cm 。 三、缓和曲线任意点偏角计算

2020202902306Rl l Rl l Rl l Rl l t t t t t t πβπδ==== 0202603Rl l Rl l b t t t π== 实际应用中,缓和曲线长0l 均选用10m 的倍数。 四、偏角法测设缓和曲线遇障碍 ()()T B B T l l l l Rl 2610 +-=βδ ()()()()T F T F T F T F F l l l l Rl l l l l Rl 23026100 +-=+-= πδ —B l 为靠近ZH(HZ)点的缓和曲线长; —T l 为置镜点的缓和曲线长; —F l 为远离ZH(HZ)点的缓和曲线长。 五、直角坐标法 1、缓和曲线参数方程: 520 2401a a a l l R l x -= 30 373033661l R l l Rl y a a a -= 2、圆曲线 m R x b b +=αsin ()P R y b b +-=αcos 1 式中,b α为圆心O 到切线的垂线方向和到B 的半径方向所形成的圆心角,按 下式计算:

计算书

1非溢流坝段设计计算 1.1设计校核洪水位的确定 由堰流公式 相应洪水位= 堰顶高程+ H0 H0=1.05H d B=Q/q n=B/b 式中:Q--流量m3/s B--溢流堰孔口宽m H0--堰顶以上作用水头 G--重力加速度9.8m3/s m—流量系数 n—孔口数 H d—堰面曲线定型设计水头 B—溢流孔的净宽 b—孔口净宽 q—单宽流量 --侧收循系数,根据闸墩厚度及墩头形状而定, =1, =0.95,m=0.502,q=60㎡/s,b=5m,堰顶高程=1057.00m 计算成果见表: 表5.2 堰顶高程 1.2坝顶高程的确定 坝顶高程分别按设计和校核两种情况,用以下公式进行计算:

波浪要素按官厅公式计算。公式如下: 1/3 1/121022000.0076gh gD v v v -??= ???...............................① 1/3.75 1/2.15022000.331gL gD v v v -??= ??? ...............................② 2 12z h H h cth L L ππ= ...............................③ 库水位以上的超高h ?: 1c z h h h h ?=++ 式中1h --波浪高度,m z h --波浪中心线超出静水位的高度,m c h --安全超高,m(查规范得,设计情况取0.3m,校核情况取0.2m) o v --计算风速。水库为正常蓄水位和设计洪水位时,宜用相应洪水期多年 平均最大风速的1.5~2.0倍,取19m/s ,校核洪水位时,宜用相应洪水期多年平均最大风速,15 m/s D-风区长度;取800m L--波长;M H--坝前水深 1.2.1.1 设计情况下 gD/v 02=9.8×800/192=21.72,在20—250之间,故h 的累积频率为5%的波高,带入①中, 9.8×h 5%/192=0.0076×19-1/12×(9.81×800/192)1/3 得h 5%=0.55m 查《混凝土重力坝设计规范》表B.6.3得 h 5%/hm=1.95 hm=0.55/1.95=0.282m h 1%/hm=2.42 h 1%=0.282×2.42=0.682m 将各值带入②得

竖曲线计算范例

第8讲 课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式

竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ; R —为竖曲线的半径,m 。 二、竖曲线的最小半径 (一)竖曲线最小半径的确定 1.凸形竖曲线极限最小半径确定考虑因素 (1)缓和冲击 汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。 (2)经行时间不宜过短 当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然

缓和曲线计算公式

当前的位置】:工程测量→第十一章→ 第四节圆曲线加缓和曲线及其主点测设 第四节圆曲线加缓和曲线及其主点测设 §11—4 圆 曲线加缓 和曲线及 其主点测 设 一、缓和曲 线的概念 二、缓和曲线方程 三、缓和曲线常数 四、圆曲线加缓和曲线的综合要素及主点测设 一、缓和曲线的概念 1、为什麽要加入缓和曲线? (1)在曲线上高速运行的列车会产生离心力,为克服离心力的影响,铁路在曲线部分采用外轨超高的办法,即把外轨抬高一定数值.使车辆向曲线内倾斜,以平衡离心力的作用,从而保证列车安全运行。 图11-10(a).(b)为采用外轨超高前、后的情况。 外轨超高和内轨加宽都是逐渐完成,这就需要在直线与圆曲线之间加设一段过渡曲线——缓和曲线. 缓和曲线: 其曲率半径ρ 从∞逐渐变化到圆曲线的半径R 。 2、缓和曲线必要的前提条件(性质): 在此曲线上任一点P 的曲率半径ρ与曲线的长度l成反比,如图11-12所示,以公式表示为: ρ ∝1l 或ρ. l = C (11-4) 式中: C 为常数,称曲线半径变更率。 当l= l o时,ρ= R ,按(11-4)式,应有 C = ρ.l= R .l o (11-5) 符合这一前提条件的曲线为缓和曲线,常用的有辐射螺旋线及三次抛物线,我国采用辐射螺旋线。 3、加入缓和曲线后的铁路曲线示意图(见图11-J)

二、缓和曲线方程 1、加入缓和曲线后的切线坐标系 坐标原点:以直缓(ZH)点或缓直(HZ)点为原点; X坐标轴:直缓(ZH)点或缓直(HZ)点到交点(JD)的切线方向; Y坐标轴:过直缓(ZH)点或缓直(HZ)点与切线垂直的方向。 其中:x、y 为P点的坐标;x o、y o为HY点的坐标; ρ 为P 点上曲线的曲率半径;R 为圆曲线的曲率半径 l 为从ZH点到P 点的缓和曲线长;l o为从ZH点到HY点的缓和曲线总长; 2、缓和曲线方程式: 根据缓和曲线必要的前提条件推导出缓和曲线上任一点的坐标为 实际应用时, 舍去高次项, 代入C=R*l o,采用下列公式:

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式

圆曲线缓和曲线计算公式 2011-09-13 15:19:36| 分类:默认分类|字号订阅 第九章道路工程测量(圆曲线缓和曲线计算公式) 学习园地2010-07-29 13:10:53阅读706评论0 字号:大中小订阅 [教程]第九章道路工程测量(圆曲线缓和曲线计算公式)未知2009-12-09 19:04:30 广州交通技术学院第九章道路工程测量(road engineering survey) 内容:理解线路勘测设计阶段的主要测量工作(初测控制测量、带状地形图测绘、中线测设和纵横断面测量);掌握路线交点、转点、转角、里程桩的概念和测设方法;掌握圆曲线的要素计算和主点测设方法;掌握圆曲线的切线支距法和偏角法的计算公式和测设方法;了解虚交的概念和处理方法;掌握缓和曲线的要素计算和主点测设方法;理解缓和曲线的切线支距法和偏角法的

计算公式和测设方法;掌握路线纵断面的基平、中平测量和横断面测量方;了解全站仪中线测设和断面测量方法。 重点:圆曲线、缓和曲线的要素计算和主点测设方法;切线支距法和偏角法的计算公式和测设方法;路线纵断面的基平、中平测量和横断面测量方法 难点:缓和曲线的要素计算和主点测设方法;缓和曲线的切线支距法和偏角法的计算公式和测设方法。 § 9.1 交点转点转角及里程桩的测设一、道路工程测量概述 分为:路线勘测设计测量(route reconnaissance and design survey) 和道路施工测量(road construction survey) 。(一)勘测设计测量(route reconnaissance and design survey) 分为:初测(preliminary survey) 和定测(location survey) 1、初测内容:控制测量(control survey) 、测带状地形图(topographical map of a zone) 和纵断面图(profile) 、收集沿线地质水文资

三角高程测量的计算公式

三角高程测量的计算公式 如图6.27所示,已知A点的高程H A,要测定B点的高程 H B,可安置经纬仪于A点,量取仪器高i A;在B点竖立标杆,量取其高度称 为觇 B 标高v B;用经纬仪中丝瞄准其顶端,测定竖直角α。如果已知AB两点间的水平距离D (如全站仪可直接测量平距),则AB两 点间的高差计算式为: 如果当场用电磁波测距仪测定两点间的斜距D′,则AB两点间的高差计算式为: 以上两式中,α为仰角时tanα或sinα为正,俯角时为负。求得高差h AB以后,按下式计算B 点的高程: 以上三角高程测量公式(6.27)、(6.28)中,设大地水准面和通过A、B点的水平面为相互平行的平面,在较近的距离(例如200米)内可 以认为是这样的。但事实上高程的起算面——大地水准面是一曲面,在第一章1.4中已介绍了水准面曲率对高差测量的影响,因此由三 角高程测量公式(6.27)、(6.28)计算的高差应进行地球曲率影响的改正,称为球差改正f1,如图6.28(见课本)所示。按(1.4)式: 式中:R为地球平均曲率半径,一般取R=6371km。另外,由于视线受大气垂直折光影响而成为一条向上凸的曲线,使视线的切线方向向 上抬高,测得竖直角偏大,如图6.28所示。因此还应进行大气折光影响的改正,称为气差改正f2,f2恒为负值。 图6.23 三角高程测量

图6.24 地球曲率及大气折光影响 设大气垂直折光使视线形成曲率大约为地球表面曲率K倍的圆曲线(K称为大气垂直折光系数),因此仿照(6.30)式,气差改正计算公式 为:

球差改正和气差改正合在一起称为球气差改正f,则f应为: 大气垂直折光系数K随气温、气压、日照、时间、地面情况和视线高度等因素而改变,一般取其平均值,令K=0.14。在表6.16中列出水 平距离D=100m-200m的球气差改正值f,由于f1>f2,故f恒为正值。 考虑球气差改正时,三角高程测量的高差计算公式为: 或 由于折光系数的不定性,使球气差改正中的气差改正具有较大的误差。但是如果在两点间进行对向观测,即测定h AB及h BA而取其平均 值,则由于f2在短时间内不会改变,而高差h BA必须反其符号与h AB取平均,因此f2可以抵消,f1同样可以抵消,故f的误差也就不起 作用,所以作为高程控制点进行三角高程测量时必须进行对向观测。

公路缓和曲线段原理及缓和曲线计算公式

程序使用说明 Fx9750、9860系列 程序包含内容介绍:程序共有24个,分别是: 1、0XZJSCX 2、1QXJSFY 3、2GCJSFY 4、3ZDJSFY 5、4ZDGCJS 6、5SPJSFY 7、5ZDSPFY 8、5ZXSPFY 9、6ZPJSFY 10、7ZBZFS 11、8JLHFJH 12、9DBXMJJS 13、9DXPCJS 14、9SZPCJS 15、GC-PQX 16、GC-SQX 17、PQX-FS 18、PQX-ZS 19、 ZD-FS 20、ZD-PQX 21、ZD-SQX 22、ZD-ZS 23、ZDSP-SJK 24、ZXSP-SJK 其中,程序2-14为主程序,程序15-24为子程序。每个主程序都可以单独运算并得到结果,子程序不能单独运行,它是配合主程序运行所必需的程序。刷坡数据库未采用串列,因为知道了窍门,数据库看起很多,其实很少。 程序1为调度2-8程序; 程序2为交点法主线路(含不对称曲线)中边桩坐标正反计算及极坐标放样程序; 程序3为主线路中边桩高程计算及路基抄平程序; 程序4为线元法匝道中边桩坐标正反计算及极坐标放样程序; 程序5为匝道线路中边桩高程计算及路基抄平程序; 程序6为任意线型开口线及填筑边线计算放样程序; 程序7专为主线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序8专为匝道线路开口线及填筑边线计算放样程序,只需测量任意一点三维数据,即可马上计算出该点相对于中桩法线上的偏移量; 程序9为桥台锥坡计算放样程序; 程序10为计算两点间的坐标正反算程序; 程序11为距离后方交会计算测站坐标程序;

公路竖曲线计算

公路竖曲线计算

————————————————————————————————作者:————————————————————————————————日期:

课 题:第三节 竖曲线 第四节 公路平、纵线形组合设计 教学内容:理解竖曲线最小半径的确定;能正确设置竖曲线;掌握竖曲线的要素计算、竖曲线与路基设计标高的计算;能正确进行平、纵线形的组合设计。 重 点:1、竖曲线最小半径与最小长度的确定;2、竖曲线的设置; 3、平、纵线形的组合设计。 难 点:竖曲线与路基设计标高的计算;平、纵线形的组合设计。 第三节 竖曲线设计 纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。 竖曲线的形状,通常采用平曲线或二次抛物线两种。在设计和计算上为方便一般采用二次抛物线形式。 纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。 一、竖曲线 如图所示,设相邻两纵坡坡度分别为i 1 和i 2,则相邻两坡度的代数差即转坡角为ω= i 1-i 2 ,其中i 1、i 2为本身之值,当上坡时取正值,下坡时取负值。 当 i 1- i 2为正值时,则为凸形竖曲线。当 i 1 - i 2 为负值时,则为凹形竖曲线。 (一)竖曲线基本方程式 我国采用的是二次抛物线形作为竖曲线的常用形式。其基本方程为: Py x 22= 若取抛物线参数P 为竖曲线的半径 R ,则有: Ry x 22 = R x y 22 = (二)竖曲线要素计算公式 竖曲线计算图示 1、切线上任意点与竖曲线间的竖距h 通过推导可得: ==PQ h )()(2112 li y l x R y y A A q p ---=-R l 22= 2、竖曲线曲线长: L = R ω 3、竖曲线切线长: T= T A =T B ≈ L/2 = 2 ω R 4、竖曲线的外距: E =R T 22 ⑤竖曲线上任意点至相应切线的距离:R x y 22 = 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m; R —为竖曲线的半径,m 。

重力坝坝顶超高计算书标准格式

混凝土重力坝坝顶超高计算书标准格式 工程设计分院坝工室 2006.3. 核定: 审查: 校核: 编写: ——水电站工程(或水库工程、水利枢纽工程) 混凝土重力坝坝顶高程计算书 1 计算说明 1.1 适用范围(设计阶段) 本计算书仅适用于工程设计阶段的(坝型)坝顶超高/高程计算。 1.2 工程概况 工程位于省市(县)的江(河)上。该工程是以为

主,兼顾、、等综合利用的水利水电枢纽工程。 本工程规划设计阶段(或预可行性研究阶段,可行性研究阶段/初步设计阶段,招标设计阶段)设计报告已于年月经审查通过。水库总库容×108m3,有效库容×108m3,死库容×108m3;灌溉面积亩;水电站装机容量MW,多年平均发电量×108 kW·h,保证出力MW。选定坝址为,选定坝型为。 根据《水电枢纽工程等级划分及设计安全标准》DL5180—2003,工程等别为等型工程,拦河坝为级永久水工建筑物。(因拦河大坝坝高已超过其规定的高度,拦河坝应提高级,按级建筑物设计。) 1.3 计算目的和要求 通过混凝土重力坝坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位高差的计算,以确定防浪墙顶高程和大坝高度,为坝体断面设计及坝体工程量计算提供可靠的依据。 1.4 计算原则和方法 1.4.1 计算原则 (1)坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位的高差,包括 最大浪高、波浪中心线至水库静水位的高度和安全超高。 (2)确定的坝顶高程不得低于水库正常蓄水位及设计洪水位。 (3)坝顶高程的确定尚需考虑枢纽中其他建筑物(如船闸坝顶桥下通航净空) 对 坝顶高程的要求。 1.4.2 计算方法 因选定坝型为(混凝土重力坝),防浪墙顶在水库静水位以上的高差按《混凝土重力坝设计规范》DL 5108-1999式(11.1.1)计算,即: ?h=h1%+h z+h c 式中,?h—防浪墙顶至水库静水位的高差,m;

缓和曲线、(计算公式)

一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程: 说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当计算第二缓和曲线上的点坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与计算第一缓和曲线时相反 xZ,yZ为点HZ的坐标 切线角计算公式: 二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l0 ④转向角系数:K(1或-1) ⑤过ZH点的切线方位角:α ⑥点ZH的坐标:xZ,yZ 计算过程:

说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下: 当只知道HZ点的坐标时,则: l为到点HZ的长度 α为过点HZ的切线方位角再加上180° K值与知道ZH点坐标时相反 xZ,yZ为点HZ的坐标 三、曲线要素计算公式

公式中各符号说明: l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度 l2——第二缓和曲线长度 l0——对应的缓和曲线长度 R——圆曲线半径 R1——曲线起点处的半径 R2——曲线终点处的半径 P1——曲线起点处的曲率 P2——曲线终点处的曲率 α——曲线转角值 四、竖曲线上高程计算 已知:①第一坡度:i1(上坡为“+”,下坡为“-”) ②第二坡度:i2(上坡为“+”,下坡为“-”) ③变坡点桩号:SZ

④变坡点高程:HZ ⑤竖曲线的切线长度:T ⑥待求点桩号:S 计算过程: 五、超高缓和过渡段的横坡计算 已知:如图, 第一横坡:i1 第二横坡:i2 过渡段长度:L 待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i 解:d=x/L i=(i2-i1)(1-3d2+2d3)+i1 六、匝道坐标计算 已知:①待求点桩号:K ②曲线起点桩号:K0 ③曲线终点桩号:K1 ④曲线起点坐标:x0,y0

相关文档
最新文档